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We provide a new algorithm for approximating the law of a one-
dimensional diffusion M solving a stochastic differential equation with pos-
sibly irregular coefficients. The algorithm is based on the construction of
Markov chains whose laws can be embedded into the diffusion M with a se-
quence of stopping times. The algorithm does not require any regularity or
growth assumption; in particular it applies to SDEs with coefficients that are
nowhere continuous and that grow superlinearly. We show that if the diffu-
sion coefficient is bounded and bounded away from 0, then our algorithm has
a weak convergence rate of order 1/4. Finally, we illustrate the algorithm’s
performance with several examples.
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Introduction

Consider a one-dimensional stochastic differential equation (SDE) of the form

dMt = b(Mt) dt+ η(Mt) dWt, M0 = m. (1)

Suppose that b and η are Borel functions such that (1) possesses a weak solution (M,W )
that is unique in law (cf. Section 5.5.C in [17]). In general the law of the solution process
M is not known explicitly, and therefore one has to fall back on numerical methods for
its approximation. The most used approximation method is the Euler scheme. If the
coefficients b and η are Lipschitz continuous, then the Euler approximations are known
to converge to the solution (see e.g. [18]). In many applications, however, one has to deal
with non-Lipschitz SDEs. For example in economics frequently risk factors are modeled
as non-Lipschitz SDEs (e.g. the CIR process, or the price process in CEV models and
quadratic normal volatility models (see [3])). Diffusion models in mathematical genetics
make use of non-Lipschitz SDE, e.g. the Wright-Fisher-diffusion (see [5]). Finally, many
physical phenomena, e.g. the movement of a particle between two different media, can
be modeled with SDEs possessing a discontinuous diffusion coefficient (see introduction
in [22]).

If the coefficients of the SDE are not globally Lipschitz continuous, then usually the
Euler scheme is numerically unstable. Indeed, one can even prove that if the coefficients
grow superlinearly, then the Euler approximations do not converge in a weak L1 sense
(see [13]). Therefore, for the simulation of non-Lipschitz SDEs alternative approximation
methods are needed.

In this article we provide a new approximation method that does not require any regu-
larity or growth assumption on the coefficients b and η. In particular, the method applies
to SDEs with coefficients that are nowhere continuous and that grow superlinearly.

The basic idea of our approximation method is to construct Markov chains that can be
embedded in distribution intoM with a sequence of stopping times. For the construction
one first applies a standard change of variables (see e.g. Section 5.5.B in [17]) in order to
transform the SDE (1) into an SDE without drift. Therefore, without loss of generality
we can assume that b ≡ 0. Now let (Xk) be an i.i.d. sequence of centered random
variables and (Yk) a Markov chain with dynamics

Yk+1 = Yk + a(Yk)Xk+1, k ∈ Z+. (2)

We construct the Borel function a : R→ R+ in a way that one can find stopping times
0 = τ0 < τ1 < · · · such that the conditional expectation between two consecutive
stopping times is equal to a constant h ∈ (0,∞), and such that the discrete-time process
(Mτk)k≥0 has the same distribution as (Yk)k≥0. One can extend (Yk) to a continuous-
time process by setting Yt = Ybtc + (t − btc)(Ybtc+1 − Ybtc) for all t ∈ R+. A functional
limit theorem implies that the distribution of (Yt/h)t∈[0,T ] converges to the distribution
of (Mt)t∈[0,T ] as h ↓ 0 (see [2]). One can thus use (Yk) for approximating the law of M .
In other words, by simulating (Yk) one can estimate the distribution of M . Notice that
a realization of (Yk) can be interpreted as an exact simulation of M along a sequence of
stopping times.
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Our idea works, because there is a simple integral formula for the minimal expected
time needed for embedding a distribution into M (see [1]). The integral formula allows
to determine the scale factor a in (2) such that the transition probabilities of (Yk) can
be embedded into M with stopping times having expectation h.

We now give a brief overview on some alternative methods for approximating non-
Lipschitz SDEs and compare them with our proposed scheme.
A related numerical scheme for approximating diffusions with discontinuous coeffi-

cients is provided in [6]. The authors construct a continuous-time process on a given
finite grid by embedding, in every time step, a weighted sum of the Dirac measures of
the two neighboring grid points. The average time for attaining one of the neighboring
points is determined by solving a PDE. In contrast to [6], in our approach the average
time lag is fixed, whereas the scale factor, and hence the state distribution, is determined
endogeneously.
The literature comprises also several papers analyzing the convergence of Euler-type

approximation schemes for SDEs with irregular and/or quickly growing coefficients.
[7] shows almost sure convergence of the Euler scheme for SDEs with a drift satisfy-
ing a certain monotonicity condition (a local one-sided Lipschitz condition in space,
uniformly in time) and with a locally Lipschitz diffusion coefficient. [26] proves weak
convergence of the Euler scheme in the case where the diffusion coefficient is allowed to
be discontinuous on a set of Lebesgue measure zero and has at most linear growth. There
are also results on the rate of convergence in [26], but only for Hölder continuous coef-
ficients. In [23] it is shown that, for the Euler scheme, the strong rates obtained in [26]
hold also for certain discontinuous (but one-sided Lipschitz) drifts; however, the diffusion
coefficient needs to be bounded and Hölder continuous. As far as modifications of the
Euler scheme are concerned, the analyses of the implicit Euler scheme (also known as
backward Euler scheme) and of the related split-step backward Euler scheme allow some
irregularities in the drift, but assume the diffusion coefficient to be Lipschitz (see [8] and
[10]). The tamed Euler scheme is an explicit scheme that dampens superlinear growth,
in [14] of the drift coefficient, and in [12] also for the diffusion coefficient. The scheme is
shown to converge strongly if the coefficients are locally Lipschitz continuous and satisfy
a Lyapunov-type growth condition (see [12, Theorem 3.15]).
The paper [19] provides convergence rates for the weak approximation error, assuming

again that only the diffusion coefficient is regular (the method regularizes the drift
and uses the Euler scheme for the regularized equation). [24] studies certain explicit
Euler-type schemes that exhibit strong convergence also in certain cases when drift and
diffusion coefficients are growing superlinearly and compensate each other. However, in
the case of a driftless SDE the assumptions in [24] imply that the diffusion coefficient is
locally Lipschitz and of linear growth. [11] provides a general framework, which contains
the Euler scheme (but not our one) as a special case, and proves strong convergence rates,
where again the diffusion coefficient is regular and the drift satisfies a certain non-global
monotonicity condition. For further literature on approximation schemes we refer to the
overview [16].

The paper is organized in the following way. In Section 1 we describe in detail the new
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approximation scheme. We explain why the scheme convergences, and why no regularity
and growth assumptions on the diffusion coefficient are needed.

In Section 2 we show some properties of the scheme that are desirable from a numer-
ical point of view. In particular, we prove, under some nice conditions on (Xk), that
the approximating process (Yk) satisfies a certain comparison principle. This excludes
divergent oscillations of the scheme for quickly growing η. Moreover, we show that the
scale factor a in (2) is Lipschitz continuous and hence grows at most linearly. This
smoothing and tempered growth behavior accounts for a good numerical performance.
Furthermore we show that a in (2) is characterized by an ordinary differential equation
and can therefore be efficiently computed.

Section 3 deals with the convergence rate. We show that if η is bounded and bounded
away from zero, then our scheme has a weak convergence rate of order 1/4. We stress
here that the convergence rate holds true without any regularity assumptions on the
diffusion coefficient.

Section 4 shapes our approximation scheme into a concise simulation algorithm. This
algorithm is then illustrated in Section 5 with several examples. Moreover, results from
some numerical experiments are reported.

1 A scheme that is exact along stopping times

In this section we describe a method for approximating the law of a one-dimensional
homogeneous stochastic differential equation (SDE). We start by specifying the class of
SDEs the method can be applied to. We first restrict ourselves to SDEs without drift;
in Section 5.5 we explain how one can extend the method to SDEs with drift.

Let I = (l, r) with l ∈ [−∞,∞) and r ∈ (−∞,∞]. Let η : R → R be a Borel-
measurable function satisfying

η(x) 6= 0 for all x ∈ I, (3)
1

η2
∈ L1

loc(I), (4)

η(x) = 0 for all x ∈ R \ I, (5)

where L1
loc(I) denotes the set of functions that are locally integrable on I. Consider the

SDE

dMt = η(Mt)dWt, M0 = m ∈ (l, r). (6)

The assumptions (3)–(5) imply that (6) possesses a weak solution that is unique in law
(see e.g. [4] or Theorem 5.5.7 in [17]). This means that there exists a pair of processes
(M,W ) on a filtered probability space (Ω,F , (Ft), P ), with (Ft) satisfying the usual
conditions, such that W is an (Ft)-Brownian motion and (M,W ) satisfies the SDE (6).
Let us note that M stays in l (resp. r) once it hits l (resp. r).

Our basic idea is to approximate M with a discrete-time process that coincides in law
with M along a sequence of stopping times. To explain the method, let X1, X2, . . . be
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a sequence of i.i.d. real-valued random variables. We assume that each Xi is integrable
with E(Xi) = 0, and we denote the distribution of Xi by µ. Let us also suppose µ 6= δ0.
We define a process (Yk)k∈Z+ by setting

Y0 = m and Yk+1 = Yk + a(Yk)Xk+1, k ∈ Z+, (7)

where a : R → R+ is a Borel function. In the following the refer to (Yk) as to the
scaled random walk generated by (Xk) with scale factor a. Moreover, we say that (Yk)
is embeddable into M with expected time step h ∈ (0,∞) if there exists an increasing
sequence of stopping times (τk) such that (Mτk)

d
= (Yk) (i.e. both discrete-time processes

have the same law) and

τ0 = 0 and E[τk+1 − τk|Fτk ] = h, k ∈ Z+. (8)

For the remainder of this section we suppose that for all h ∈ (0,∞) we can find a
unique scale factor a such that the random walk (Yk) with scale factor a is embeddable
into M with expected time step h. In Section 2 we recall a sufficient condition from [2]
guaranteeing that this assumption is satisfied (see Proposition 2.1). We next explain
why the embeddable scaled random walks can be used for approximating the law of the
diffusion M .

Let T ∈ R+ be a finite time horizon and hN = T
N
, N ∈ N. Let (Y N

k ) be the scaled
random walk that is embeddable into M with expected time step hN and let (τNk )

be a sequence of stopping times satisfying (8) such that (MτNk
)

d
= (Y N

k ). Besides, let
(MN

t )t∈[0,T ] and (M̃N
t )t∈[0,T ] be continuous-time processes defined by MN

khN
:= Y N

k and
M̃N

khN
:= MτNk

on the grid πN = {0, hN , 2hN , . . . , NhN ≡ T} and via linear interpolation
between the grid points:

MN
t = MN

btcN +
1

hN
(t− btcN)(MN

btcN+hN
−MN

btcN )

and similarly for M̃N , where btcN := sup{[0, t]∩ πN}. For all k ≥ 1 let ρNk = τNk − τNk−1.
Equation (8) entails that the family (ρNk ), k ≥ 1, is uncorrelated. Moreover, we have
E(ρNk ) = hN . If in addition (ρNk ) satisfies some nice uniform integrability condition, then
a certain weak law of large numbers for arrays applies, and hence limN→∞ τ

N
bNt/T c = t in

probability, for all t ∈ R+. Since M has continuous sample paths, this further indicates
that limN→∞ M̃

N = M in probability uniformly in the space C([0, T ]) of continuous
functions [0, T ] → R; in other words, we have convergence of the distributions of MN

on the path space. The previous line of argument is made precise in [2].

Theorem 1.1 (Theorem 3.6 in [2]). Suppose that |η| and 1
|η| are locally bounded on I,

µ has a compact support and that the following implications hold true:

if l > −∞, then µ({inf suppµ}) > 0, (9)
if r <∞, then µ({sup suppµ}) > 0. (10)

Then (MN
t )t∈[0,T ] converges in distribution to (Mt)t∈[0,T ] as N →∞.
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Let us notice that Theorem 3.6 in [2] contains, in fact, a weaker but more technical
assumption than that in Theorem 1.1 (compare (9)–(10) above with (19), (27) and (29)
as well as Propositions 2.12 and 2.20 in [2]).

Remark 1.2. If |η| and 1
|η| are globally bounded, then one can prove convergence also

for µ without compact support (see Theorem 3.1 in [2]).

The preceding theorem shows that we can use MN for approximating the law of M .
More precisely, let f : C([0, T ]) → R be a bounded functional that is continuous with
respect to the sup norm. Then Theorem 1.1 means that E[f(MN)] ≈ E[f(M)]. Thus,
by simulating the scaled random walk (Y N

k ) one can construct Monte Carlo estimators
for E[f(M)].
The approximation method requires to compute the scale factor guaranteeing that

(Y N
k ) is embeddable into M with a given expected time step h. Recent results on the

Skorokhod embedding problem (see [1] or [9]) imply that the scale factor is uniquely
determined by a simple integral equation making use of the function

q(y, x) =

∫ x

y

∫ u

y

2

η2(z)
dz du, y ∈ I, x ∈ R. (11)

The assumptions (3)–(5) imply that for all y ∈ I the nonnegative function q(y, ·) is
finite on I and equal to ∞ on R \ [l, r]. Besides, q(y, ·) is strictly convex on I, strictly
decreasing to zero on (l, y) and strictly increasing from zero on (y, r). Moreover, for all
y, ȳ ∈ I and x ∈ R we have

q(y, x) = q(ȳ, x)− q(ȳ, y)− qx(ȳ, y)(x− y), (12)

where qx denotes the partial derivative of q with respect to the second argument.
Consider an integrable distribution ν with

∫
xν(dx) = m. If

∫
q(m,x)ν(dx) <∞, then

there exists an integrable stopping time τ such that Mτ ∼ ν and E[τ ] =
∫
q(m,x)ν(dx)

(see [1]). To provide an intuition why this formula for E[τ ] holds true, observe that by
Itô’s formula the process (q(M0,Mt)− t) is a local martingale starting in 0. Therefore,
if Mτ ∼ ν and the optional sampling theorem applies, we have E[τ ] = E[q(m,Mτ )] =∫
q(m,x)ν(dx).
In order to make the scaled random walk (Yk) embeddable into M with expected

time step h, we choose the scale factor a such that µ(y, a(y), dx), the distribution of
y + a(y)Xi, satisfies

∫
q(y, x)µ(y, a(y), dx) = h for all y ∈ I. The latter condition is

equivalent to the integral equation∫
q(y, y + a(y)x)µ(dx) = h, y ∈ I. (13)

It is shown in [2] that if the scale factor a satisfies (13), then the associated scaled
random walk (Yk) is indeed embeddable into M . In the case where at least one of the
state space boundaries l or r is finite and absorbing, Equality (13) is not necessary for
(Yk) to be embeddable into M with expected time step h. Indeed, let τ be a stopping
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time with E[τ ] < h such that Mτ has positive mass in l or r. On the event where Mτ

is at the boundary one can enlarge τ by a constant amount of time such that τ has
expectation h, without changing the distribution of Mτ . Therefore, in case of attainable
boundaries, the appropriate condition for the scale factor is given by

a(y) = sup{a ≥ 0 :

∫
q(y, y + ax)µ(dx) ≤ h}, y ∈ I. (14)

We can summarize the approximation scheme as follows. Choose T ∈ R+ and N ∈ N,
and set h = T/N . Choose a centered probability distribution µ 6= δ0 and a scale factor
a such that (13) resp. (14) is satisfied. Then compute the random walk (Yk) generated
by (Xk) with scale factor a.

2 Properties of the approximation scheme

In this section we collect properties of the approximating scheme described in Section 1.
We first state the precise assumptions under which the subsequent statements hold true.

We use the setting and notation of Section 1. In particular, we are given a state
space I = (l, r), a Borel function η : R→ R satisfying (3)–(5) and a centered probability
measure µ 6= δ0 on (R,B(R)), which is the distribution of the random variables Xi. As
usual, we denote by Ī the closure of I in R.
Throughout the whole paper we assume that the following condition on µ is satisfied:

Condition (A)
(1) If l = −∞, then there exists y ∈ I such that the integral over the negative real line∫

R− q(y, y + ax)µ(dx) <∞ for all a > 0.

(2) If l > −∞, then inf suppµ > −∞ and µ({inf suppµ}) > 0.

(3) If r = ∞, then there exists y ∈ I such that the integral over the positive real line∫
R+
q(y, y + ax)µ(dx) <∞ for all a > 0.

(4) If r <∞, then sup suppµ <∞ and µ({sup suppµ}) > 0.

Let us remark that Condition (A) is satisfied whenever µ has a compact support,
µ({inf suppµ}) > 0 and µ({sup suppµ}) > 0. A simple example, which will be often
considered below, is µ = 1

2
(δ−1 + δ1). Let us also notice that Condition (A) is satisfied

under the assumptions of Theorem 1.1 above (in fact, the role of (9)–(10) is to ensure
Condition (A) only). We stress that we require Condition (A) in all statements below,
but do not repeat it explicitly any longer.

We define a function G : I × R+ → [0,∞] by

G(y, a) =

∫
q(y, y + ax)µ(dx), (15)

where q is defined as in (11). Monotone convergence entails that, for every y ∈ I, the
mapping a 7→ G(y, a) is increasing, left-continuous, vanishing at zero and, by Condi-
tion (A), finite in a sufficiently small right neighborhood of zero. Moreover, by the
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dominated convergence theorem, this mapping is continuous possibly except for at the
point a∞(y) = inf{a ∈ R+ : G(y, a) = ∞} (inf ∅ := ∞). Also, this mapping is strictly
increasing on [0, a∞(y)] for every y ∈ I. We next define (cf. (14))

a(y) = sup{a ≥ 0 : G(y, a) ≤ h}, y ∈ I. (16)

Then the scaled random walk (Yk) with scale factor a is embeddable into M with ex-
pected time step h ∈ (0,∞). More precisely, we have the following result.

Proposition 2.1. Let h ∈ (0,∞) and define the scale factor a : Ī → R as in (16) for
y ∈ I, and set a(·) = 0 on Ī \ I. Then the scaled random walk (Yk) with scale factor a
is Ī-valued and embeddable into M with expected time step h.

Proof. The statements follow from Theorems 2.3, 2.7, 2.18 and Propositions 2.12, 2.20
of [2].

Remark 2.2. (i) In the case when the state space I has a finite inaccessible1 boundary
point for M , the sufficient conditions in Section 2 of [2] are even weaker than Condi-
tion (A); see formulas (19), (27), (29) in [2]. Under those weaker conditions, Proposi-
tion 2.1 can be adjusted as follows: there is h0 > 0 such that, for all h ∈ (0, h0), the
scaled random walk (Yk) with scale factor a given by (16) is embeddable into M with
expected time step h.
(ii) If with probability one M does not attain the boundary points l and r in finite

time, then the scale factor a(y) satisfies not only (16) but also G(y, a(y)) = h (cf. (13)).

In what follows, let T ∈ R+, N ∈ N and h = T/N . Let a be the scale factor
satisfying (16) and (Yk) the random walk generated by (Xk) with scale factor a. If we
want to stress the dependence on N , we write aN and (Y N

k ).

2.1 (Yk) is a generalized martingale

Consistently with Section VII.1 in [25] we say that a discrete-time process (Zk)k∈Z+

adapted to a filtration (Gk)k∈Z+ is a generalized martingale if E(Zk+1|Gk) = Zk a.s. for
all k ∈ Z+ (in particular, all E(Zk+1|Gk) need to be well defined). In contrast to a
martingale, a generalized martingale does not need to be integrable.

Lemma 2.3. The process (Yk)k∈Z+ is a generalized martingale with respect to its natural
filtration. In particular, it is a martingale whenever E(Yk)

− < ∞ for all k ∈ Z+ (or
E(Yk)

+ <∞ for all k ∈ Z+).

Proof. It follows from the very definition (7) that (Yk) is a generalized martingale. If
E(Yk)

− < ∞ for all k ∈ Z+, then all EYk > −∞ are well defined, and all expectations
are equal to each other by the tower property of conditional expectations. The only way
for (Yk)k∈Z+ to violate the martingale property is to have EYk =∞ for all k ∈ Z+. This
is impossible, because Y0 = m.

1Recall that the boundary point l (resp. r) is inaccessible for M if and only if q(y, l+) = ∞
(resp. q(y, r−) = ∞) and that this condition does not depend on y ∈ I. In particular, infinite
boundary points are always inaccessible for M driven by (6).
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2.2 Asymptotic equivalence with the Euler scheme

In this subsection we analyze the asymptotic behavior of aN(y) as N tends to ∞. We
show in the next theorem that aN(y) is asymptotically dominated by const√

N
η∗(y), where

η∗ denotes the upper semicontinuous envelope of |η|:

η∗(y) = lim sup
z→y

|η(z)|, y ∈ I. (17)

We first prove that aN converge pointwise to zero:

Lemma 2.4. For any y ∈ I we have limN→∞ aN(y) = 0.

Proof. Fix y ∈ I. Since
∫
q(y, y + aN(y)x)µ(dx) ≤ T

N
, Fatou’s lemma yields

∫
q(y, y +

lim infN→∞ aN(y)x)µ(dx) = 0. Since µ 6= δ0 and, clearly, the sequence {aN(y)}N∈N is
decreasing, we obtain the result.

Theorem 2.5. (i) For any y ∈ I, we have

lim sup
N→∞

√
N

T
aN(y) ≤ η∗(y)√∫

x2 µ(dx)
, (18)

where η∗ is defined in (17) and ∞∞ is understood as ∞.
(ii) If |η(y)| ≥ ε > 0 for all y ∈ I and η is continuous at some point y0 ∈ I, then

lim
N→∞

√
N

T
aN(y0) =

|η(y0)|√∫
x2 µ(dx)

. (19)

Proof. (i) Fix y ∈ I. Using Condition (A) and Lemma 2.4 one can show that there
exists N1 ∈ N, which in general depends on y, such that for all N ≥ N1 we have∫

q(y, y + aN(y)x)µ(dx) =
T

N
.

By performing two changes of variables we obtain

T = Na2
N(y)

∫ ∫ x

0

∫ u

0

2

η2(y + aN(y)r)
dr duµ(dx). (20)

Then Fatou’s lemma together with Lemma 2.4 yields

lim sup
N→∞

N

T
a2
N(y) ≤ 1∫ ∫ x

0

∫ u
0

lim infN→∞
2

η2(y+aN (y)r)
dr duµ(dx)

≤ (η∗(y))2∫
x2 µ(dx)

. (21)

(ii) If
∫
x2 µ(dx) = ∞, then the right-hand side of (19) is zero and, therefore, (19)

follows from (18). Assume that
∫
x2 µ(dx) < ∞. Then using Lebesgue’s dominated

convergence theorem instead of Fatou’s lemma, we get (19) from (20) in the same way
as (21) was obtained.
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Remark 2.6. Observe that if η is not locally bounded at some point y ∈ I (i.e. η∗(y) =

∞), the term
√

N
T
aN(y) might tend to ∞ as N →∞ (cf. Section 5.4).

The following corollary will be useful in the sequel.

Corollary 2.7. Assume that |η| is locally bounded on I. Then, for any compact subin-
terval J ⊂ I, we have limN→∞ supy∈J aN(y) = 0.

Proof. The statement follows from (18).

2.3 Comparison principle

Suppose that the i.i.d. sequence (Xk) satisfies P (Xk = ±1) = 1
2
. Then the scale fac-

tor is Lipschitz continuous with Lipschitz constant one. Moreover, the scaled random
walk generated by (Xk) satisfies the following comparison principle: if Yk ≥ Ŷk, then
Yk+1 = Yk +aN(Yk)Xk+1 dominates the random variable Ŷk+1 = Ŷk +aN(Ŷk)Xk+1. Both
properties follow from the next result.

Theorem 2.8 (Comparison principle and Lip(1)). Let µ = 1
2
(δ−1 + δ1). Then for every

N ∈ N the mappings y 7→ y+aN(y)z are nondecreasing on I for z ∈ {−1, 1}. Moreover,
y 7→ aN(y) is Lipschitz continuous on I with Lipschitz constant 1.

Proof. Fix N ∈ N. Since

G(y, a) =
q(y, y + a) + q(y, y − a)

2
,

we get that the function (y, a) 7→ G(y, a) is C1 in both arguments with ∂aG(y, a) > 0 in
the interior of the set {(y, a) ∈ I × R+ : G(y, a) < ∞}. (∂aG denotes the derivative of
G with respect to the second argument.)

We need to consider four cases. We start with Case 1: l = −∞, r = +∞. In
this case Proposition 2.1 and Remark 2.2 (ii) ensure that the scale factor aN satisfies
G(y, aN(y)) = T

N
for all y ∈ I. By the implicit function theorem, the mapping y 7→ aN(y)

is C1 in I. Differentiating the equation

T

N
=
q(y, y + aN(y)) + q(y, y − aN(y))

2

with respect to y yields

(1 + a′N(y))

∫ y+aN (y)

y

2

η2(z)
dz = (1− a′N(y))

∫ y

y−aN (y)

2

η2(z)
dz.

Since aN(y) > 0 for all y ∈ I, it follows that 1 + a′N(y) and 1 − a′N(y) have the same
sign. But this implies 1 + a′N(y) ≥ 0 and 1− a′N(y) ≥ 0, which proves both statements
of the theorem for Case 1.

Case 2: l > −∞, r =∞. First consider the subcase q(m, l+) =∞, i.e. the boundary
point l is inaccessible. Then, again by Remark 2.2 (ii), the scale factor aN satisfies
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G(y, aN(y)) = T
N

for all y ∈ I and N ∈ N. The claim now follows from the same
reasoning as for the first case. If q(m, l+) <∞, we set ā(y) = y−l and h(y) = G(y, ā(y))

for y ∈ I. A calculation reveals that h′(y) =
∫ 2y−l
y

2
η2(z)

dz > 0 for all y ∈ I. In particular,
the function h is strictly increasing with h(l+) = 0. Then there exists ȳ ∈ (l,∞] such
that aN(y) = y − l for y ≤ ȳ and aN satisfies G(y, aN(y)) = T

N
for y > ȳ. Clearly

the mappings y 7→ y + aN(y)z, z ∈ {−1, 1}, are nondecreasing on (l, ȳ). On (ȳ,∞)
monotonicity of y 7→ y+aN(y)z follows as for Case 1. Monotonicity of y 7→ y+aN(y) for
y > ȳ implies that the limit aN(ȳ+) = limy↘ȳ aN(y) exists. From the continuity of G on
{(y, a) ∈ I×R+ : a < y− l} we deduce that T/N = limy↘ȳ G(y, aN(y)) = G(ȳ, aN(ȳ+)).
Consequently, we have aN(ȳ+) = ȳ− l and thus aN is continuous at ȳ, which establishes
the claims.
Case 3: l = −∞, r <∞: Case 3 can be reduced to Case 2 by considering −M .
Case 4: l > −∞, r <∞. In this case set ā(y) = (y− l)∧ (r−y), h(y) = G(y, ā(y)) for

y ∈ I and ȳ = l+r
2
. The considerations of Case 2 and Case 3 imply that y 7→ y+aN(y)z,

z ∈ {−1, 1}, is nondecreasing on (l, ȳ) and (ȳ, r). Moreover, h is strictly increasing on
(l, ȳ) and strictly decreasing on (ȳ, r). Observe that h is continuous at ȳ. Indeed, at ȳ
we have h (ȳ) = 1

2
(q (ȳ, r) + q (ȳ, l)). For y < ȳ we have by (12)

h(y) =
q(y, 2y − l) + q(y, l)

2
=
q (ȳ, l) + q (ȳ, 2y − l)

2
− q (ȳ, y) .

This implies left-continuity: limy↗ȳ h(y) = h (ȳ). Right-continuity is verified similarly.
If h (ȳ) ≤ T/N , then aN(y) = ā(y) for all y ∈ I and the claims follow directly. If
h(ȳ) > T/N , then it follows that G(y, aN(y)) = 1/N for all y in a neighborhood of ȳ.
Then the arguments from Case 1 yield that y 7→ y + aN(y)z, z ∈ {−1, 1}, is also
nondecreasing around ȳ.

From the preceding theorem we can directly deduce that the scale factors grow at
most linearly, uniformly in N .

Corollary 2.9 (Linear growth uniformly in N). Let µ = 1
2
(δ−1 + δ1). Then there is a

finite constant C such that, for all N ∈ N, we have

0 < aN(y) ≤ C + |y|, y ∈ I, (22)

that is, the mapping y 7→ aN(y) has linear growth, while the bound in (22) is uniform
in N .

Proof. The statement follows from the Lip(1) property. We can take C = |y0| +
supN |aN(y0)| for any fixed y0 ∈ I, where the sup is finite due to Lemma 2.4.

Finally we remark that the scale factor vanishes at finite state boundaries. Indeed,
we have the following more general result that applies also for measures µ other than
1
2
(δ1 + δ−1) whenever at least one of the boundaries is finite.

11



Proposition 2.10 (Vanishing scale factors at finite boundaries). Suppose that r < ∞.
Then for all N ∈ N

0 < aN(y) ≤ r − y
sup suppµ

, y ∈ I.

Similarly, if l > −∞, we have 0 < aN(y) < l−y
inf suppµ

.

Proof. Consider the case r <∞. The statement follows from the fact that G(y, a) =∞
whenever a > r−y

sup suppµ
.

Notice that the bounds in Proposition 2.10 are uniform in N .

2.4 Convergence of expectations

In this section we show that the expectation E[f(MT )] can be approximated by E[f(Y N
N )]

not only for bounded continuous functions f , but also for functions that are unbounded
at the boundary of the state space.

Proposition 2.11. Suppose that |η| and 1
|η| are locally bounded on I = (l, r) and that µ

has a compact support. Assume that l and r are inaccessible. Let f : I → R be continuous
satisfying

lim
y↘l

|f(y)|
q(m, y)

= 0 and lim
y↗r

|f(y)|
q(m, y)

= 0.

Then Ef(Y N
N )→ Ef(MT ) as N →∞.

Proof. We first show that the family (f(Y N
N ))N∈N is uniformly integrable. To this end

we introduce the localizing sequence of stopping times

σk = k ∧ inf{t ≥ 0 :

∫ t

0

|qx(m,Ms)|2η(Ms)
2ds ≥ k}.

Using Itô’s formula we obtain E[q(m,Mσk∧τNN
)] = E[σk ∧ τNN ]. Then Fatou’s lemma and

the monotone convergence theorem imply

E[q(m,Y N
N )] = E[q(m,MτNN

)] ≤ lim
k→∞

E[q(m,Mσk∧τNN
)] = lim

k→∞
E[σk ∧ τNN ] = E[τNN ] = T.

Fix ε > 0. By assumption there exist l̄, r̄ ∈ I with l̄ < r̄ such that

|f(y)| ≤ ε

T
q(m, y) for all y ∈ I \ [l̄, r̄].

Let K = supy∈[l̄,r̄] |f(y)|, which is finite by continuity of f . Then the following inequality
holds uniformly for all N ∈ N

E
[
|f(Y N

N )|1{|f(Y NN )|>K}

]
≤ E

[
|f(Y N

N )|1{Y NN ∈I\[l̄,r̄]}
]
≤ ε

T
E
[
q(m,Y N

N )
]
≤ ε.

This implies uniform integrability of (f(Y N
N ))N∈N. By Theorem 1.1 the sequence (Y N

N )
converges weakly to MT and therefore (f(Y N

N )) converges weakly to f(MT ). It follows
that Ef(Y N

N )→ Ef(MT ) as N →∞, which completes the proof.

12



Remark 2.12. If the left boundary l is accessible, then we can replace the condition
limy↘l

|f(y)|
q(m,y)

= 0 by the condition that f is continuous on [l, r) and the conclusion
Ef(Y N

N ) → Ef(MT ) as N → ∞ still holds true. Similarly, limy↗r
|f(y)|
q(m,y)

= 0 can be
replaced by continuity of f on (l, r] in the case where r is accessible.

We next show that our scheme provides appropriate approximations of Ef(MT ) for
all functions f with sublinear growth — regardless of the growth behaviour of η. We say
that a function f : Ī → R has sublinear growth if limy→−∞

|f(y)|
|y| = 0 whenever l = −∞

and limy→∞
|f(y)|
|y| = 0 whenever r =∞.

Corollary 2.13. Suppose that |η| and 1
|η| are locally bounded on I = (l, r) and that

µ has compact support. Let f : Ī → R be continuous having sublinear growth. Then
Ef(Y N

N )→ Ef(MT ) as N →∞.

Proof. If −∞ < l, r < ∞ the clain follows directly from Theorem 1.1 since f is
bounded in this case. If l = −∞, convexity of q in the second argument implies
lim supy→−∞

|y|
q(m,y)

< ∞. Therefore we have limy→−∞
|f(y)|
q(m,y)

= 0. Similarly, we have
limy→∞

|f(y)|
q(m,y)

= 0 if r = ∞. Then the claim follows from Propostion 2.11 and Re-
mark 2.12.

Remark 2.14. The conclusion of Corollary 2.13 is sharp in the sense that without
imposing further assumptions on η we cannot expect convergence of Ef(Y N

N ) to Ef(MT )
for a broader class of functions than the functions with sublinear growth. Indeed, if
l = −∞ and

∫ a
−∞

|x|
η2(x)

dx < ∞ for some a ∈ R or r = ∞ and
∫∞
b

|x|
η2(x)

dx < ∞ for
some b ∈ R, then it follows from [20] that M is a strict local martingale. In particular,
there exist initial values M0 = m ∈ I and terminal times T such that E[MT ] 6= m (see
Example 2.15 below for such a case). If l > −∞ or r < ∞, it follows from Lemma 2.3
that for all N ∈ N the process (Y N

k ) is a discrete-time martingale and therefore satisfies
E[Y N

N ] = m for all N ∈ N. Hence, Ef(Y N
N ) cannot be used to approximate Ef(MT ) for

linear functions f in this case.

Example 2.15 (Johnson-Helms example of a strict local martingale). Let I = (0,∞)
and η(x) = x2 for x ∈ I. We have q(l+) = q(r−) = ∞. Note that the assumption
of Theorem 1.1 is satisfied for any centered µ 6= δ0 with a compact support, and, in
particular, the sequence (Y N

N ) converges weakly to M1.
It is well known that the process (Mt) has the same distribution as (1/|Bt|), where B

is a three-dimensional Brownian motion starting in B0 with |B0| = 1/m, and | · | denotes
the Euclidean norm in R3. Moreover, one can show that EM1 < m (see e.g. [15]). On
the contrary, by Lemma 2.3, the processes (Y N

k )k∈Z+ are martingales, hence EY N
N = m

for all N .

We now present a generalization of Proposition 2.11 to certain path functionals. To
this end, let us recall the notation (MN

t )t∈[0,T ] of Section 1 for the processes that ap-
proximate (Mt)t∈[0,T ] in law: (MN

t ) is a continuous process that satisfies MN
kT/N = Y N

k ,
k = 0, . . . , N , and is defined via linear interpolation between the points of the grid
{kT/N : k = 0, . . . , N}.
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Proposition 2.16. Suppose that |η| and 1
|η| are locally bounded on I = (l, r) and that

µ has a compact support. Assume that l and r are inaccessible. Let f : I → R be a
Borel-measurable function satisfying

lim
y↘l

|f(y)|
q(m, y)

= 0 and lim
y↗r

|f(y)|
q(m, y)

= 0

and G : C([0, T ])→ R a bounded Borel-measurable path functional. Assume that

P (MT ∈ Cf ) = 1 and P (M. ∈ CG) = 1,

where Cf (resp. CG) denotes the set of points x ∈ I (resp. x. ∈ C([0, T ])) such
that f is continuous at x (resp. G is continuous at x.). Then E[f(MN

T )G(MN
. )] →

E[f(MT )G(M.)] as N →∞.

The proof is basically the same as that of Proposition 2.11. A remark similar to
Remark 2.12 applies also in the situation of Proposition 2.16. Finally, to motivate the
somewhat technical formulation of Proposition 2.16, we notice that path functionals with
such a structure appear in some applications: e.g. think about a down-and-in barrier
call option, where we have f(x) = (x−K)+ and G(x.) = 1{infs∈[0,T ] xs<B}.

2.5 Advantages over the Euler scheme

Let us compare our approximation scheme with the (weak) explicit Euler scheme that
approximates the process M with

Ỹ N
k+1 = Ỹ N

k + ãN(Ỹ N
k )ξk+1, Ỹ N

0 = m, (23)

where

ãN(y) = η(y)

√
T

N
(24)

is the Euler scale factor, and ξ1, ξ2, . . . are independent identically distributed random
variables with Eξk = 0 and Eξ2

k = 1 (the classical Euler scheme uses Gaussian ξk).
Theorem 2.5 (ii) implies that, under nice conditions on η, for a fixed y ∈ I our scale
factors aN(y) are close to the Euler scale factors ãN(y) as N tends to infinity (here
Eξ2

k = 1 entails that the denominator in (19) is equal to one). Notice, however, that in
general this convergence is only local in the y-variable: For fixed N ∈ N the function
y 7→ aN(y) is qualitatively different from the Euler scale factor y 7→ ãN(y). In contrast to
the Euler scale factor, the factor (16) involves smoothing (aN is Lip(1), while ãN inherits
all irregularities of η) and has a tempered growth behavior (linear growth regardless of
the growth of η). Moreover, aN ensures that the associated process (Y N

k ) satisfies the
comparison principle when using µ = 1

2
(δ−1 + δ1), while it is not the case for the Euler

scheme (also see Section 5.3 for a further pertinent discussion of this point).
Finally, we remark that these properties allow to use our scheme for approximating

expectations of the form E[f(MT )] in some cases where the Euler scheme does not work.
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Recall that our scheme converges for sublinearly growing functions (cf. Corollary 2.13).
It follows from [13] that the explicit Euler scheme does not provide an appropriate
approximation of E[f(MT )] for all sublinearly growing functions in the case where η is
not globally Lipschitz continuous.

Proposition 2.17 (Theorem 2.1 in [13]). Let I = (−∞,∞). Let the process (Ỹ N
k )

be defined by (23) and assume that the random variables ξ1, ξ2, . . . are independent and
standard normally distributed. Let C ≥ 1,β > 1 be constants such that |η(x)| ≥ |x|β

C

for all |x| ≥ C. Then there exists a constant c > 1 and a sequence of events ΩN with
P (ΩN) ≥ c−N

c such that |Ỹ N
N | ≥ 22N−1 on ΩN for all N ∈ N. In particular, this implies

that E|Ỹ N
N |α →∞ as N →∞ for all α > 0.

This kind of divergence in finite time of the Euler scheme is due to the following un-
pleasant effect. Assume that |Ỹ N

k | has attained a large positive value (which happens
with sufficiently large probability for the true process M on any time horizon, and this
probability increases as a function of the time horizon). Since the coefficient grows su-
perlinearly and the increment |W(k+1)T/N −WkT/N | is “of the order

√
1/N ”, the value of

|Ỹ N
k+1| is likely to be huge, even for small time steps T/N . Note that if Ỹ N

k is positive
(resp. negative) and W(k+1)T/N −WkT/N is negative (resp. postive), the Euler approxi-
mation significantly jumps across zero, entailing a zigzag behavior. The properties of
Y N shown in Theorem 2.8 reveal that our scheme is more stable in this regard and
prevent the scheme from these divergent oscillations. In Section 5.3 we illustrate these
observations for a specific choice of η (see in particular Figure 3).

2.6 Characterizing the scale factor by an ODE

The scale factor aN embedding the scaled random walk (Y N
k ) intoM with expected time

step T/N satisfies the equation G(y, aN(y)) = T/N on I whenever both boundaries l
and r are inaccessible (recall Remark 2.2 (ii)). In general, one can show using Condi-
tion (A) and Corollary 2.7 that the equation G(y, aN(y)) = T/N holds at least on some
subinterval J of I whenever |η| is locally bounded on I (and, moreover, for any compact
J ⊂ I there exists N1 ∈ N such that for all N ≥ N1 this equation holds on J). In this
section we use the implicit function theorem to derive an ordinary differential equation
characterizing aN on J . In appliciations this allows for a quick numerical computation
of aN .

Proposition 2.18. Assume that µ has compact support. Let N ∈ N and J = (l, r) ⊂ I
be such that G(y, aN(y)) = T

N
for all y ∈ J . Then a ≡ aN satisfies the differential

equation

a′(y) = −
∫
qx(y, y + a(y)x)µ(dx)∫
xqx(y, y + a(y)x)µ(dx)

(25)

for all y ∈ J . Moreover, a is the unique solution: Let ã : J → R satisfy (25) for all
y ∈ J and G(y0, ã(y0)) = T

N
for some y0 ∈ J , then ã(y) = a(y) for all y ∈ J .
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Proof. Since µ has compact support, it follows from the dominated convergence theorem
that the function G is C1 in both arguments in the interior of the set S = {(y, a) ∈
I × R+ : G(y, a) <∞}. In particular the partial derivatives are given by

Ga(y, a) =

∫
xqx(y, y + ax)µ(dx)

and

Gy(y, a) =
∂

∂y

∫
(q(y, y + ax)− q(y, y)− qx(y, y)ax)µ(dx)

=

∫
(qx(y, y + ax)− qx(y, y))µ(dx) =

∫
qx(y, y + ax)µ(dx),

where we use Equation (12) with an arbirtrary y ∈ I. Moreover, since Ga(y, a) > 0 in
the interior of S, it follows from the implicit function theorem that a is C1 in J and
satisfies

a′(y) = −Gy(y, a(y))

Ga(y, a(y))
= −

∫
qx(y, y + a(y)x)µ(dx)∫
xqx(y, y + a(y)x)µ(dx)

for all y ∈ J . This yields the first claim. Now let ã satisfy (25) on J withG(y0, ã(y0)) = T
N

for some y0 ∈ J . Then the function y 7→ G(y, ã(y)) has vanishing derivative on J , hence
is constant on J , that is, G(y, ã(y)) = T

N
for all y ∈ J . Since for all y ∈ J the mapping

a 7→ G(y, a) is strictly increasing (for those a where G(y, a) < ∞), we conclude that
a = ã on J . This completes the proof.

3 Rate of convergence

In this section we determine rate of convergence for our approximation scheme. Besides
the assumptions of the previous sections we make the additional assumption that the
diffusion coefficient η is bounded and bounded away from zero:

(C1) |η| and 1
|η| are bounded on I.

Notice that (C1) implies that q(m, ·) grows quadratically on I, more precisely, that

c(x−m)2 ≤ q(m,x) ≤ c(x−m)2, x ∈ I, (26)

for some constants 0 < c < c <∞.

Theorem 3.1. Assume (C1) and
∫
x4 µ(dx) <∞. Then MτNk

and Mt belong to L2 for
all k ∈ Z+ and t ≥ 0, and there exists a constant C ∈ R+ such that

‖MτNN
−MT‖L2 ≡

√
E|MτNN

−MT |2 ≤ CN−1/4.
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In particular, we also have ‖MτNN
−MT‖L1 ≡ E|MτNN

−MT | ≤ CN−1/4, and the numerical
scheme that consists in approximating MT via Y N

N has weak order of convergence 1/4 in
the sense that

|Ef(Y N
N )− Ef(MT )| ≤ CΛN−1/4 (27)

for all Lipschitz continuous functions f : I → R with global Lipschitz constant Λ.

It is interesting to notice that, in contrast to Theorem 1.1, we do not require µ to have
a compact support in Theorem 3.1. But this is not surprizing in view of Remark 1.2,
which applies exactly under (C1).
To prove Theorem 3.1 we first provide an estimate for the second moment of the

embedding stopping times. We recall that we assume that Condition (A) is satisfied and
that a is the scale factor defined by (16).

Lemma 3.2. Assume (C1) and
∫
x4 µ(dx) < ∞. Then there exists a stopping time τ

with

E[τ ] =

∫
q(m,m+ a(m)x)µ(dx) <∞ (28)

such that (Mτ −m)/a(m) ∼ µ. Moreover, any such stopping time satisfies

E[τ 2] ≤ 4

∫
q2(m,m+ a(m)x)µ(dx). (29)

Proof. Let L > 0 be a lower bound for |η|. Then we have q(y, x) ≤ (x−y)2

L2 , y, x ∈ I.
Since

∫
x2 µ(dx) < ∞, this implies that

∫
q(m,m + a(m)x)µ(dx) < ∞. The lat-

ter integrability condition guarantees the existence of a stopping time τ with E[τ ] =∫
q(m,m+ a(m)x)µ(dx) such that (Mτ −m)/a(m) ∼ µ (see Theorem 3 in [1]).
Itô’s formula yields

tq(m,Mt) =

∫ t

0

q(m,Ms)ds+

∫ t

0

sqx(m,Ms)dMs +
1

2
t2,

where qx denotes the partial derivative of q with respect to the second argument. Let
(τn) denote a localizing sequence for the stochastic integral with respect to M such that
E[τ 2

n] <∞ (one might just take any localizing sequence (τ ′n) and consider τn := n∧ τ ′n).
Let us take any stopping time τ satisfying (28). We then have

E[(τn ∧ τ)2] ≤ 2E[(τn ∧ τ)q(m,Mτn∧τ )] ≤ 2
√
E[(τn ∧ τ)2]E[q2(m,Mτn∧τ )],

which implies

E[(τn ∧ τ)2] ≤ 4E[q2(m,Mτn∧τ )]. (30)

By monotone convergence the left-hand side converges to E[τ 2] as n →∞. Since |η| is
bounded from above, using the Burkholder-Davis-Gundy inequality we get

E sup
t≥0

(Mt∧τ −m)2 ≤ const1E

∫ τ

0

η2(Ms) ds ≤ const2Eτ <∞,
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hence (Mt∧τ )t≥0 is a uniformly integrable martingale. Applying Jensen’s inequality to
the convex function x 7→ q2(m,x) yields

q2(m,Mτn∧τ ) = q2(m,E[Mτ |Fτn∧τ ]) ≤ E[q2(m,Mτ )|Fτn∧τ ] a.s.,

which, together with (30), implies

E[τ 2] ≤ 4E[q2(m,Mτ )].

Since (Mτ −m)/a(m) ∼ µ, the latter formula is precisely (29).

Proof of Theorem 3.1. Since |η| is bounded from above and EτNk = kT
N
< ∞, we have

E
∫ τNk

0
η2(Ms) ds < ∞, hence MτNk

∈ L2 for k ∈ Z+. Similarly, Mt ∈ L2 for t ≥ 0.
Moreover, it holds

E|MτNN
−MT |2 = E

∫ τNN ∨T

τNN ∧T
η2(Ms)ds ≤ U2E|τNN − T | ≤ U2

√
Var(τNN ), (31)

where U < ∞ is an upper bound for |η|. With L > 0 being a lower bound for |η|, we
have q(y, x) ≤ (y−x)2

L2 , y, x ∈ I. By a conditional version of Lemma 3.2 above applied to
the (FτNk +t)-stopping times ρNk+1 = τNk+1 − τNk , we then have a.s.

E[(ρNk+1)2|FτNk ] = 4

∫
R
q2(MτNk

,MτNk
+ aN(MτNk

)x)µ(dx) ≤
4 a4

N(MτNk
)

L4

∫
x4 µ(dx).

One can prove (see [2, Lemma 3.2]) that, for all N ∈ N and y ∈ I, it holds

aN(y) ≤ U

√
1∫

x2 µ(dx)

T

N

with U as above. It follows that a.s. we have

E[(ρNk+1)2|FτNk ] ≤ 4
T 2

N2

U4

L4

∫
x4 µ(dx)(∫
x2 µ(dx)

)2 . (32)

Since Var(τNN ) =
∑N

k=1 Var(ρNk ), we obtain from (31) and (32) that

‖MτNN
−MT‖L2 ≤ CN−1/4

with a constant C depending only on T , L, U ,
∫
x2 µ(dx) and

∫
x4 µ(dx).
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4 A simulation algorithm

We now cast our approximation scheme into an explicit simulation algorithm. For sim-
plicity we suppose that the i.i.d. sequence (Xk) generating the scaled random walk (Yk)
satisfies P (Xk = ±1) = 1

2
, that is, µ = 1

2
(δ−1 + δ1). Recall from Section 2 that in

this case (Yk) and the scale factors have numerically desirable properties (comparison
principle, Lip(1), linear growth, vanishing at finite boundaries).

We first formulate the algorithm for diffusionsM that a.s. do not attain the boundaries
l and r in finite time.

Algorithm 4.1. 1. Determine q(y, x) =
∫ x
y

∫ u
y

2
η2(z)

dz du.

2. Choose a time horizon T and the number of time steps N ∈ N.

3. Solve with respect to a ∈ R+ the equation q(y, y + a) + q(y, y − a) = 2T/N for all
y ∈ I, which determines the scale factor y 7→ a(y).

4. Simulate Yk = Yk−1 + a(Y N
k−1)Xk, Y0 = m, where X1, X2, . . . are i.i.d. with distri-

bution 1
2
(δ−1 + δ1).

If the diffusion M attains at least one of its boundaries l and r in finite time with a
positive probability, then the third step of Algorithm 4.1 has to be replaced by:

3’. For all y ∈ I find the maximal a ∈ R+ such that q(y, y + a) + q(y, y− a) ≤ 2T/N ,
which determines the scale factor y 7→ a(y).

Remark 4.2. In the examples presented in the next section the function q and the root
of the function R+ 3 a 7→ q(y, y + a) + q(y, y − a)− 2T/N can be calculated explicitly.
If no closed-form expression for q is known, one has to fall back on numerical methods.
In order to find the root of the function q(y, y + a) + q(y, y − a)− 2T/N one can apply
the Newton method, which has excellent convergence properties because, for any y, the
function a 7→ q(y, y + a) + q(y, y − a) is convex. Alternatively, one can solve ODE (25)
to obtain a numerical approximation for aN (to set up the Cauchy problem it is enough
to find one point (y0, a0) ∈ I × (0,∞) with q(y0, y0 + a0) + q(y0, y0 − a0) = 2T/N).

5 Examples

In this section we apply our approximation scheme to several example diffusions and
report results from numerical experiments. Throughout we set the time horizon T = 1.
Moreover, we assume that the i.i.d. sequence (Xk) generating the scaled random walk
(Yk) satisfies P (Xk = ±1) = 1

2
, that is, µ = 1

2
(δ−1 + δ1). In any experiment we use

Algorithm 4.1 resp. its variant with step 3’.

19



5.1 Diffusion between two media

Let I = R and, with some A ∈ R \ {0},

η(x) = 1(0,∞)(x) + A1(−∞,0](x), x ∈ R.

Notice that we have

for y ≥ 0 : q(y, x) =

{
(x− y)2, x ≥ 0,

y2 − 2xy + 1
A2x

2, x < 0,

for y ≤ 0 : q(y, x) =

{
1
A2 (x− y)2, x < 0,
1
A2y

2 − 2
A2xy + x2, x ≥ 0.

One can show that the scale factor aN is given by

aN(y) =



√
1/N, y ∈

(√
1/N,∞

)
,

1−A2

1+A2y +
√

2A2

1+A2
1
N

+ 2A2 A2−1
(1+A2)2

y2, y ∈
(
0,
√

1/N
]
,

1−A2

1+A2y +
√

2A2

1+A2
1
N

+ 2 1−A2

(1+A2)2
y2, y ∈

(
− |A|

√
1/N, 0

]
,

|A|
√

1/N, y ∈
(
−∞,−|A|

√
1/N

]
.

If M0 = 0, then the probability for the diffusion to be greater than zero is equal to
A/(1+A), for any time t > 0 (see e.g. Section 7 in [21]). How well does a scaled random
walk with scale factor aN approximate this probability? Figure 1 depicts the results
of a numerical experiment, where P (M1 > 0) is approximated with its Monte Carlo
estimator (denoted by Pemp(M1 > 0)). The empirical convergence rate is roughly 1/2.
When using the Euler method, the approximation error becomes larger, but has the
same empirical rate of convergence.

5.2 Absorbed Brownian motion

Let M be a Brownian motion that is absorbed at zero, i.e. we have I = (0,∞) and
η(x) = 1(0,∞)(x). For y > 0, we have

q(y, x) =

{
(x− y)2, x ≥ 0,

∞, x < 0,

and the scale factor is given by aN(y) = 1√
N
∧ y. How well does a scaled random

walk with scale factor aN approximate the distribution of M at time 1? In order to
illustrate the accuracy we have performed a numerical experiment estimating the pro-
bability P (M1 > 0) for the starting point M0 = 1 (see Figure 2). We have calculated
the empirical probability for the paths to be positive at time 1. We have also calculated
the empirical probability from simulations generated with the Euler method. The exact
value for this probability is given by 2Φ(M0) − 1, where Φ denotes the distribution
function of a standard normal random variable. Figure 2 depicts the estimation error
in dependence of the number of time steps. Observe that the estimator based on our
method converges faster than the estimator based on the Euler scheme.
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Figure 1: The figures illustrate the dependence of the estimators Pemp(M1 > 0) on the number of
time steps N in the situation of Section 5.1. The exact value satisfies P (M1 > 0) = A

1+A .
The solid line depicts the logarithmic approximation error based on the Euler method. The
dotted line shows the estimated values based on our method. In the left figure A = 2, in
the right figure A = 20.
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Figure 2: The figures illustrate the dependence of the estimators for P (M1 > 0) on the number of
time steps N in the situation of Section 5.2. In the left figure the dotted line indicates the
level 2Φ(1)− 1 of the exact value. The dashed line depicts the approximation based on the
Euler method. The solid line shows the estimated values based on our method. The right
figure shows a loglog plot of the approximation error.

5.3 An exponentially growing diffusion coefficient

Let I = R and η(x) = cosh(x), x ∈ R. Then

q(y, x) = 2

[
log

(
cosh(x)

cosh(y)

)
− tanh(y)(x− y)

]
, y, x ∈ R,

G(y, a) = 2

∫
R

log

(
cosh(y + ax)

cosh(y)

)
µ(dx), y ∈ R, a ≥ 0.
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For the choice µ = 1
2

(δ1 + δ−1) we have

G(y, a) = log

(
cosh(y − a) cosh(y + a)

cosh2(y)

)
= log

(
cosh(2y) + cosh(2a)

2 cosh2(y)

)
.

Consequently, for N ∈ N the scale factor is given by

aN(y) =
1

2
arcosh

(
2(exp(1/N)− 1) cosh2(y) + 1

)
. (33)

It follows from Corollary 2.13 that Ef(Y N
N ) → Ef(M1) as N → ∞ for any continuous

function f : R → R with sublinear growth. By Remark 2.14 the process M is a strict
local martingale and therefore Ef(Y N

N ) in general does not converge to Ef(M1) for linear
functions f . The Euler scheme, however, by Proposition 2.17 already fails to provide
approximations of expectations like E|M1|α with α ∈ (0, 1). We depict the behaviour of
the two schemes in Figure 3.

1 2 3 4 5 6 7 8 9 10
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−2

−1

0

1

2

3

4

5

time

Figure 3: The figure on the left-hand side shows two realizations of discrete approximations of the
SDE dMt = cosh(Mt)dWt with M0 = 0. The dashed line depicts the realization based on
our method. The crosses show the realization obtained with the Euler method. Both use
the same realized binomial increments. Notice that the approximations are nearly identical
until shortly before time 5. The large absolute values entail that the Euler approximation
explodes and eventually aborts, whereas the dashed approximation easily continues. In the
right figure the solid and dashed lines are the graphs of the functions y 7→ y − aN (y) and
y 7→ y + aN (y). The dash-dotted line indicates level zero. Observe that monotonicity and
linear growth of both functions implies that such explosions are impossible in our scheme
(for a general statement, recall Theorem 2.8).

5.4 A diffusion coefficient that is not locally bounded

Let I = R and η(x) = 1/|x|, x ∈ R \ {0}, and η(0) = 1. Then

q(y, x) =
1

6
x4 − 2

3
xy3 +

1

2
y4, y, x ∈ R,

G(y, a) = a2

∫
(y2x2 +

1

6
a2x4)µ(dx), y ∈ R, a ≥ 0.
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For the particular choice µ = 1
2

(δ1 + δ−1) we have

G(y, a) =
1

6
a4 + a2y2, y ∈ R, a ≥ 0.

The scale factor is then given by

aN(y) =

√√
9y4 +

6

N
− 3y2.

Observe that aN satisfies

a2
N(y) =

6
N√

9y4 + 6
N

+ 3y2
.

It follows that the estimates
√
N |y|aN(y) ≤ 1 and aN(y) ≤ aN(0) =

(
6

N

)1/4

(34)

hold for all y ∈ R.
Observe that η is not locally bounded in this example. However, the assertion of

Theorem 1.1 still holds true. For a precise formulation, we as usual extend the discrete-
time scaled random walk (Y N

k ) with scale factor aN to the continuous-time process (Y N
t )

by linear interpolation.

Proposition 5.1. Let µ = 1
2
(δ−1 + δ1). The sequence of continuous processes (Y N

Nt)t≥0

converges in law to the process (Mt)t≥0, as N →∞. Moreover, Ef(Y N
N )→ Ef(M1) as

N →∞ for any continuous function f : R→ R with lim|x|→∞
|f(x)|
x4

= 0.

Proof. Let My be a solution of dMt = η(Mt)dWt with initial condition M0 = y ∈ R.
We can assume that My

t = y+WA(t), where (Wt) is a Brownian motion and A is a time
change. Indeed, let τ(t) =

∫ t
0
|y + Ws|2ds and A(t) = inf{s ≥ 0 : τ(s) > t}, for t ≥ 0.

Then the processMy
t = y+WA(t), together with the Brownian motion By

t =
∫ t

0
|My

s |dMy
s ,

is a weak solution of dMt = η(Mt)dWt with initial condition M0 = y.
Let ρN(y) = inf{t ≥ 0 : |My

t − y| = aN(y)}. We show that the the family {NρN(y):
y ∈ R, N ∈ N} is uniformly integrable. Then the first claim follows from the proof
of Theorem 3.1 in [2] (the proof relies only on the uniform integrability of the family
{NρN(y)} and does not directly employ the Condition (C1) that is assumed in the
statement of the theorem).

Notice that My
ρN (y)

= y + WHW (−aN (y),aN (y)), where we denote by HX(a, b) the first
time a process X attains level a or b. Then

NρN(y) = N τ(HW (−aN(y), aN(y)))

= N

∫ HW (−aN (y),aN (y))

0

|y +Ws|2ds

= N

∫ HW (−aN (y),aN (y))/a2N (y)

0

|y +Ws a2N (y)|2a2
N(y)ds. (35)
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Let W̃s = 1
aN (y)

Ws a2N (y). Observe that HW (−aN(y), aN(y))/a2
N(y) = HW̃ (−1, 1). Hence

(35) further implies

NρN(y) = N

∫ HW̃ (−1,1)

0

|y + aN(y)W̃s|2a2
N(y)ds

=

∫ HW̃ (−1,1)

0

|
√
NaN(y)y +

√
Na2

N(y)W̃s|2ds

≤
∫ HW̃ (−1,1)

0

|1 +
√

6|W̃s||2ds =: τ̃ ,

where the last inequality follows from (34).
Notice that τ̃ does not depend on y and N . Moreover, a similar time change argument

shows that τ̃ has the same distribution as the stopping time HM̃(−1, 1), where M̃t =∫ t
0
η̃(M̃s)dW̃s with coefficient η̃(x) = 1

1+
√

6|x| . Since
∫ ∫ x

0

∫ u
0

2
η̃(z)2

dz duµ(dx) < ∞, it
follows that τ̃ is integrable (see e.g. Theorem 4 in [9]).
Finally observe that Proposition 2.11 implies the second claim.

In contrast to Proposition 5.1, in the situation of Section 5.4, the Euler scheme does
not converge in distribution to M in the case M0 = 0. Indeed, let (Ỹ N

k )k∈{0,...,N} denote
a Euler type approximation of M on the time interval [0, 1] with N ∈ N time steps, i.e.

Ỹ N
k+1 = Ỹ N

k +
1√
N
η(Ỹ N

k )ξk+1,

where Ỹ N
0 = 0 and ξ1, ξ2, . . . are independent identically distributed random variables

with Eξk = 0 and Eξ2
k = 1. For simplicity, assume P (ξk = 0) = 0. Then we have

Ỹ N
1 = ξ1/

√
N and Ỹ N

2 = ξ1/
√
N + ξ2/|ξ1|. Denote by (Ỹ N

t )t∈[0,N ] the continuous-
time process obtained from (Ỹ N

k )k∈{0,...,N} by linear interpolation. For ε > 0 let Φε be
the bounded continuous functional on C[0, 1] defined by Φε(ω) = sups∈[0,ε] |ω(s)| ∧ 1

for ω ∈ C[0, 1]. For N > 2/ε we have Φε(Ỹ N
N ·) ≥ |ξ1/

√
N + ξ2/|ξ1|| ∧ 1. It follows

that lim infN→∞E[Φε(Ỹ N
N ·)] ≥ E[|ξ2/ξ1| ∧ 1] > 0. But we have E[Φε(M)] → 0 as

ε → 0. Consequently, the sequence of continuous processes (Ỹ N
Nt) does not converge in

distribution to M . The behaviour of the two schemes is illustrated in Figure 4.

5.5 Diffusions with drift

Finally, we explain in more detail how to approximate solutions of time-homogeneous
SDEs with drift via our method. Let J = (α, β), −∞ ≤ α < β ≤ ∞, b and σ are Borel
functions J → R satisfying

σ(x) 6= 0 for all x ∈ J, (36)

|σ| and 1

|σ|
are locally bounded on J, (37)

b ∈ L1
loc(J). (38)
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Figure 4: The figures illustrate the numerical performance of our method and the weak Euler scheme
with increments drawn from µ = 1

2 (δ−1 + δ1) for the SDE dMt = η(Mt)dWt with η(x) =
1/|x|, x ∈ R \ {0}, η(0) = 1 and M0 = 0. In both cases we use N = 1000 time steps and
simulate 100000 paths. The figure on the left-hand side depicts the empirical probability
density function of Y N

N (solid) and Ỹ N
N (dashed) for the time horizon T = 0.05. Notice that

the two maxima of the density of Ỹ N
N are centered around −1.1 and 1.1. This comes from the

fact that Ỹ N
2 = ξ1/

√
N + ξ2/|ξ1| which implies that for large values of N the Euler scheme

rather starts in 1
2 (δ−1 + δ1) than in δ0. In contrast our method is able to reflect the short

time behavior of the density of M . The right-hand side shows the empirical distribution
function of Y N

N (solid) and Ỹ N
N (dashed) for the time horizon T = 10. Observe that the

Euler scheme compared to our method puts a lot of mass outside the interval [−6, 6]. This
is due to the fact that in the long run the process (Ỹ N

k ) gets very close to 0 with high
probability and then shoots out of the interval [−6, 6], since ãN inherits the singularity of η
around zero. Our method does not produce these outliers since it smoothens the singularity.

Let X be a unique in law weak solution of the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0 ∈ J, (39)

up to the exit time from J . Notice that (39) has a unique in law (possibly exiting J)
weak solution, because under (36)–(38) we have 1+|b|

σ2 ∈ L1
loc(J). The scale function of X

is given by the formula

p(x) =

∫ x

c

exp

{
−
∫ y

c

2b

σ2
(z) dz

}
dy, x ∈ J, (40)

where c ∈ J is arbitrary. We define

l := p(α) = lim
x↘α

p(x) ∈ [−∞,∞) and r := p(β) = lim
x↗β

p(x) ∈ (−∞,∞].

Itô’s formula yields that M = p(X) is a driftless diffusion driven by (6) with starting
point m = p(x), interior of the state space I = (l, r) = (p(α), p(β)) and diffusion
coefficient η(x) = (p′σ) ◦ p−1(x), x ∈ I (to ensure (5) we also set η(x) = 0 for all
x ∈ R \ I). Notice that exit of X from J in finite time corresponds to exit of M from I
in finite time.
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It follows from (36)–(38) that |η| and 1
|η| are locally bounded on I, hence, Theorem 1.1

applies (recall that we are considering µ = 1
2
(δ−1 + δ1); alternatively, one can take any

other centered µ 6= δ0 as specified in Theorem 1.1). We again extend the discrete-time
scaled random walk (Y N

k ) to the continuous-time process (Y N
t ) by linear interpolation.

By Theorem 1.1, the sequence of processes (Y N
Nt), constructed via our method, converges

weakly to (Mt) as N → ∞. Then (p−1(Y N
Nt)) converges weakly to (Xt). We can,

therefore, use our embedding method for approximating the law of X. Again, the
convergence holds true without regularity or growth assumptions on the coefficients of
the driving SDE (note that (36)–(38) are neither regularity nor growth assumptions).

Let us look at a specific example with drift.

Example 5.2. We consider the time-homogeneous diffusion

dXt = −1

2
tan(Xt)dt+ dWt, X0 = x0, (41)

with the state space J = (−π
2
, π

2
) and x0 ∈ J . The derivative of the scale function (40)

is given by

p′(x) = exp

{∫ x

0

tan(u)du

}
=

1

cos(x)
, x ∈ J,

and hence we have

p(x) = log
(

tan
(x

2
+
π

4

))
, x ∈ J.

In particular, p(−π
2
) = −∞ and p(π

2
) =∞, that is, I = R, and the inverse scale function

p−1 : R→ J is given by

p−1(x) = 2 arctan(exp(x))− π

2
. (42)

It follows that M = p(X) is a local martingale driven by the driftless SDE with state
space I = R and diffusion coefficient η(x) = p′(p−1(x)) = cosh(x). Thus, we are in
the situation of Section 5.3. In particular, the scale factor aN determining the scaled
random walk Y N is given in closed form by (33) in the case µ = 1

2
(δ−1 + δ1). Finally,

to get a weak approximation for the diffusion (Xt) of (41), we simulate (p−1(Y N
Nt)) with

p−1 given by (42).
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