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INTRODUCTION

General relativity, published by Albert Einstein in 1915 [START_REF] O'connor | General relativity[END_REF], generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or space-time.

The curvature of space-time, in particular, is directly related to the energy and momentum of whatever matter and radiation are present. This relation is specified by a system of partial differential equations, the Einstein field equations,  E-mail:elias.koor@gmail.com In quantum field theory, an attempt to extend Yang-Mills' universal description of the fundamental interactions [2], to describe gravity, resulted in gauge gravitation theory.

The first gauge model of gravity was suggested by R. Utiyama in 1956 [START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF] and others [START_REF] Blagojević | Gauge Theories of Gravitation: A Reader with Commentaries[END_REF][START_REF] Brodsky | [END_REF]6], just a few years after the emergence of the gauge theory itself [START_REF] Blagojević | Gauge Theories of Gravitation: A Reader with Commentaries[END_REF]. In these initial attempts to construct a gauge theory of gravity by analogy with gauge models of internal symmetries, the Lorentz group is localized and the gravitational field is not represented by gauge potential, but by the metric field [7,8,9].

In 2003, N. Wu proposed a Quantum Gauge Theory of Gravity (QGTG) based on the gravitational gauge group (G) [10][11][12][13]. In Wu's theory, the gravitational interaction is considered as a fundamental interaction in a flat Minkowski space-time and not as space-time geometry. Also within the framework of QGTG and the De Broglie-Bohm approach to gravitational gauge fields, a model of interacting massive gauge gravitons and a (possible) heavy gauge graviton, resulting from shell decay of Higgs bosons, were developed recently by the author [14][START_REF] Koorambas | Recent Developments in Bosons Research[END_REF][START_REF] Koorambas | [END_REF][17][START_REF] Koorambas | Can gravitons be effectively massive due to their zitterbewegung motion? hal-00990723v1[END_REF].

Electric Charged Swap (ECS) symmetry for leptons was also proposed by the author [19]: A family of particular transformations may be continuous (e.g. the rotation of a circle) or discrete (e.g. the reflexion of a bilaterally symmetric figure, or the rotation of a regular polygon). ECS-transformation between ordinary families of leptons produces heavy neutral non-regular leptons of masses of order O (1TeV). These particles may form cold dark matter. Furthermore, certain properties of lepton families are explained from this symmetry within the framework of superstring theories [19,[20][21][22][23][24].

A-Wollmann Kleinert and F. Bulnes, based on ECS symmetry (in this case of leptons [19]), they proposed that leptons are the subtle Fermions [25].

A quark (q) and an ECS-quark (q῀) bound state (qq῀) were recently proposed by the author to explain the electrically charged charmonium Z + c [START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF]9) meson as a charm quark (c), and the charm ECS-quark (c῀) bound state (cc῀) [START_REF]Koorambas Quark-quark of swap electric charge bound state hal-00852409v2[END_REF]. This suggestion predicted that J/ψ and π + mesons are the decay products of a Z + c [START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF]9), as it was later observed at BES III [48]. Furthermore, the proposed charm ECS-quark (c῀) of mass 2,3GeV predicts two new mesons: an electrically charged charmed D¯* +(zm) and a neutral charmed D *0(zm) meson.

In the present paper, starting with the six-dimensional space time, we investigate the nature of a new kind of space-time curvature effects produced by electric charge swap (ECS) transformations between families of leptons that produce non-regular leptons (ECS-leptons) at high energy scale. We find that lepton ECS-transformations form the proper Lorentz group SO + (1,3) (ECS) . We also show that Einstein-type theory of weak space-time ECS-curvature effects can be formulated from the SL(2,C) (ECS) gauge group by using ECS-tetrad formalism. The latter yields to electrically charged massless spin-2 (ECS-graviton), which mediates the ECS exchange interaction between families of leptons. The proposed ECS-curvature effects may have far-reaching applications in astrophysics and cosmology.

FUNDAMENTALS OF THE ELECTRIC CHARGE SWAP (ECS) SYMMETRY IN SIX-DIMENSIONAL SPACE-TIME

Following Gogberashvilli et al. [27], we consider a six-dimensional space-time with signature ( , , , , , )       . Einstein's equations in this space-time have the form:

4 11 () 2 AB AB AB AB R g R g T M     , ( 1 
)
where M is the six-dimensional fundamental scale,  is the cosmological constant and A,B are capital indices equal to 0,1,2,3,4,5,

To split the six-dimensional space-time into four-dimensional and two-dimensional parts, we use the metric ansatz [27]:

2 2 2 2 2 2 2 ( ) ( ) ( sin ), a ds g x dx dx d b d            (2) 
where  and b are constants and ()  is the warp factor. This warp factor equals one at brane location ( 0)

  , and decreases to zero in the asymptotic region ()   at the south pole of the extra two-dimensional sphere. Here the metric of the ordinary four-dimensional () a gx  has signature ( , , , )

    , with , , 0,1,2,3 

   

. The extra compact 2-manifold is parameterized by the spherical angles ,  ( 0 ,0 2 2), the extra 2-surface is exactly a 2-sphere with radius  (0.07TeV -1 ).

        ).
The ansatz for the energy-momentum tensor of the bulk matter fields is:

( ), T g E     ( ), ij ij T g P   0. i T   (3) 
Lower case Latin indices in equation ( 3) correspond to the two extra coordinates. The source functions E and P depend only on the extra coordinate θ. For these ansätze, Einstein's equations (1) take the following form:

22 24 3 3 3 cot 1 [ ( ) ], E M                22 24 6 4 cot [ ( ) ], P M           22 24 4 6 [ ( ) ]. P M             (4) 
where the prime denotes differentiation d/dθ.

For the four-dimensional space-time we have assumed zero cosmological constant. Einstein's equations take the form:

(4) (4) 1 0, 2 R g R    (5) 
where (4) R  and (4) R are four-dimensional Ricci tensor and scalar curvature, respectively. M. Gogberashvili and D. Singleton have found a non-singular solution of (4) for boundary conditions (0) 1   , (0) 0.

  [28]. This solution is given by: 2 ( ) 1 ( 1)sin ( / 2), a

      ( 6 
)
where a is the integration constant. The source terms for this solution are given by: 

with the radius of the extra 2-spheroid given by 24 10 / . M   For simplicity, in this paper we take 0 a  , so that the warp factor takes the form: 

       (8) 
This warp factor equals one at the brane location (θ= 0) and decreases to zero in the asymptotic region θ=π, i.e., at the south pole of the extra two-dimensional spheroid. The expression for the determinant of our ansatz (2) used here is given by: (4) 2 4 ( )sin ,

gg        (9) where (4) 
g  is the determinant of four-dimensional space-time.

Non-Regular Leptons in Six Dimensions

Here we assume that the zero mode corresponds to the non-regular leptons which are copies of the third family of leptons. Although uncertain, this assumption is not physically implausible: it is reasonable to expect that, when entering the six-dimensional bulk, third family leptons change their properties profoundly and lose, so to speak, their 'individuality; (e.g. their observable masses) to their bare masses, spin and magnetic moment [19].

Let us now consider spinors in the six-dimensional space-time (2), where the warp factor ()  has the form (8). The action integral for the six-dimensional massless fermions in a curved background is:

6 . BA B A S d x g i h D h c           . ( 10 
)
A D is the covariant derivative and A  is the 6-dimensional flat gamma matrices.

We also introduce the sechsbein A A h following the usual definition [27],

AB AB A B AB g h h   , (11) 
where , AB are local Lorenz indices.

The six-dimensional spinor is given by: ( ) .  The representation of the flat (8 × 8) gamma-matrices is given by [27] as:

0 0 1 0 , , , 0 1 0 0 i i                               (13)
where 1 denotes the four-dimensional unit matrix and   are ordinary (4×4) gamma- matrices. Representation (13) gives the correct space-time signature ( , , , , , ).

      The generalization of 5  matrix is:

5 7 5 0 . 0       (14) 
The variation of action (10) yields the following six-dimensional massless Dirac equation:

( ) ( ) 0, B B B A B BB h D h D h D x              (15) 
with the sechsbein for our background metric (2) given by:

1 1 1 ,, sin B B B B A h              . (16)
From the definition of spin connection we have:

11 ( ) ( ) 22 1 ( ) . 2 h MN NM N N NN M M M M N N M M N N M PM QN R P Q M QR PR h h h h h h h h h h              (17) 
The non-vanishing components of the spin connection are:

sin     , sin 2 
         . ( 18 
)
The covariant derivatives of the spinor field take the form:

sin ( ) ( ) ( ) 4 ( ) ( ) cos ( ) ( ) ( ) 2 AA AA AA D x x D x x D x x                               . ( 19 
)
The Dirac equation takes the form [29], [30]:

1 sin 1 1 cot ( ) 4 sin 2 1 1 sin cot 1 ( ). 2 sin A A x x x x                                                                                           (20) 
This system of first-order partial differential equations has the following solutions:

    00 2 00 () 1 () 2 ( ) () A ax x x               , ( 21 
)
where 00 ( ), ( )

xx  
are the four-dimensional Dirac spinors.

We note that since the dimensions of We are looking for four-dimensional leptonic zero modes. To this end, we consider the conditions under which equation ( 21) obeys the four-dimensional, massless Dirac equations; 00 ( )

() A x  in six dimensions is 5 / 2 m ,
( ) 0 xx              . (22) 
Of course, there are very massive Kaluza Klein (KK) modes of masses n/ε. Here we assume that 1/ε ≈14TeV. Under this assumption, these massive KK modes, have a much higher mass and are distinct from the third family of leptons.

For the massless case, the 4 spinors 00 ( ), ( )

xx 
are indistinguishable from the four- dimensional point of view, and we can write 00 ( )

( ) xx   
. Insertingly, introducing (21) and ( 22) into (20) converts the bulk Dirac equation into:

0 0 () cot 0 ()                    . ( 23 
)
The solutions of equation ( 23) equation are:

00 00 ( ) , ( ) sin sin AB       , (25) 
where A 0 and B 0 are integration constants with the dimension of mass. The normalisable modes are those for which:

  6 (4) 4 0 0 0 0 gd x g d x          . ( 26 
)
In other words, we want the integral over the extra coordinates  and  to equal 1.

Inserting (21), (25) and the determinant ( 9) into (26), the latter requirement gives:

2 * * 0 0 0 0 ( ) 1 A A B B   . (27)
Explicitly, the expressions for the three normalisable 8-spinors ( 21) that solve the sixdimensional Dirac equations ( 20) are:

0 00 2 0 1 ( ) ( ) 2 sin ( ) A A xx B          , ( 28 
)
where constants A 0 and B 0 obey relations (27).

Set-Up of the ECS Symmetry in Six-Dimensional Space-Time

In the four-dimensional part of six-dimensional space-time non-regular leptons have the same mass as ordinary third family leptons. Hypothetical non-regular leptons are, a) a zerocharged version of the tau, 0  (1784MeV) and, b) a positive charged version of the tau neutrino,    (0,1eV) . Non-regular leptons may, therefore, be obtained by the swap of electric charges between tau and tau neutrino particles in the six-dimensional part. We call these proposed non-regular leptons electric charge swap (ECS) leptons [19].

ECS leptons have the same mass as ordinary third family leptons. They differ from ordinary third family leptons in lepton numbers ( 1 s L  for ordinary leptons; 1 s L  for ordinary antileptons) and in electric charge (positive or neutral for ordinary leptons; negative or neutral for ordinary antileptons). We hypothesize that ECS leptons are produced from third family leptons when these enter the six-dimensional bulk, loose their 'individuality' and swap their electric charge [19]. Το formulate the electric charge swap between ordinary leptons, we have to look for symmetry that characterizes swap processes in the framework of 2-extra dimensions with compactification scale 14 TeV [19].

We consider the 2-sphere 2 S as a quotient space 2

(2) / (1)

L S SU U  
and express the latter in terms of the new symmetry between the original lepton and the new, ECS lepton doublets.

We do this in the following steps [19]:

First, we observe that both the ordinary lepton doublet 

L SU [START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF]. This fundamental representation is given by:

[ , ]

j k jkl l I I i I   (40) 
Τhe generators are denoted as:

1 2 ii I   . ( 41 
)
where

1 2 3 1 0 0 1 0 ,, 0 1 0 0 1 i i                           (42) 
are the isospin versions of Pauli matrices.

The action of the latter on the new leptons states is represented by: 0 10 , 01

L                 . ( 43 
)
To link the two distinct sectors, ordinary and ECS leptons, we assume that neither ordinary L nor ECS s L lepton numbers are conserved, while the overall lepton number is conserved obligatorily.

0 overall s L L L    . ( 44 
) s LL  , ( ) ( ) 1 s LL       . ( 45 
) s LL  , 0 ( ) ( ) 1 s LL    . ( 46 
)
The quantum numbers of the new ECS leptons of mass 1784 MeV and 0,1eV respectively, are given in Table 1 [19].

Table.1. Quantum numbers (mass M, weak isospin I, charge Q, hypercharge Y S , Lepton number L S ) of the ECS leptons

0 L  , v   New lepton M I I-z Q Y S, L S v   0,1eV ½ ½ 1 1, -1 0 L  1784MeV ½ -½ 0 1, -1
The next step is to define the group transformation that can account for the swap of electric charges between the tau and tau neutrino particles. The ECS transformation must be derived from a transformation from The quotient space SU (2)/U ( 1) is diffeomorphic to the unit 2-sphere S 2 . Consequently, the swap of the electric charges between the tau and neutrino of tau particles must be an automorphism of the 2-sphere to itself [19].

Here, since the two extra dimensions are endowed with the Fubini-Study [1] metric [START_REF] Fubini | [END_REF], [33], not all Möbius transformations (e.g. dilations and translations) are isometries. Therefore, the automorphism from the 2 (2) / (1) S SU U  to itself, which brings the electric charge swap between the tau and neutrino of tau particles, is given by the isometries that form a proper subgroup of the group of projective linear transformations (3) ECS SO [START_REF] Fubini | [END_REF], [33], [19], which is the isometric group of the unit sphere in three-dimensional real space 3 R . The automophism of the Riemann sphere Ĉ is given by: (2) ECS SU [19]. This group is also differomorphic to the unit 3-sphere S 3 .

() ( ) 2( arg ) ( ) (3) 
We regard ordinary and ECS leptons as different electric charge states of the same particle -analogous, that is, to the proton-neutron isotopic pair. Finally, in terms of rotational symmetry between the original lepton and the proposed ECS leptons, the ECS two-extra dimensional sphere 2 3 ECS S  is given by: 33 [1] The round metric of the 2-extra dimensional sphere can be expressed in stereographic coordinates as 22 12 22

() 2 3 ( ) (2) / (1) s ECS ECS Y Y S SU U   [19] (48) 
(1 )

dy dy g    
, where The ECS symmetry have been tested in various numbers of lepton families and spacetime dimensions [19]. Furthermore, some properties of lepton families are explained from the provided symmetry, within the framework of superstring theories [20][21][22][23][24]. This local symmetry breaks at energy scale below 14TeV. A symmetry breaking mechanism has also been proposed that can make the unobserved non-regular leptons highly massive [19]. This mechanism may 'explain' the invisibility of ECS leptons in the Large Electron Positron ring (LEP) I, II and neutrino oscillations experiments at energy scales below 14TeV [34][35][36][37], [38][39][40]. The existence of ECS leptons can be tested once the Large Hadron Collider (LHC) becomes operative at 14 TeV energy-scales [41][42][43].

INDUCED ECS LORENTZ TRANSFORMATIONS IN FOUR-DIMENSIONAL SPACE-TIME

Let us first define induced electric charge swap Lorentz transformations (ECS) in fourdimensional space-time. In the six-dimensional space-time, the ECS Mobius group of two extra dimensions Möb( 2) is the group of all orientation-preserving conformal isometries of the two extra dimensional sphere 2 (2) / (1)

L S SU U  
to itself that bring about electrical charge swap between leptons.

If we consider the two extra dimensional conformal sphere as the space of future-pointing rays of the null cone in the four dimensional Minkowski space R 1,3 , then there is an isomorphism of ECS Möb(2) group with the restricted Lorentz group SO + (1,3) of Lorentz transformations in four-dimensional space-time with positive determinant, preserving the direction of time [START_REF] Penrose | Two-spinor calculus and relativistic fields[END_REF]. Therefore, it is the ECS Mobius group of two extra dimensional sphere induced Lorentz transformations that brings about the electric charge swap between leptons in four dimensional space-time. We call this the electric charge swap (ECS) Lorentz group SO + (1,3) ECS of induced (ECS) Lorentz transformation.

Let us first consider the Lorentz group O + (1,3) ECS [START_REF] Misner | Relativity, Groups and Topology[END_REF] with infinitesimal generators J  and the associated Lie algebra given by:

  , J J i g J g J g J g J                 . ( 49 
)
The ECS restricted Lorentz group is a subset of the Lorentz group O + (1,3) ECS given by: 0 0( )

(1,3) { (1,3) | det 1, 0} ECS ECS ECS ECS ECS SO O         , ( 50 
)
which excludes parity and time-reversal transformations, These are thus considered as separate, discrete operations P and T.

A generic element ECS  of the ECS-Lorentz group is given by exponentiating the generators together with the parameters of the transformation, exp( / 2)

ECS iJ       . ( 51 
)
The antisymmetric tensor of parameters   is given by the rotations that produce electric charge swap between leptons, ECS-rotations   52) ensures that the effect of ECS physics at high energy scales (close to the 2extra dimensions compactification scale: (M c =14TeV), on the physics at the low energy scale E in the four-dimensional part of six-dimensional space-time, is vanished.

THE ECS POINCARE GROUP IN FOUR-DIMENSIONAL SPACE-TIME

Adding to the ECS Lorentz group space-time translations that bring the electric charge swap between leptons to the set of (homogeneous) ECS-Lorentz transformations, we get:

( , ) () ECS ECS a ECS ECS x x a          , (53) 
where 4 ECS a   . The Poincare group [START_REF] Misner | Relativity, Groups and Topology[END_REF] can thus be also called the inhomogeneous Lorentz group. Here the proper,or restricted Poincare group [START_REF] O'connor | General relativity[END_REF][START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF] ECS ISO  is a subgroup of the full Poincare group that contains only proper orthochronous ECS-Lorentz transformations. This Poincare group is given by a semidirect product, 4 [START_REF] O'connor | General relativity[END_REF][START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF] (1,3)

ECS ECS ISO SO   . (54) 
The ECS-translation subgroup

4     0, ECS a is a normal subgroup, since equation 11 ( , ) (0, )( , ) (0, 
)

ECS ECS ECS ECS ECS ECS ECS a a a a          
is still a translation for any ECS-Poincare transformation ( , )

ECS ECS a   . The Lorentz subgroup     ,0 ECS  , however, is not normal, because 1 1 1 1 ( , ) ( ,0)( , ) ( ,( ) ) 
ECS ECS ECS ECS ECS ECS ECS ECS ECS ECS ECS ECS a a a                         , (55) 
which is not a homogeneous ECS-Lorentz transformation.

When only one of the factors in the group product is normal, one speaks of a semidirect group product  , instead of a direct group product  . To generate ECS-translations, one has to add a new generator P  to the Lorentz algebra Eq. ( 49) to form the Poincare algebra:

    ,, , 0, 
,

J J i g J g J g J g J PP P J i g P g P                              . (56) 
A correct relativistic quantum field theory has to be not only ECS -Lorentz covariant, but ECS-Poincare covariant as well.

ECS LEPTONS CURVATURE EFFECTS IN FOUR-DIMENSIONAL SPACE-TIME

In this section we discuss the possibility that ECS-transformations between leptons could cause space-time curvature effects and the implications of such effects for a possible ECS gravity like theory.

Let us first consider an electron and the electron neutrino in the presence of an electromagnetic field. The electron is accelerating but the electron neutrino is not influenced by the electromagnetic field. We suppose that, in an arbitrary high scale of energy, electron and electron neutrino swap their charge by ECS-Lorentz transformation. After this ECS-Lorentz transformation, the electron stops being influenced by the electromagnetic field, whereas the electron neutrino begins to accelerate as a result of the field influence.

To illustrate the implications of this, let us consider Newton's Second Law, which relates the force exerted on an object to the acceleration it undergoes by setting them proportional to each other, with the constant of proportionality being the inertial mass m in :

in ECS ECS f m a   (57) 
The inertial mass clearly has a universal character, related to the resistance you feel when you try to push on the object; it is the same constant no matter what kind of force is being exerted.

We also have the law of electromagnetism, which states that the electric force exerted on leptons due to swapping of their electric charge is proportional to the gradient of a scalar field  . The constant of proportionality in this case is called the swapped electric charge () Here, the swapped electric charge ()

ECS e 
is the ordinary electric charge (e ± ) which has been swapped between the leptons.

In an arbitrary high (close to the compactification) scale of energy, we may assume that:

em ECS a    (59)
Equations ( 57), ( 58), (59) yield to the swapped electric charge and inertial mass equivalent ()

ECS in em  
. Einstein shows us that, because of the empirical fact that inertial (m in ) and gravitational mass (m g ) are equal, an experiment cannot distinguish between an accelerated laboratory or a fixed laboratory in the presence of a gravitational field. Doing experiments in a free falling laboratory in the presence of a gravitational field is, therefore, equivalent to doing them in a laboratory in the absence of gravity [START_REF] O'connor | General relativity[END_REF]. We call this the Einstein's principle of equivalence (EPE).

Based on the above, in an arbitrary high (close to the extra dimensional compactification) scale of energy in four-dimensional space-time, no possible experiment could distinguish between an accelerated laboratory or a fixed laboratory in the presence of an ECS-field. Here, an ECS-field is defined as the electrically charged field which mediates the ECS exchange interaction between families of leptons [19]. We extend the EPE into the case ECS symmetry and call this ECSEPE This ECS-Einstein's principle of equivalence (ECSEPE) can be defined in the following way:

Any experiment in four-dimensional space-time in high (close to extra dimensional compactification) energy scale, performed locally in an accelerated frame of reference in the presence of an ECS field will obtain the same results as the same experiment in fourdimensional space-time and at the same high energy scale performed in an inertial frame in the absence of ECS-field. Here, the term 'inertial' refers to the relativistic variant of Newton's inertial frame. Relativistic inertial frames are related by ECS-Poincare transformations as mentioned.

The proposed ECSEPE can also be translated into the statement that, due to electric charge swap between leptons, for any curved space-time, its local tangent space is always a flat space-time with Minkowski metric.

Of course, in low (well below the extra dimensional compactification) energy scales ECSEPE is strongly violated.

SL (2,C) ECS GAUGE THEORY OF WEAK ECS CURVATURE EFFECTS

Following K.P Sinha 1984 [START_REF] Sinha Pramana | [END_REF], in this section we propose an SL(2,C) gauge theory formulation of Einstein type theory of weak ECS curvature effects using the tetrad formalism (Sivaram and Sinha 1975[46]; Dennis and Huang 1977 [47].

SL(2,C) ECS group is homomorphic to the proper ECS-Lorentz group. The tetrad formalism is ideally suited to display the gauge aspect of the theory. The special feature of the formalism is invariance under tetrad ECS-rotation. This corresponds to invariance under the gauge group SL(2,C) ECS , and is analogous to the invariance of the fields under local ECSisotopic spin rotation in SU(2) ECS [START_REF]Koorambas Quark-quark of swap electric charge bound state hal-00852409v2[END_REF].

In tetrad formalism four reference vectors are constituted at each space-time point, in addition to the four-coordinate system. We denote the tetrad by: 

a t  ,( 0,1,2,3 a 
The relationship between the Lorentz metric (1, 1, 1, 1) ab diagonal      and the metric f  of curved space-time due to electric charge swap between leptons is given by:

ab ab f t t      . ( 62 
)
The constant Dirac matrices (on flat space-time) satisfy the relation: 

f          . (65) 
The a  Dirac matrices provide a representation,by the following expression

1 ( ) ( ) a a b b ECS ECS L S L S L    , ( 66 
)
where S is the space-time dependent spinor representation of the tetrad ECS-rotation L ECS . the homomorphism ()

a b ECS L S L  (67)
is thus defined.

The transformation matrix S can be chosen as    is the Lagrangian density of matter field (scalar, vector or spinor). In the action (75) the parameter a is given by the equation (52) To proceed further, we use a modified invariance principle: action (75) must be invariant under the group of general coordinate transformations and, also, under the ECS-Lorentz group transformation at each space-time point (tetrad ECS rotation). As a consequence, the fields in question will be scalars or tensors under general coordinate transformation and scalars, tensors or spinors under the ECS-Lorentz group transformation. Furthermore, we must consider C  to be an ECS-curvature tensor with second derivative of a t  . On varying the action with respect to a t  , (75) then yields the equation: 

                           (79) 
which can also be expressed as:

1 1 2 ECS H f H g t J       . ( 80 
)
This bears resemblance to Einstein's equation. The ECS-curvature tensor and J  , nonetheless, are not necessarily symmetric. The proposed SL(2,C) ECS gauge theory of weak space-time curvature effects is mediated by an electrically charged massless spin-2 (ECS-graviton).

CONCLUSION

In the six-dimensional space-time, we propose a new kind of induced 4-dimensional space-time curvature effects, which can be produced by electric charge swap (ECS) transformations between families of leptons that produce non-regular leptons (ECS-leptons) at high energy scale. We find that lepton ECS-transformations form the proper Lorentz group SO + (1,3) (ECS) . We show that Einstein-type theory of weak space-time effects in four-dimensions can be formulated by the SL(2,C) (ECS) gauge group by using ECS-tetrad formalism. The latter yields to electric charged massless spin-2 (ECS-graviton), which mediates the ECS exchange interaction between families of leptons. This proposition may have far reaching applications in astrophysics and cosmology.
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		 	( ) x	(     S  		S	) 	,	(73)
	D  	( ) x	    	2	ECS g C  	.	(74)
	 A a d x f C t t 4 ( ) a b     		ab		2	g	ECS m 		,	(75)
	where									
		det( ) ft  	,			(76)
							a			
	S		exp	1	ig 	ab	,	(68)
							ECS ab
						4				
	and									
		m								
	where	g				represents the ECS coupling constant,
			ECS					
		ab		, a b      i	.		(69)
					2					
	The gauge potential and the electrically charged ECS-gauge field for the case at hand are denoted by C  and , ECS C C C ig C C               . (70) The transformation laws for () x   , C  and C  under (68) (i.e. under SL(2,C) ECS are: 1 11 1 , ( ) , . SS C SC S i S S C SC S               (71) Furthermore, either an ECS or ordinary spinor () x   obeys the transformation: ( ) ( ) x S x   (72)
	and remains invariant under coordinate transformation.
	However,				

i