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We provide a new algorithm for approximating the law of a onedimensional diffusion M solving a stochastic differential equation with possibly irregular coefficients. The algorithm is based on the construction of Markov chains whose laws can be embedded into the diffusion M with a sequence of stopping times. The algorithm does not require any regularity or growth assumption; in particular it applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly. We show that if the diffusion coefficient is bounded and bounded away from 0, then our algorithm has a weak convergence rate of order 1/4. Finally, we illustrate the algorithm's performance with several examples.

Introduction

Consider a one-dimensional stochastic differential equation (SDE) of the form

dM t = b(M t ) dt + η(M t ) dW t , M 0 = m. (1) 
Suppose that b and η are Borel functions such that (1) possesses a weak solution (M, W ) that is unique in law (cf. Section 5.5.C in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]). In general the law of the solution process M is not known explicitly, and therefore one has to fall back on numerical methods for its approximation. The most used approximation method is the Euler scheme. If the coefficients b and η are Lipschitz continuous, then the Euler approximations are known to converge to the solution (see e.g. [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]). In many applications, however, one has to deal with non-Lipschitz SDEs. For example in economics frequently risk factors are modeled as non-Lipschitz SDEs (e.g. the CIR process, or the price process in CEV models and quadratic normal volatility models (see [START_REF] Carr | Why are quadratic normal volatility models analytically tractable?[END_REF])). Diffusion models in mathematical genetics make use of non-Lipschitz SDE, e.g. the Wright-Fisher-diffusion (see [START_REF] Etheridge | Some mathematical models from population genetics[END_REF]). Finally, many physical phenomena, e.g. the movement of a particle between two different media, can be modeled with SDEs possessing a discontinuous diffusion coefficient (see introduction in [START_REF] Lejay | Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps[END_REF]).

If the coefficients of the SDE are not globally Lipschitz continuous, then usually the Euler scheme is numerically unstable. Indeed, one can even prove that if the coefficients grow superlinearly, then the Euler approximations do not converge in a weak L 1 sense (see [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]). Therefore, for the simulation of non-Lipschitz SDEs alternative approximation methods are needed.

In this article we provide a new approximation method that does not require any regularity or growth assumption on the coefficients b and η. In particular, the method applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly.

The basic idea of our approximation method is to construct Markov chains that can be embedded in distribution into M with a sequence of stopping times. For the construction one first applies a standard change of variables (see e.g. Section 5.5.B in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]) in order to transform the SDE (1) into an SDE without drift. Therefore, without loss of generality we can assume that b ≡ 0. Now let (X k ) be an i.i.d. sequence of centered random variables and (Y k ) a Markov chain with dynamics

Y k+1 = Y k + a(Y k )X k+1 , k ∈ Z + . (2) 
We construct the Borel function a : R → R + in a way that one can find stopping times 0 = τ 0 < τ 1 < • • • such that the conditional expectation between two consecutive stopping times is equal to a constant h ∈ (0, ∞), and such that the discrete-time process (M τ k ) k≥0 has the same distribution as (Y k ) k≥0 . One can extend (Y k ) to a continuoustime process by setting Y t = Y t + (t -t )(Y t +1 -Y t ) for all t ∈ R + . A functional limit theorem implies that the distribution of (Y t/h ) t∈[0,T ] converges to the distribution of (M t ) t∈[0,T ] as h ↓ 0 (see [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF]). One can thus use (Y k ) for approximating the law of M . In other words, by simulating (Y k ) one can estimate the distribution of M . Notice that a realization of (Y k ) can be interpreted as an exact simulation of M along a sequence of stopping times.

Our idea works, because there is a simple integral formula for the minimal expected time needed for embedding a distribution into M (see [START_REF] Ankirchner | Finite, integrable and bounded time embeddings for diffusions[END_REF]). The integral formula allows to determine the scale factor a in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] such that the transition probabilities of (Y k ) can be embedded into M with stopping times having expectation h.

We now give a brief overview on some alternative methods for approximating non-Lipschitz SDEs and compare them with our proposed scheme.

A related numerical scheme for approximating diffusions with discontinuous coefficients is provided in [START_REF] Etoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF]. The authors construct a continuous-time process on a given finite grid by embedding, in every time step, a weighted sum of the Dirac measures of the two neighboring grid points. The average time for attaining one of the neighboring points is determined by solving a PDE. In contrast to [START_REF] Etoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF], in our approach the average time lag is fixed, whereas the scale factor, and hence the state distribution, is determined endogeneously.

The literature comprises also several papers analyzing the convergence of Euler-type approximation schemes for SDEs with irregular and/or quickly growing coefficients. [START_REF] Gyöngy | A note on Euler's Approximations[END_REF] shows almost sure convergence of the Euler scheme for SDEs with a drift satisfying a certain monotonicity condition (a local one-sided Lipschitz condition in space, uniformly in time) and with a locally Lipschitz diffusion coefficient. [START_REF] Yan | The Euler scheme with irregular coefficients[END_REF] proves weak convergence of the Euler scheme in the case where the diffusion coefficient is allowed to be discontinuous on a set of Lebesgue measure zero and has at most linear growth. There are also results on the rate of convergence in [START_REF] Yan | The Euler scheme with irregular coefficients[END_REF], but only for Hölder continuous coefficients. In [START_REF] Ngo | Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients[END_REF] it is shown that, for the Euler scheme, the strong rates obtained in [START_REF] Yan | The Euler scheme with irregular coefficients[END_REF] hold also for certain discontinuous (but one-sided Lipschitz) drifts; however, the diffusion coefficient needs to be bounded and Hölder continuous. As far as modifications of the Euler scheme are concerned, the analyses of the implicit Euler scheme (also known as backward Euler scheme) and of the related split-step backward Euler scheme allow some irregularities in the drift, but assume the diffusion coefficient to be Lipschitz (see [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF] and [START_REF] Hu | Semi-implicit Euler-Maruyama scheme for stiff stochastic equations[END_REF]). The tamed Euler scheme is an explicit scheme that dampens superlinear growth, in [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients[END_REF] of the drift coefficient, and in [START_REF] Hutzenthaler | Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF] also for the diffusion coefficient. The scheme is shown to converge strongly if the coefficients are locally Lipschitz continuous and satisfy a Lyapunov-type growth condition (see [START_REF] Hutzenthaler | Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]Theorem 3.15]).

The paper [START_REF] Kohatsu-Higa | Weak approximation errors for stochastic differential equations with non-regular drift[END_REF] provides convergence rates for the weak approximation error, assuming again that only the diffusion coefficient is regular (the method regularizes the drift and uses the Euler scheme for the regularized equation). [START_REF] Sabanis | Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients[END_REF] studies certain explicit Euler-type schemes that exhibit strong convergence also in certain cases when drift and diffusion coefficients are growing superlinearly and compensate each other. However, in the case of a driftless SDE the assumptions in [START_REF] Sabanis | Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients[END_REF] imply that the diffusion coefficient is locally Lipschitz and of linear growth. [START_REF] Hutzenthaler | On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients[END_REF] provides a general framework, which contains the Euler scheme (but not our one) as a special case, and proves strong convergence rates, where again the diffusion coefficient is regular and the drift satisfies a certain non-global monotonicity condition. For further literature on approximation schemes we refer to the overview [START_REF] Jourdain | A review of recent results on approximation of solutions of stochastic differential equations[END_REF].

The paper is organized in the following way. In Section 1 we describe in detail the new approximation scheme. We explain why the scheme convergences, and why no regularity and growth assumptions on the diffusion coefficient are needed.

In Section 2 we show some properties of the scheme that are desirable from a numerical point of view. In particular, we prove, under some nice conditions on (X k ), that the approximating process (Y k ) satisfies a certain comparison principle. This excludes divergent oscillations of the scheme for quickly growing η. Moreover, we show that the scale factor a in (2) is Lipschitz continuous and hence grows at most linearly. This smoothing and tempered growth behavior accounts for a good numerical performance. Furthermore we show that a in ( 2) is characterized by an ordinary differential equation and can therefore be efficiently computed.

Section 3 deals with the convergence rate. We show that if η is bounded and bounded away from zero, then our scheme has a weak convergence rate of order 1/4. We stress here that the convergence rate holds true without any regularity assumptions on the diffusion coefficient.

Section 4 shapes our approximation scheme into a concise simulation algorithm. This algorithm is then illustrated in Section 5 with several examples. Moreover, results from some numerical experiments are reported.

A scheme that is exact along stopping times

In this section we describe a method for approximating the law of a one-dimensional homogeneous stochastic differential equation (SDE). We start by specifying the class of SDEs the method can be applied to. We first restrict ourselves to SDEs without drift; in Section 5.5 we explain how one can extend the method to SDEs with drift.

Let I = (l, r) with l ∈ [-∞, ∞) and r ∈ (-∞, ∞]. Let η : R → R be a Borelmeasurable function satisfying η(x) = 0 for all x ∈ I,

(3)

1 η 2 ∈ L 1 loc (I), (4) 
η(x) = 0 for all x ∈ R \ I, (5) 
where L 1 loc (I) denotes the set of functions that are locally integrable on I. Consider the SDE

dM t = η(M t )dW t , M 0 = m ∈ (l, r). (6) 
The assumptions (3)-( 5) imply that (6) possesses a weak solution that is unique in law (see e.g. [START_REF] Engelbert | On solutions of one-dimensional stochastic differential equations without drift[END_REF] or Theorem 5.5.7 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]). This means that there exists a pair of processes (M, W ) on a filtered probability space (Ω, F, (F t ), P ), with (F t ) satisfying the usual conditions, such that W is an (F t )-Brownian motion and (M, W ) satisfies the SDE [START_REF] Etoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF]. Let us note that M stays in l (resp. r) once it hits l (resp. r).

Our basic idea is to approximate M with a discrete-time process that coincides in law with M along a sequence of stopping times. To explain the method, let X 1 , X 2 , . . . be a sequence of i.i.d. real-valued random variables. We assume that each X i is integrable with E(X i ) = 0, and we denote the distribution of X i by µ. Let us also suppose µ = δ 0 . We define a process (Y k ) k∈Z + by setting

Y 0 = m and Y k+1 = Y k + a(Y k )X k+1 , k ∈ Z + , (7) 
where a : R → R + is a Borel function. In the following the refer to (Y k ) as to the scaled random walk generated by (X k ) with scale factor a. Moreover, we say that (Y k ) is embeddable into M with expected time step h ∈ (0, ∞) if there exists an increasing sequence of stopping times (τ k ) such that (M τ k ) d = (Y k ) (i.e. both discrete-time processes have the same law) and

τ 0 = 0 and E[τ k+1 -τ k |F τ k ] = h, k ∈ Z + . (8) 
For the remainder of this section we suppose that for all h ∈ (0, ∞) we can find a unique scale factor a such that the random walk (Y k ) with scale factor a is embeddable into M with expected time step h. In Section 2 we recall a sufficient condition from [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] guaranteeing that this assumption is satisfied (see Proposition 2.1). We next explain why the embeddable scaled random walks can be used for approximating the law of the diffusion M .

Let T ∈ R + be a finite time horizon and h N = T N , N ∈ N. Let (Y N k ) be the scaled random walk that is embeddable into M with expected time step h N and let (τ N k ) be a sequence of stopping times satisfying [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF] 

such that (M τ N k ) d = (Y N k ). Besides, let (M N t ) t∈[0,T ] and ( M N t ) t∈[0,T ] be continuous-time processes defined by M N kh N := Y N k and M N kh N := M τ N k on the grid π N = {0, h N , 2h N , .
. . , N h N ≡ T } and via linear interpolation between the grid points:

M N t = M N t N + 1 h N (t -t N )(M N t N +h N -M N t N )
and similarly for M N , where

t N := sup{[0, t] ∩ π N }. For all k ≥ 1 let ρ N k = τ N k -τ N k-1 . Equation (8) entails that the family (ρ N k ), k ≥ 1, is uncorrelated. Moreover, we have E(ρ N k ) = h N . If in addition (ρ N k )
satisfies some nice uniform integrability condition, then a certain weak law of large numbers for arrays applies, and hence lim N →∞ τ N N t/T = t in probability, for all t ∈ R + . Since M has continuous sample paths, this further indicates that lim N →∞ M N = M in probability uniformly in the space C([0, T ]) of continuous functions [0, T ] → R; in other words, we have convergence of the distributions of M N on the path space. The previous line of argument is made precise in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF].

Theorem 1.1 (Theorem 3.6 in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF]). Suppose that |η| and 1 |η| are locally bounded on I, µ has a compact support and that the following implications hold true: if l > -∞, then µ({inf supp µ}) > 0, (9) if r < ∞, then µ({sup supp µ}) > 0.

(10)

Then (M N t ) t∈[0,T ] converges in distribution to (M t ) t∈[0,T ] as N → ∞.
Let us notice that Theorem 3.6 in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] contains, in fact, a weaker but more technical assumption than that in Theorem 1.1 (compare ( 9)- [START_REF] Hu | Semi-implicit Euler-Maruyama scheme for stiff stochastic equations[END_REF] above with [START_REF] Kohatsu-Higa | Weak approximation errors for stochastic differential equations with non-regular drift[END_REF], ( 27) and (29) as well as Propositions 2.12 and 2.20 in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF]).

Remark 1.2. If |η| and 1

|η| are globally bounded, then one can prove convergence also for µ without compact support (see Theorem 3.1 in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF]).

The preceding theorem shows that we can use M N for approximating the law of M . More precisely, let f : C([0, T ]) → R be a bounded functional that is continuous with respect to the sup norm. Then Theorem 1. The approximation method requires to compute the scale factor guaranteeing that (Y N k ) is embeddable into M with a given expected time step h. Recent results on the Skorokhod embedding problem (see [START_REF] Ankirchner | Finite, integrable and bounded time embeddings for diffusions[END_REF] or [START_REF] Hobson | Integrability of solutions of the Skorokhod embedding problem for diffusions[END_REF]) imply that the scale factor is uniquely determined by a simple integral equation making use of the function

1 means that E[f (M N )] ≈ E[f (M )].
q(y, x) = x y u y 2 η 2 (z) dz du, y ∈ I, x ∈ R. (11) 
The assumptions (3)- [START_REF] Etheridge | Some mathematical models from population genetics[END_REF] imply that for all y ∈ I the nonnegative function q(y, •) is finite on I and equal to ∞ on R \ [l, r]. Besides, q(y, •) is strictly convex on I, strictly decreasing to zero on (l, y) and strictly increasing from zero on (y, r). Moreover, for all y, ȳ ∈ I and x ∈ R we have q(y, x) = q(ȳ, x) -q(ȳ, y) -q x (ȳ, y)(x -y),

where q x denotes the partial derivative of q with respect to the second argument. Consider an integrable distribution ν with xν(dx) = m. If q(m, x)ν(dx) < ∞, then there exists an integrable stopping time τ such that M τ ∼ ν and E[τ ] = q(m, x)ν(dx) (see [START_REF] Ankirchner | Finite, integrable and bounded time embeddings for diffusions[END_REF]). To provide an intuition why this formula for E[τ ] holds true, observe that by Itô's formula the process (q(M 0 , M t ) -t) is a local martingale starting in 0. Therefore, if M τ ∼ ν and the optional sampling theorem applies, we have

E[τ ] = E[q(m, M τ )] = q(m, x)ν(dx).
In order to make the scaled random walk (Y k ) embeddable into M with expected time step h, we choose the scale factor a such that µ(y, a(y), dx), the distribution of y + a(y)X i , satisfies q(y, x)µ(y, a(y), dx) = h for all y ∈ I. The latter condition is equivalent to the integral equation

q(y, y + a(y)x) µ(dx) = h, y ∈ I. ( 13 
)
It is shown in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] that if the scale factor a satisfies [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF], then the associated scaled random walk (Y k ) is indeed embeddable into M . In the case where at least one of the state space boundaries l or r is finite and absorbing, Equality (13) is not necessary for (Y k ) to be embeddable into M with expected time step h. Indeed, let τ be a stopping time with E[τ ] < h such that M τ has positive mass in l or r. On the event where M τ is at the boundary one can enlarge τ by a constant amount of time such that τ has expectation h, without changing the distribution of M τ . Therefore, in case of attainable boundaries, the appropriate condition for the scale factor is given by a(y) = sup{a ≥ 0 : q(y, y + ax) µ(dx) ≤ h}, y ∈ I.

We can summarize the approximation scheme as follows. Choose T ∈ R + and N ∈ N, and set h = T /N . Choose a centered probability distribution µ = δ 0 and a scale factor a such that (13) resp. ( 14) is satisfied. Then compute the random walk (Y k ) generated by (X k ) with scale factor a.

Properties of the approximation scheme

In this section we collect properties of the approximating scheme described in Section 1. We first state the precise assumptions under which the subsequent statements hold true.

We use the setting and notation of Section 1. In particular, we are given a state space I = (l, r), a Borel function η : R → R satisfying (3)-( 5) and a centered probability measure µ = δ 0 on (R, B(R)), which is the distribution of the random variables X i . As usual, we denote by Ī the closure of I in R.

Throughout the whole paper we assume that the following condition on µ is satisfied:

Condition (A) (1) 
If l = -∞, then there exists y ∈ I such that the integral over the negative real line

R -q(y, y + ax) µ(dx) < ∞ for all a > 0. (2) If l > -∞, then inf supp µ > -∞ and µ({inf supp µ}) > 0.
(3) If r = ∞, then there exists y ∈ I such that the integral over the positive real line

R + q(y, y + ax) µ(dx) < ∞ for all a > 0. (4) If r < ∞, then sup supp µ < ∞ and µ({sup supp µ}) > 0.
Let us remark that Condition (A) is satisfied whenever µ has a compact support, µ({inf supp µ}) > 0 and µ({sup supp µ}) > 0. A simple example, which will be often considered below, is µ = 1 2 (δ -1 + δ 1 ). Let us also notice that Condition (A) is satisfied under the assumptions of Theorem 1.1 above (in fact, the role of ( 9)-( 10) is to ensure Condition (A) only). We stress that we require Condition (A) in all statements below, but do not repeat it explicitly any longer.

We define a function G :

I × R + → [0, ∞] by G(y, a) = q(y, y + ax)µ(dx), ( 15 
)
where q is defined as in [START_REF] Hutzenthaler | On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients[END_REF]. Monotone convergence entails that, for every y ∈ I, the mapping a → G(y, a) is increasing, left-continuous, vanishing at zero and, by Condition (A), finite in a sufficiently small right neighborhood of zero. Moreover, by the dominated convergence theorem, this mapping is continuous possibly except for at the point a ∞ (y) = inf{a ∈ R + : G(y, a) = ∞} (inf ∅ := ∞). Also, this mapping is strictly increasing on [0, a ∞ (y)] for every y ∈ I. We next define (cf. ( 14))

a(y) = sup{a ≥ 0 : G(y, a) ≤ h}, y ∈ I. (16) 
Then the scaled random walk (Y k ) with scale factor a is embeddable into M with expected time step h ∈ (0, ∞). More precisely, we have the following result. Proof. The statements follow from Theorems 2.3, 2.7, 2.18 and Propositions 2.12, 2.20 of [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF].

Remark 2.2. (i) In the case when the state space I has a finite inaccessible1 boundary point for M , the sufficient conditions in Section 2 of [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] are even weaker than Condition (A); see formulas ( 19), ( 27), (29) in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF]. Under those weaker conditions, Proposition 2.1 can be adjusted as follows: there is h 0 > 0 such that, for all h ∈ (0, h 0 ), the scaled random walk (Y k ) with scale factor a given by ( 16) is embeddable into M with expected time step h.

(ii) If with probability one M does not attain the boundary points l and r in finite time, then the scale factor a(y) satisfies not only ( 16) but also G(y, a(y)) = h (cf. ( 13

)).

In what follows, let T ∈ R + , N ∈ N and h = T /N . Let a be the scale factor satisfying ( 16) and (Y k ) the random walk generated by (X k ) with scale factor a. If we want to stress the dependence on N , we write a N and (Y N k ).

(Y k ) is a generalized martingale

Consistently with Section VII.1 in [START_REF] Shiryaev | Probability[END_REF] we say that a discrete-time process

(Z k ) k∈Z + adapted to a filtration (G k ) k∈Z + is a generalized martingale if E(Z k+1 |G k ) = Z k a.s. for all k ∈ Z + (in particular, all E(Z k+1 |G k )
need to be well defined). In contrast to a martingale, a generalized martingale does not need to be integrable.

Lemma 2.3. The process (Y k ) k∈Z + is a generalized martingale with respect to its natural filtration. In particular, it is a martingale whenever

E(Y k ) -< ∞ for all k ∈ Z + (or E(Y k ) + < ∞ for all k ∈ Z + ).
Proof. It follows from the very definition ( 7) that 

(Y k ) is a generalized martingale. If E(Y k ) -< ∞ for all k ∈ Z + , then all EY k > -∞
k = ∞ for all k ∈ Z + . This is impossible, because Y 0 = m.

Asymptotic equivalence with the Euler scheme

In this subsection we analyze the asymptotic behavior of a N (y) as N tends to ∞. We show in the next theorem that a N (y) is asymptotically dominated by const √ N η * (y), where η * denotes the upper semicontinuous envelope of |η|:

η * (y) = lim sup z→y |η(z)|, y ∈ I. ( 17 
)
We first prove that a N converge pointwise to zero:

Lemma 2.4. For any y ∈ I we have lim N →∞ a N (y) = 0.

Proof. Fix y ∈ I. Since q(y, y + a N (y)x) µ(dx) ≤ T N , Fatou's lemma yields q(y, y + lim inf N →∞ a N (y)x) µ(dx) = 0. Since µ = δ 0 and, clearly, the sequence {a N (y)} N ∈N is decreasing, we obtain the result.

Theorem 2.5. (i) For any y ∈ I, we have

lim sup N →∞ N T a N (y) ≤ η * (y) x 2 µ(dx) , ( 18 
)
where η * is defined in (17) and ∞ ∞ is understood as ∞. (ii) If |η(y)| ≥ ε > 0 for all y ∈ I and η is continuous at some point y 0 ∈ I, then lim N →∞ N T a N (y 0 ) = |η(y 0 )| x 2 µ(dx) . (19) 
Proof. (i) Fix y ∈ I. Using Condition (A) and Lemma 2.4 one can show that there exists N 1 ∈ N, which in general depends on y, such that for all N ≥ N 1 we have

q(y, y + a N (y)x) µ(dx) = T N .
By performing two changes of variables we obtain

T = N a 2 N (y) x 0 u 0 2 η 2 (y + a N (y)r) dr du µ(dx). (20) 
Then Fatou's lemma together with Lemma 2.4 yields

lim sup N →∞ N T a 2 N (y) ≤ 1 x 0 u 0 lim inf N →∞ 2 η 2 (y+a N (y)r) dr du µ(dx) ≤ (η * (y)) 2 x 2 µ(dx) . (21) 
(ii) If x 2 µ(dx) = ∞, then the right-hand side of ( 19) is zero and, therefore, (19) follows from [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]. Assume that x 2 µ(dx) < ∞. Then using Lebesgue's dominated convergence theorem instead of Fatou's lemma, we get [START_REF] Kohatsu-Higa | Weak approximation errors for stochastic differential equations with non-regular drift[END_REF] from [START_REF] Kotani | On a condition that one-dimensional diffusion processes are martingales[END_REF] in the same way as [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] was obtained.

Remark 2.6. Observe that if η is not locally bounded at some point y ∈ I (i.e. η * (y) = ∞), the term N T a N (y) might tend to ∞ as N → ∞ (cf. Section 5.4).

The following corollary will be useful in the sequel.

Corollary 2.7. Assume that |η| is locally bounded on I. Then, for any compact subinterval J ⊂ I, we have lim N →∞ sup y∈J a N (y) = 0.

Proof. The statement follows from (18).

Comparison principle

Suppose that the i.i.d. sequence

(X k ) satisfies P (X k = ±1) = 1 2 .
Then the scale factor is Lipschitz continuous with Lipschitz constant one. Moreover, the scaled random walk generated by (X k ) satisfies the following comparison principle: if We need to consider four cases. We start with Case 1: l = -∞, r = +∞. In this case Proposition 2.1 and Remark 2.2 (ii) ensure that the scale factor a N satisfies G(y, a N (y)) = T N for all y ∈ I. By the implicit function theorem, the mapping y → a N (y) is C 1 in I. Differentiating the equation

Y k ≥ Ŷk , then Y k+1 = Y k + a N (Y k )X k+1 dominates the random variable Ŷk+1 = Ŷk + a N ( Ŷk )X k+1 . Both properties follow from the next result.
T N = q(y, y + a N (y)) + q(y, y -a N (y)) 2
with respect to y yields

(1 + a N (y)) y+a N (y) y 2 η 2 (z) dz = (1 -a N (y)) y y-a N (y) 2 η 2 (z)
dz.

Since a N (y) > 0 for all y ∈ I, it follows that 1 + a N (y) and 1 -a N (y) have the same sign. But this implies 1 + a N (y) ≥ 0 and 1 -a N (y) ≥ 0, which proves both statements of the theorem for Case 1. Case 2: l > -∞, r = ∞. First consider the subcase q(m, l+) = ∞, i.e. the boundary point l is inaccessible. Then, again by Remark 2.2 (ii), the scale factor a N satisfies G(y, a N (y)) = T N for all y ∈ I and N ∈ N. The claim now follows from the same reasoning as for the first case. If q(m, l+) < ∞, we set ā(y) = y -l and h(y) = G(y, ā(y)) for y ∈ I. A calculation reveals that h (y) = 2y-l y 2 η 2 (z) dz > 0 for all y ∈ I. In particular, the function h is strictly increasing with h(l+) = 0. Then there exists ȳ ∈ (l, ∞] such that a N (y) = y -l for y ≤ ȳ and a N satisfies G(y, a N (y)) = T N for y > ȳ. Clearly the mappings y → y + a N (y)z, z ∈ {-1, 1}, are nondecreasing on (l, ȳ). On (ȳ, ∞) monotonicity of y → y + a N (y)z follows as for Case 1. Monotonicity of y → y + a N (y) for y > ȳ implies that the limit a N (ȳ+) = lim y ȳ a N (y) exists. From the continuity of G on {(y, a) ∈ I × R + : a < y -l} we deduce that T /N = lim y ȳ G(y, a N (y)) = G(ȳ, a N (ȳ+)). Consequently, we have a N (ȳ+) = ȳ -l and thus a N is continuous at ȳ, which establishes the claims.

Case 3: l = -∞, r < ∞: Case 3 can be reduced to Case 2 by considering -M . Case 4: l > -∞, r < ∞. In this case set ā(y) = (y -l) ∧ (r -y), h(y) = G(y, ā(y)) for y ∈ I and ȳ = l+r 2 . The considerations of Case 2 and Case 3 imply that y → y + a N (y)z, z ∈ {-1, 1}, is nondecreasing on (l, ȳ) and (ȳ, r). Moreover, h is strictly increasing on (l, ȳ) and strictly decreasing on (ȳ, r). Observe that h is continuous at ȳ. Indeed, at ȳ we have h (ȳ) = 1 2 (q (ȳ, r) + q (ȳ, l)). For y < ȳ we have by ( 12)

h(y) = q(y, 2y -l) + q(y, l) 2 = q (ȳ, l) + q (ȳ, 2y -l) 2 -q (ȳ, y) .
This implies left-continuity: lim y ȳ h(y) = h (ȳ). Right-continuity is verified similarly. If h (ȳ) ≤ T /N , then a N (y) = ā(y) for all y ∈ I and the claims follow directly. If h(ȳ) > T /N , then it follows that G(y, a N (y)) = 1/N for all y in a neighborhood of ȳ.

Then the arguments from Case 1 yield that y → y + a N (y)z, z ∈ {-1, 1}, is also nondecreasing around ȳ.

From the preceding theorem we can directly deduce that the scale factors grow at most linearly, uniformly in N .

Corollary 2.9 (Linear growth uniformly in N ). Let µ = 1 2 (δ -1 + δ 1 ). Then there is a finite constant C such that, for all N ∈ N, we have

0 < a N (y) ≤ C + |y|, y ∈ I, (22) 
that is, the mapping y → a N (y) has linear growth, while the bound in [START_REF] Lejay | Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps[END_REF] is uniform in N .

Proof. The statement follows from the Lip(1) property. We can take C = |y 0 | + sup N |a N (y 0 )| for any fixed y 0 ∈ I, where the sup is finite due to Lemma 2.4.

Finally we remark that the scale factor vanishes at finite state boundaries. Indeed, we have the following more general result that applies also for measures µ other than 1 2 (δ 1 + δ -1 ) whenever at least one of the boundaries is finite.

Proposition 2.10 (Vanishing scale factors at finite boundaries). Suppose that r < ∞. Then for all N ∈ N 0 < a N (y) ≤ r -y sup supp µ , y ∈ I.

Similarly, if l > -∞, we have 0 < a N (y) < l-y inf supp µ . Proof. Consider the case r < ∞. The statement follows from the fact that G(y, a) = ∞ whenever a > r-y sup supp µ . Notice that the bounds in Proposition 2.10 are uniform in N .

Convergence of expectations

In this section we show that the expectation E[f (M T )] can be approximated by E[f (Y N N )] not only for bounded continuous functions f , but also for functions that are unbounded at the boundary of the state space.

Proposition 2.11. Suppose that |η| and 1 |η| are locally bounded on I = (l, r) and that µ has a compact support. Assume that l and r are inaccessible. Let f : I → R be continuous satisfying

lim y l |f (y)| q(m, y) = 0 and lim y r |f (y)| q(m, y) = 0. Then Ef (Y N N ) → Ef (M T ) as N → ∞. Proof.
We first show that the family (f (Y N N )) N ∈N is uniformly integrable. To this end we introduce the localizing sequence of stopping times

σ k = k ∧ inf{t ≥ 0 : t 0 |q x (m, M s )| 2 η(M s ) 2 ds ≥ k}. Using Itô's formula we obtain E[q(m, M σ k ∧τ N N )] = E[σ k ∧ τ N N ]
. Then Fatou's lemma and the monotone convergence theorem imply

E[q(m, Y N N )] = E[q(m, M τ N N )] ≤ lim k→∞ E[q(m, M σ k ∧τ N N )] = lim k→∞ E[σ k ∧ τ N N ] = E[τ N N ] = T.
Fix ε > 0. By assumption there exist l, r ∈ I with l < r such that

|f (y)| ≤ ε T q(m, y) for all y ∈ I \ [ l, r].
Let K = sup y∈[ l,r] |f (y)|, which is finite by continuity of f . Then the following inequality holds uniformly for all q(m,y) = 0 can be replaced by continuity of f on (l, r] in the case where r is accessible.

N ∈ N E |f (Y N N )|1 {|f (Y N N )|>K} ≤ E |f (Y N N )|1 {Y N N ∈I\[ l,r]} ≤ ε T E q(m, Y N N ) ≤ ε.
We next show that our scheme provides appropriate approximations of Ef (M T ) for all functions f with sublinear growth -regardless of the growth behaviour of η. We say that a function f : Ī → R has sublinear growth if lim y→-∞ Example 2.15 (Johnson-Helms example of a strict local martingale). Let I = (0, ∞) and η(x) = x 2 for x ∈ I. We have q(l+) = q(r-) = ∞. Note that the assumption of Theorem 1.1 is satisfied for any centered µ = δ 0 with a compact support, and, in particular, the sequence (Y N N ) converges weakly to M 1 . It is well known that the process (M t ) has the same distribution as (1/|B t |), where B is a three-dimensional Brownian motion starting in B 0 with |B 0 | = 1/m, and | • | denotes the Euclidean norm in R 3 . Moreover, one can show that EM 1 < m (see e.g. [START_REF] Johnson | Class D supermartingales[END_REF]). On the contrary, by Lemma 2.3, the processes (Y N k ) k∈Z + are martingales, hence EY N N = m for all N .

We now present a generalization of Proposition 2.11 to certain path functionals. To this end, let us recall the notation (M N t ) t∈[0,T ] of Section 1 for the processes that approximate (M t ) t∈[0,T ] in law: (M N t ) is a continuous process that satisfies M N kT /N = Y N k , k = 0, . . . , N , and is defined via linear interpolation between the points of the grid {kT /N : k = 0, . . . , N }. 

P (M T ∈ C f ) = 1 and P (M . ∈ C G ) = 1,
where C f (resp. C G ) denotes the set of points x ∈ I (resp.

x . ∈ C([0, T ])) such that f is continuous at x (resp. G is continuous at x . ). Then E[f (M N T )G(M N . )] → E[f (M T )G(M . )] as N → ∞.
The proof is basically the same as that of Proposition 2.11. A remark similar to Remark 2.12 applies also in the situation of Proposition 2.16. Finally, to motivate the somewhat technical formulation of Proposition 2.16, we notice that path functionals with such a structure appear in some applications: e.g. think about a down-and-in barrier call option, where we have f (x) = (x -K) + and G(x . ) = 1 {inf s∈[0,T ] xs<B} .

Advantages over the Euler scheme

Let us compare our approximation scheme with the (weak) explicit Euler scheme that approximates the process M with

Ỹ N k+1 = Ỹ N k + ãN ( Ỹ N k )ξ k+1 , Ỹ N 0 = m, (23) 
where

ãN (y) = η(y) T N (24) 
is the Euler scale factor, and ξ 1 , ξ 2 , . . . are independent identically distributed random variables with Eξ k = 0 and Eξ 2 k = 1 (the classical Euler scheme uses Gaussian ξ k ). Theorem 2.5 (ii) implies that, under nice conditions on η, for a fixed y ∈ I our scale factors a N (y) are close to the Euler scale factors ãN (y) as N tends to infinity (here Eξ 2 k = 1 entails that the denominator in ( 19) is equal to one). Notice, however, that in general this convergence is only local in the y-variable: For fixed N ∈ N the function y → a N (y) is qualitatively different from the Euler scale factor y → ãN (y). In contrast to the Euler scale factor, the factor (16) involves smoothing (a N is Lip(1), while ãN inherits all irregularities of η) and has a tempered growth behavior (linear growth regardless of the growth of η). Moreover, a N ensures that the associated process (Y N k ) satisfies the comparison principle when using µ = 1 2 (δ -1 + δ 1 ), while it is not the case for the Euler scheme (also see Section 5.3 for a further pertinent discussion of this point).

Finally, we remark that these properties allow to use our scheme for approximating expectations of the form E[f (M T )] in some cases where the Euler scheme does not work.

Recall that our scheme converges for sublinearly growing functions (cf. Corollary 2.13). It follows from [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF] that the explicit Euler scheme does not provide an appropriate approximation of E[f (M T )] for all sublinearly growing functions in the case where η is not globally Lipschitz continuous. Proposition 2.17 (Theorem 2.1 in [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]). Let I = (-∞, ∞). Let the process ( Ỹ N k ) be defined by [START_REF] Ngo | Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients[END_REF] and assume that the random variables ξ 1 , ξ 2 , . . . are independent and standard normally distributed. Let C ≥ 1,β > 1 be constants such that |η(x)| ≥ |x| β C for all |x| ≥ C. Then there exists a constant c > 1 and a sequence of events Ω N with

P (Ω N ) ≥ c -N c such that | Ỹ N N | ≥ 2 2 N -1 on Ω N for all N ∈ N. In particular, this implies that E| Ỹ N N | α → ∞ as N → ∞ for all α > 0.
This kind of divergence in finite time of the Euler scheme is due to the following unpleasant effect. Assume that | Ỹ N k | has attained a large positive value (which happens with sufficiently large probability for the true process M on any time horizon, and this probability increases as a function of the time horizon). Since the coefficient grows superlinearly and the increment |W (k+1)T /N -W kT /N | is "of the order 1/N ", the value of | Ỹ N k+1 | is likely to be huge, even for small time steps T /N . Note that if Ỹ N k is positive (resp. negative) and W (k+1)T /N -W kT /N is negative (resp. postive), the Euler approximation significantly jumps across zero, entailing a zigzag behavior. The properties of Y N shown in Theorem 2.8 reveal that our scheme is more stable in this regard and prevent the scheme from these divergent oscillations. In Section 5.3 we illustrate these observations for a specific choice of η (see in particular Figure 3).

Characterizing the scale factor by an ODE

The scale factor a N embedding the scaled random walk (Y N k ) into M with expected time step T /N satisfies the equation G(y, a N (y)) = T /N on I whenever both boundaries l and r are inaccessible (recall Remark 2.2 (ii)). In general, one can show using Condition (A) and Corollary 2.7 that the equation G(y, a N (y)) = T /N holds at least on some subinterval J of I whenever |η| is locally bounded on I (and, moreover, for any compact J ⊂ I there exists N 1 ∈ N such that for all N ≥ N 1 this equation holds on J). In this section we use the implicit function theorem to derive an ordinary differential equation characterizing a N on J. In appliciations this allows for a quick numerical computation of a N . Proposition 2.18. Assume that µ has compact support. Let N ∈ N and J = (l, r) ⊂ I be such that G(y, a N (y)) = T N for all y ∈ J. Then a ≡ a N satisfies the differential equation

a (y) = - q x (y, y + a(y)x)µ(dx) xq x (y, y + a(y)x)µ(dx) (25) 
for all y ∈ J. Moreover, a is the unique solution: Let ã : J → R satisfy (25) for all y ∈ J and G(y 0 , ã(y 0 )) = T N for some y 0 ∈ J, then ã(y) = a(y) for all y ∈ J.

Proof. Since µ has compact support, it follows from the dominated convergence theorem that the function G is C 1 in both arguments in the interior of the set S = {(y, a) ∈ I × R + : G(y, a) < ∞}. In particular the partial derivatives are given by G a (y, a) = xq x (y, y + ax)µ(dx) and G y (y, a) = ∂ ∂y (q(y, y + ax) -q(y, y) -q x (y, y)ax) µ(dx) = (q x (y, y + ax) -q x (y, y))µ(dx) = q x (y, y + ax)µ(dx),

where we use Equation ( 12) with an arbirtrary y ∈ I. Moreover, since G a (y, a) > 0 in the interior of S, it follows from the implicit function theorem that a is C 1 in J and satisfies

a (y) = - G y (y, a(y)) G a (y, a(y)) = - q x (y, y + a(y)x)µ(dx) xq x (y, y + a(y)x)µ(dx)
for all y ∈ J. This yields the first claim. Now let ã satisfy (25) on J with G(y 0 , ã(y 0 )) = T N for some y 0 ∈ J. Then the function y → G(y, ã(y)) has vanishing derivative on J, hence is constant on J, that is, G(y, ã(y)) = T N for all y ∈ J. Since for all y ∈ J the mapping a → G(y, a) is strictly increasing (for those a where G(y, a) < ∞), we conclude that a = ã on J. This completes the proof.

Rate of convergence

In this section we determine rate of convergence for our approximation scheme. Besides the assumptions of the previous sections we make the additional assumption that the diffusion coefficient η is bounded and bounded away from zero: (C1) |η| and 1 |η| are bounded on I.

Notice that (C1) implies that q(m, •) grows quadratically on I, more precisely, that

c(x -m) 2 ≤ q(m, x) ≤ c(x -m) 2 , x ∈ I, (26) 
for some constants 0 < c < c < ∞.

Theorem 3.1. Assume (C1) and x 4 µ(dx) < ∞. Then M τ N k and M t belong to L 2 for all k ∈ Z + and t ≥ 0, and there exists a constant C ∈ R + such that

M τ N N -M T L 2 ≡ E|M τ N N -M T | 2 ≤ CN -1/4 .
In particular, we also have

M τ N N -M T L 1 ≡ E|M τ N N -M T | ≤ CN -1/4
, and the numerical scheme that consists in approximating M T via Y N N has weak order of convergence 1/4 in the sense that

|Ef (Y N N ) -Ef (M T )| ≤ CΛN -1/4 (27)
for all Lipschitz continuous functions f :

I → R with global Lipschitz constant Λ.
It is interesting to notice that, in contrast to Theorem 1.1, we do not require µ to have a compact support in Theorem 3.1. But this is not surprizing in view of Remark 1.2, which applies exactly under (C1).

To prove Theorem 3.1 we first provide an estimate for the second moment of the embedding stopping times. We recall that we assume that Condition (A) is satisfied and that a is the scale factor defined by [START_REF] Jourdain | A review of recent results on approximation of solutions of stochastic differential equations[END_REF]. Lemma 3.2. Assume (C1) and x 4 µ(dx) < ∞. Then there exists a stopping time τ with

E[τ ] = q(m, m + a(m)x) µ(dx) < ∞ (28) 
such that (M τ -m)/a(m) ∼ µ. Moreover, any such stopping time satisfies

E[τ 2 ] ≤ 4 q 2 (m, m + a(m)x) µ(dx). (29) 
Proof. Let L > 0 be a lower bound for |η|. Then we have q(y, x) ≤ (x-y) 2 L 2 , y, x ∈ I. Since x 2 µ(dx) < ∞, this implies that q(m, m + a(m)x) µ(dx) < ∞. The latter integrability condition guarantees the existence of a stopping time τ with E[τ ] = q(m, m + a(m)x) µ(dx) such that (M τ -m)/a(m) ∼ µ (see Theorem 3 in [START_REF] Ankirchner | Finite, integrable and bounded time embeddings for diffusions[END_REF]). Itô's formula yields

tq(m, M t ) = t 0 q(m, M s )ds + t 0 sq x (m, M s )dM s + 1 2 t 2 ,
where q x denotes the partial derivative of q with respect to the second argument. Let (τ n ) denote a localizing sequence for the stochastic integral with respect to M such that E[τ 2 n ] < ∞ (one might just take any localizing sequence (τ n ) and consider τ n := n ∧ τ n ). Let us take any stopping time τ satisfying (28). We then have

E[(τ n ∧ τ ) 2 ] ≤ 2E[(τ n ∧ τ )q(m, M τn∧τ )] ≤ 2 E[(τ n ∧ τ ) 2 ]E[q 2 (m, M τn∧τ )],
which implies

E[(τ n ∧ τ ) 2 ] ≤ 4E[q 2 (m, M τn∧τ )]. (30) 
By monotone convergence the left-hand side converges to E[τ 2 ] as n → ∞. Since |η| is bounded from above, using the Burkholder-Davis-Gundy inequality we get

E sup t≥0 (M t∧τ -m) 2 ≤ const 1 E τ 0 η 2 (M s ) ds ≤ const 2 Eτ < ∞,
hence (M t∧τ ) t≥0 is a uniformly integrable martingale. Applying Jensen's inequality to the convex function x → q 2 (m, x) yields

q 2 (m, M τn∧τ ) = q 2 (m, E[M τ |F τn∧τ ]) ≤ E[q 2 (m, M τ )|F τn∧τ ] a.s.,
which, together with (30), implies

E[τ 2 ] ≤ 4E[q 2 (m, M τ )].
Since (M τ -m)/a(m) ∼ µ, the latter formula is precisely (29).

Proof of Theorem 3.1. Since |η| is bounded from above and

Eτ N k = kT N < ∞, we have E τ N k 0 η 2 (M s ) ds < ∞, hence M τ N k ∈ L 2 for k ∈ Z + . Similarly, M t ∈ L 2 for t ≥ 0. Moreover, it holds E|M τ N N -M T | 2 = E τ N N ∨T τ N N ∧T η 2 (M s )ds ≤ U 2 E|τ N N -T | ≤ U 2 Var(τ N N ), (31) 
where U < ∞ is an upper bound for |η|. With L > 0 being a lower bound for |η|, we have q(y, x) ≤ (y-x) 2 L 2 , y, x ∈ I. By a conditional version of Lemma 3.2 above applied to the

(F τ N k +t )-stopping times ρ N k+1 = τ N k+1 -τ N k , we then have a.s. E[(ρ N k+1 ) 2 |F τ N k ] = 4 R q 2 (M τ N k , M τ N k + a N (M τ N k )x) µ(dx) ≤ 4 a 4 N (M τ N k ) L 4
x 4 µ(dx).

One can prove (see [2, Lemma 3.2]) that, for all N ∈ N and y ∈ I, it holds

a N (y) ≤ U 1 x 2 µ(dx)
T N with U as above. It follows that a.s. we have

E[(ρ N k+1 ) 2 |F τ N k ] ≤ 4 T 2 N 2 U 4 L 4
x 4 µ(dx)

x 2 µ(dx) 2 . (32) 
Since Var(τ N N ) = N k=1 Var(ρ N k ), we obtain from (31) and (32) that

M τ N N -M T L 2 ≤ CN -1/4
with a constant C depending only on T , L, U , x 2 µ(dx) and x 4 µ(dx).

A simulation algorithm

We now cast our approximation scheme into an explicit simulation algorithm. For simplicity we suppose that the i.i.d. sequence (X k ) generating the scaled random walk

(Y k ) satisfies P (X k = ±1) = 1 2 , that is, µ = 1 2 (δ -1 + δ 1 )
. Recall from Section 2 that in this case (Y k ) and the scale factors have numerically desirable properties (comparison principle, Lip(1), linear growth, vanishing at finite boundaries).

We first formulate the algorithm for diffusions M that a.s. do not attain the boundaries l and r in finite time. 1. Determine q(y, x) =

x y u y 2 η 2 (z) dz du. 2. Choose a time horizon T and the number of time steps N ∈ N.

3. Solve with respect to a ∈ R + the equation q(y, y + a) + q(y, y -a) = 2T /N for all y ∈ I, which determines the scale factor y → a(y).

4. Simulate Y k = Y k-1 + a(Y N k-1 )X k , Y 0 = m, where X 1 , X 2 , . . . are i.i.d. with distri- bution 1 2 (δ -1 + δ 1
). If the diffusion M attains at least one of its boundaries l and r in finite time with a positive probability, then the third step of Algorithm 4.1 has to be replaced by: 3'. For all y ∈ I find the maximal a ∈ R + such that q(y, y + a) + q(y, y -a) ≤ 2T /N , which determines the scale factor y → a(y).

Remark 4.2.

In the examples presented in the next section the function q and the root of the function R + a → q(y, y + a) + q(y, y -a) -2T /N can be calculated explicitly.

If no closed-form expression for q is known, one has to fall back on numerical methods. In order to find the root of the function q(y, y + a) + q(y, y -a) -2T /N one can apply the Newton method, which has excellent convergence properties because, for any y, the function a → q(y, y + a) + q(y, y -a) is convex. Alternatively, one can solve ODE [START_REF] Shiryaev | Probability[END_REF] to obtain a numerical approximation for a N (to set up the Cauchy problem it is enough to find one point (y 0 , a 0 ) ∈ I × (0, ∞) with q(y 0 , y 0 + a 0 ) + q(y 0 , y 0 -a 0 ) = 2T /N ).

Examples

In this section we apply our approximation scheme to several example diffusions and report results from numerical experiments. Throughout we set the time horizon T = 1. Moreover, we assume that the i.i.d. sequence (X k ) generating the scaled random walk

(Y k ) satisfies P (X k = ±1) = 1 2 , that is, µ = 1 2 (δ -1 + δ 1 )
. In any experiment we use Algorithm 4.1 resp. its variant with step 3'.

Diffusion between two media

Let I = R and, with some A ∈ R \ {0},

η(x) = 1 (0,∞) (x) + A1 (-∞,0] (x), x ∈ R.
Notice that we have for y ≥ 0 : q(y, x) = (x -y) 2 , x ≥ 0,

y 2 -2xy + 1 A 2 x 2 , x < 0, for y ≤ 0 : q(y, x) = 1 A 2 (x -y) 2 , x < 0, 1 A 2 y 2 -2 A 2 xy + x 2 , x ≥ 0.
One can show that the scale factor a N is given by

a N (y) =              1/N , y ∈ 1/N , ∞ , 1-A 2 1+A 2 y + 2A 2 1+A 2 1 N + 2A 2 A 2 -1 (1+A 2 ) 2 y 2 , y ∈ 0, 1/N , 1-A 2 1+A 2 y + 2A 2 1+A 2 1 N + 2 1-A 2 (1+A 2 ) 2 y 2 , y ∈ -|A| 1/N , 0 , |A| 1/N , y ∈ -∞, -|A| 1/N .
If M 0 = 0, then the probability for the diffusion to be greater than zero is equal to A/(1 + A), for any time t > 0 (see e.g. Section 7 in [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF]). How well does a scaled random walk with scale factor a N approximate this probability? Figure 1 depicts the results of a numerical experiment, where P (M 1 > 0) is approximated with its Monte Carlo estimator (denoted by P emp (M 1 > 0)). The empirical convergence rate is roughly 1/2. When using the Euler method, the approximation error becomes larger, but has the same empirical rate of convergence.

Absorbed Brownian motion

Let M be a Brownian motion that is absorbed at zero, i.e. we have I = (0, ∞) and η(x) = 1 (0,∞) (x). For y > 0, we have

q(y, x) = (x -y) 2 , x ≥ 0, ∞, x < 0,
and the scale factor is given by a N (y) = 1 √ N ∧ y. How well does a scaled random walk with scale factor a N approximate the distribution of M at time 1? In order to illustrate the accuracy we have performed a numerical experiment estimating the probability P (M 1 > 0) for the starting point M 0 = 1 (see Figure 2). We have calculated the empirical probability for the paths to be positive at time 1. We have also calculated the empirical probability from simulations generated with the Euler method. The exact value for this probability is given by 2Φ(M 0 ) -1, where Φ denotes the distribution function of a standard normal random variable. Figure 2 depicts the estimation error in dependence of the number of time steps. Observe that the estimator based on our method converges faster than the estimator based on the Euler scheme. 

An exponentially growing diffusion coefficient

Let I = R and η(x) = cosh(x), x ∈ R. Then q(y, x) = 2 log cosh(x) cosh(y) -tanh(y)(x -y) , y, x ∈ R, G(y, a) = 2 R log cosh(y + ax) cosh(y) µ(dx), y ∈ R, a ≥ 0.
For the choice µ = 1 2 (δ 1 + δ -1 ) we have G(y, a) = log cosh(y -a) cosh(y + a) cosh 2 (y) = log cosh(2y) + cosh(2a) 2 cosh 2 (y) .

Consequently, for N ∈ N the scale factor is given by a N (y) = 1 2 arcosh 2(exp(1/N ) -1) cosh 2 (y) + 1 .

It follows from Corollary 2.13 that Ef (Y N N ) → Ef (M 1 ) as N → ∞ for any continuous function f : R → R with sublinear growth. By Remark 2.14 the process M is a strict local martingale and therefore Ef (Y N N ) in general does not converge to Ef (M 1 ) for linear functions f . The Euler scheme, however, by Proposition 2.17 already fails to provide approximations of expectations like E|M 1 | α with α ∈ (0, 1). We depict the behaviour of the two schemes in Figure 3. The figure on the left-hand side shows two realizations of discrete approximations of the SDE dM t = cosh(M t )dW t with M 0 = 0. The dashed line depicts the realization based on our method. The crosses show the realization obtained with the Euler method. Both use the same realized binomial increments. Notice that the approximations are nearly identical until shortly before time 5. The large absolute values entail that the Euler approximation explodes and eventually aborts, whereas the dashed approximation easily continues. In the right figure the solid and dashed lines are the graphs of the functions y → y -a N (y) and y → y + a N (y). The dash-dotted line indicates level zero. Observe that monotonicity and linear growth of both functions implies that such explosions are impossible in our scheme (for a general statement, recall Theorem 2.8).

A diffusion coefficient that is not locally bounded

Let I = R and η(x) = 1/|x|, x ∈ R \ {0}, and η(0) = 1. Then q(y, x) = 1 6 x 4 - 2 3 xy 3 + 1 2 y 4 , y, x ∈ R, G(y, a) = a 2 (y 2 x 2 + 1 6 a 2 x 4 ) µ(dx), y ∈ R, a ≥ 0.
For the particular choice µ = 1 2 (δ 1 + δ -1 ) we have

G(y, a) = 1 6 a 4 + a 2 y 2 , y ∈ R, a ≥ 0.
The scale factor is then given by

a N (y) = 9y 4 + 6 N -3y 2 .
Observe that a N satisfies

a 2 N (y) = 6 N 9y 4 + 6 N + 3y 2 .
It follows that the estimates

√ N |y|a N (y) ≤ 1 and a N (y) ≤ a N (0) = 6 N 1/4 (34) 
hold for all y ∈ R.

Observe that η is not locally bounded in this example. However, the assertion of Theorem 1.1 still holds true. For a precise formulation, we as usual extend the discretetime scaled random walk (Y N k ) with scale factor a N to the continuous-time process (Y N t ) by linear interpolation. Proof. Let M y be a solution of dM t = η(M t )dW t with initial condition M 0 = y ∈ R. We can assume that M y t = y + W A(t) , where (W t ) is a Brownian motion and A is a time change. Indeed, let τ (t) = t 0 |y + W s | 2 ds and A(t) = inf{s ≥ 0 : τ (s) > t}, for t ≥ 0. Then the process M y t = y+W A(t) , together with the Brownian motion B y t = t 0 |M y s |dM y s , is a weak solution of dM t = η(M t )dW t with initial condition M 0 = y.

Let ρ N (y) = inf{t ≥ 0 : |M y t -y| = a N (y)}. We show that the the family {N ρ N (y): y ∈ R, N ∈ N} is uniformly integrable. Then the first claim follows from the proof of Theorem 3.1 in [START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF] (the proof relies only on the uniform integrability of the family {N ρ N (y)} and does not directly employ the Condition (C1) that is assumed in the statement of the theorem).

Notice that M y ρ N (y) = y + W H W (-a N (y),a N (y)) , where we denote by H X (a, b) the first time a process X attains level a or b. Then

N ρ N (y) = N τ (H W (-a N (y), a N (y))) = N H W (-a N (y),a N (y)) 0 |y + W s | 2 ds = N H W (-a N (y),a N (y))/a 2 N (y) 0 |y + W s a 2 N (y) | 2 a 2 N (y)ds. ( 35 
) Let Ws = 1 a N (y) W s a 2 N (y) . Observe that H W (-a N (y), a N (y))/a 2 N (y) = H W (-1, 1). Hence (35) further implies N ρ N (y) = N H W (-1,1) 0 |y + a N (y) Ws | 2 a 2 N (y)ds = H W (-1,1) 0 | √ N a N (y)y + √ N a 2 N (y) Ws | 2 ds ≤ H W (-1,1) 0 |1 + √ 6| Ws || 2 ds =: τ ,
where the last inequality follows from (34). Notice that τ does not depend on y and N . Moreover, a similar time change argument shows that τ has the same distribution as the stopping time H M (-1, 1), where Mt =

t 0 η( Ms )d Ws with coefficient η(x) = 1 1+ √ 6|x| . Since x 0 u 0 2 η(z) 2 dz du µ(dx) < ∞,
it follows that τ is integrable (see e.g. Theorem 4 in [START_REF] Hobson | Integrability of solutions of the Skorokhod embedding problem for diffusions[END_REF]).

Finally observe that Proposition 2.11 implies the second claim.

In contrast to Proposition 5.1, in the situation of Section 5.4, the Euler scheme does not converge in distribution to M in the case M 0 = 0. Indeed, let ( Ỹ N k ) k∈{0,...,N } denote a Euler type approximation of M on the time interval [0, 1] with N ∈ N time steps, i.e.

Ỹ N k+1 = Ỹ N k + 1 √ N η( Ỹ N k )ξ k+1 ,
where Ỹ N 0 = 0 and ξ 1 , ξ 2 , . . . are independent identically distributed random variables with Eξ k = 0 and Eξ 2 k = 1. For simplicity, assume P (ξ k = 0) = 0. Then we have 2 (δ -1 + δ 1 ) than in δ 0 . In contrast our method is able to reflect the short time behavior of the density of M . The right-hand side shows the empirical distribution function of Y N N (solid) and Ỹ N N (dashed) for the time horizon T = 10. Observe that the Euler scheme compared to our method puts a lot of mass outside the interval [-6, 6]. This is due to the fact that in the long run the process ( Ỹ N k ) gets very close to 0 with high probability and then shoots out of the interval [-6, 6], since ãN inherits the singularity of η around zero. Our method does not produce these outliers since it smoothens the singularity.

Ỹ N 1 = ξ 1 / √ N and Ỹ N 2 = ξ 1 / √ N + ξ 2 /

Diffusions with drift

Let X be a unique in law weak solution of the SDE dX t = b(X t ) dt + σ(X t ) dW t , X 0 = x 0 ∈ J, (39) up to the exit time from J. Notice that (39) has a unique in law (possibly exiting J) weak solution, because under (36)-(38) we have 1+|b| σ 2 ∈ L 1 loc (J). The scale function of X is given by the formula p(x) = Itô's formula yields that M = p(X) is a driftless diffusion driven by [START_REF] Etoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] with starting point m = p(x), interior of the state space I = (l, r) = (p(α), p(β)) and diffusion coefficient η(x) = (p σ) • p -1 (x), x ∈ I (to ensure (5) we also set η(x) = 0 for all x ∈ R \ I). Notice that exit of X from J in finite time corresponds to exit of M from I in finite time.

It follows from (36)-(38) that |η| and 1 |η| are locally bounded on I, hence, Theorem 1.1 applies (recall that we are considering µ = 1 2 (δ -1 + δ 1 ); alternatively, one can take any other centered µ = δ 0 as specified in Theorem 1.1). We again extend the discrete-time scaled random walk (Y N k ) to the continuous-time process (Y N t ) by linear interpolation. By Theorem 1.1, the sequence of processes (Y N N t ), constructed via our method, converges weakly to (M t ) as N → ∞. Then (p -1 (Y N N t )) converges weakly to (X t ). We can, therefore, use our embedding method for approximating the law of X. Again, the convergence holds true without regularity or growth assumptions on the coefficients of the driving SDE (note that (36)-(38) are neither regularity nor growth assumptions).

Let us look at a specific example with drift.

Example 5.2. We consider the time-homogeneous diffusion

dX t = - 1 2 tan(X t )dt + dW t , X 0 = x 0 , (41) 
with the state space J = (-π 2 , π 2 ) and x 0 ∈ J. The derivative of the scale function (40) is given by p (x) = exp In particular, p(-π 2 ) = -∞ and p( π 2 ) = ∞, that is, I = R, and the inverse scale function p -1 : R → J is given by p -1 (x) = 2 arctan(exp(x)) -π 2 .

(42)

It follows that M = p(X) is a local martingale driven by the driftless SDE with state space I = R and diffusion coefficient η(x) = p (p -1 (x)) = cosh(x). Thus, we are in the situation of Section 5.3. In particular, the scale factor a N determining the scaled random walk Y N is given in closed form by (33) in the case µ = 1 2 (δ -1 + δ 1 ). Finally, to get a weak approximation for the diffusion (X t ) of (41), we simulate (p -1 (Y N N t )) with p -1 given by (42).

  Thus, by simulating the scaled random walk (Y N k ) one can construct Monte Carlo estimators for E[f (M )].

Proposition 2 . 1 .

 21 Let h ∈ (0, ∞) and define the scale factor a : Ī → R as in[START_REF] Jourdain | A review of recent results on approximation of solutions of stochastic differential equations[END_REF] for y ∈ I, and set a(•) = 0 on Ī \ I. Then the scaled random walk (Y k ) with scale factor a is Ī-valued and embeddable into M with expected time step h.

Theorem 2 . 8 (

 28 Comparison principle and Lip(1)). Let µ = 1 2 (δ -1 + δ 1 ). Then for every N ∈ N the mappings y → y + a N (y)z are nondecreasing on I for z ∈ {-1, 1}. Moreover, y → a N (y) is Lipschitz continuous on I with Lipschitz constant 1. Proof. Fix N ∈ N. Since G(y, a) = q(y, y + a) + q(y, y -a) 2 , we get that the function (y, a) → G(y, a) is C 1 in both arguments with ∂ a G(y, a) > 0 in the interior of the set {(y, a) ∈ I × R + : G(y, a) < ∞}. (∂ a G denotes the derivative of G with respect to the second argument.)

Remark 2 . 12 .

 212 This implies uniform integrability of (f (Y N N )) N ∈N . By Theorem 1.1 the sequence (Y N N ) converges weakly to M T and therefore (f (Y N N )) converges weakly to f (M T ). It follows that Ef (Y N N ) → Ef (M T ) as N → ∞, which completes the proof. If the left boundary l is accessible, then we can replace the condition lim y l |f (y)| q(m,y) = 0 by the condition that f is continuous on [l, r) and the conclusion Ef (Y N N ) → Ef (M T ) as N → ∞ still holds true. Similarly, lim y r |f (y)|

  |f (y)| |y| = 0 whenever l = -∞ and lim y→∞ |f (y)| |y| = 0 whenever r = ∞. Corollary 2.13. Suppose that |η| and 1 |η| are locally bounded on I = (l, r) and that µ has compact support. Let f : Ī → R be continuous having sublinear growth. Then Ef(Y N N ) → Ef (M T ) as N → ∞. Proof. If -∞ < l, r < ∞ the clain follows directly from Theorem 1.1 since f is bounded in this case. If l = -∞, convexity of q in the second argument implies lim sup y→-∞ |y| q(m,y) < ∞. Therefore we have lim y→-∞ |f (y)| q(m,y) = 0. Similarly, we have lim y→∞ |f (y)| q(m,y) = 0 if r = ∞.Then the claim follows from Propostion 2.11 and Remark 2.12.Remark 2.14. The conclusion of Corollary 2.13 is sharp in the sense that without imposing further assumptions on η we cannot expect convergence of Ef (Y N N ) to Ef (M T ) for a broader class of functions than the functions with sublinear growth. Indeed, if l = -∞ anda -∞ |x| η 2 (x) dx < ∞ for some a ∈ R or r = ∞ and ∞ b |x| η 2 (x) dx < ∞ for some b ∈ R, then it follows from [20] that M isa strict local martingale. In particular, there exist initial values M 0 = m ∈ I and terminal times T such that E[M T ] = m (see Example 2.15 below for such a case). If l > -∞ or r < ∞, it follows from Lemma 2.3 that for all N ∈ N the process (Y N k ) is a discrete-time martingale and therefore satisfies E[Y N N ] = m for all N ∈ N. Hence, Ef (Y N N ) cannot be used to approximate Ef (M T ) for linear functions f in this case.

Proposition 2 . 16 .

 216 Suppose that |η| and 1 |η| are locally bounded on I = (l, r) and that µ has a compact support. Assume that l and r are inaccessible. Let f : I → R be a Borel-measurable function satisfying lim G : C([0, T ]) → R a bounded Borel-measurable path functional. Assume that

Figure 1 :Figure 2 :

 12 Figure 1: The figures illustrate the dependence of the estimators P emp (M 1 > 0) on the number of time steps N in the situation of Section 5.1. The exact value satisfies P (M 1 > 0) = A 1+A . The solid line depicts the logarithmic approximation error based on the Euler method. The dotted line shows the estimated values based on our method. In the left figure A = 2, in the right figure A = 20.

  Figure 3: The figure on the left-hand side shows two realizations of discrete approximations of the

Proposition 5 . 1 .

 51 Let µ = 1 2 (δ -1 + δ 1 ). The sequence of continuous processes (Y N N t ) t≥0 converges in law to the process (M t ) t≥0 , as N → ∞. Moreover, Ef (Y N N ) → Ef (M 1 )as N → ∞ for any continuous function f : R → R with lim |x|→∞ |f (x)| x 4 = 0.

  |ξ 1 |. Denote by ( Ỹ N t ) t∈[0,N ] the continuoustime process obtained from ( Ỹ N k ) k∈{0,...,N } by linear interpolation. For ε > 0 let Φ ε be the bounded continuous functional on C[0, 1] defined by Φ ε(ω) = sup s∈[0,ε] |ω(s)| ∧ 1 for ω ∈ C[0, 1]. For N > 2/ε we have Φ ε ( Ỹ N N • ) ≥ |ξ 1 / √ N + ξ 2 /|ξ 1 || ∧ 1. It follows that lim inf N →∞ E[Φ ε ( Ỹ N N • )] ≥ E[|ξ 2 /ξ 1 | ∧ 1] > 0. But we have E[Φ ε (M )] → 0 as ε → 0.Consequently, the sequence of continuous processes ( Ỹ N N t ) does not converge in distribution to M . The behaviour of the two schemes is illustrated in Figure4.

Finally, we explainFigure 4 :

 4 Figure 4: The figures illustrate the numerical performance of our method and the weak Euler scheme with increments drawn from µ = 1 2 (δ -1 + δ 1 ) for the SDE dM t = η(M t )dW t with η(x) = 1/|x|, x ∈ R \ {0}, η(0) = 1 and M 0 = 0. In both cases we use N = 1000 time steps and simulate 100000 paths. The figure on the left-hand side depicts the empirical probability density function of Y N N (solid) and Ỹ N N (dashed) for the time horizon T = 0.05. Notice that the two maxima of the density of Ỹ N N are centered around -1.1 and 1.1. This comes from the fact that Ỹ N 2 = ξ 1 / √ N + ξ 2 /|ξ 1 | which implies that for large values of N the Euler scheme rather starts in 12 (δ -1 + δ 1 ) than in δ 0 . In contrast our method is able to reflect the short time behavior of the density of M . The right-hand side shows the empirical distribution function of Y N N (solid) and Ỹ N N (dashed) for the time horizon T = 10. Observe that the Euler scheme compared to our method puts a lot of mass outside the interval[-6, 6]. This is due to the fact that in the long run the process ( Ỹ N k ) gets very close to 0 with high probability and then shoots out of the interval [-6, 6], since ãN inherits the singularity of η around zero. Our method does not produce these outliers since it smoothens the singularity.

σ 2

 2 (z) dz dy, x ∈ J,(40)where c ∈ J is arbitrary. We definel := p(α) = lim x α p(x) ∈ [-∞, ∞) and r := p(β) = lim x β p(x) ∈ (-∞, ∞].

  are well defined, and all expectations are equal to each other by the tower property of conditional expectations. The only way for (Y k ) k∈Z + to violate the martingale property is to have EY

Recall that the boundary point l (resp. r) is inaccessible for M if and only if q(y, l+) = ∞ (resp. q(y, r-) = ∞) and that this condition does not depend on y ∈ I. In particular, infinite boundary points are always inaccessible for M driven by[START_REF] Etoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF].
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