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Abstract

Since Open Computational Systems are complex and
dynamic structures with a great (but unknown) number of
autonomous interacting entities, designers face up to a
difficult problem: how can they completely specify such
systems? We call Living Design the biologically inspired
solution we expound here and which consists of the
observation and manipulation during the design phase of
the system being built as it “lives”. More formally, in terms
of design methodology, we propose an Object-Agent
Overlapping Processes Shifting which is an extension and
modification of the classical design phases. This is to be
realized in our work-in-progress Adaptive Multi-agent
System methodology called ADELFE, which is centered on
the AMAS theory also briefly expounded here.

1. Introduction

When facing up to complexity, distribution and openness,
designers have to develop tools to model applications for
which the requirements are not so clear. In this kind of
applications, designers cannot predict all situations the
system will encounter during its running time because the
environment and the system are dynamical, e.g. an
application consisting in the simulation of a naval scenario
[9]. Multi-agent systems seem to fit well to these
applications but the current techniques in MAS are not
always very adequate to support applications in real open
and complex environment [21].

The first usual definition of open systems concerns the
information exchanges between a system and its
environment. This sense is given in [12]: “Distributed
Artificial Intelligence (henceforth called DAI) deals with
issues of large-scale open systems (i.e. systems which are
always subject to unanticipated outcomes in their operation
and which can receive new information from outside
themselves at any time)”. Another sense, developed with
multi-agent systems [4], is about functional change of a
system faced up to inputs or outputs of components (agents).
Open in the sense that it is impossible to know at design time
exactly what components the system will be comprised of
and how these components will be used to interact with one
another [20]. Therefore, we have to deal with the design of
this kind of systems. The AMAS (Adaptive Multi-Agent

System) theory provides one solution to design them.

Whereas humans can make quite good mechanistic or
mathematical models of biological systems at their level of
functioning, they are not able to integrate the complexity of
the dynamic which occurs during the self-structuring
ontogeny of a biological system [15]. Similarly, designing
open computational systems is of the same degree of
complexity, and thus designers face a very difficult problem
leading to misconceptions. Commonly speaking, this refers
to the broad use of complexity as an intuitive notion to speak
about intractable systems. Many definitions are found in the
literature [6], but our purpose concerns only its consequence
during the design phase of artificial systems. Because
complex systems are notoriously difficult to study and there
are many problems with predicting the emergent behavior of
large numbers of interacting entities, designers could be
usefully helped by observing incompletely specified
components interacting in a simplified environment.

Considering these facts, a solution we propose in this
paper might be to design Open Computational Systems
(OCSs) as biological systems. We claim that OCS can’t be
designed like usual systems because of the inability to define
during this phase what the system will be in the future and
what function is will have to achieve: in short, similar to
living systems any form of finalism is irrelevant for an OCS.
Thus, OCSs must be supported by theories of emergence
(not the focus of the paper, see for example [8]) and we
propose here to derive benefit of this for a new design
approach. By making them evolve at a large scale and by
elaborating theories according to their “living” behaviors,
systems could be designed at “run-time”: we call this Living
Design.

Because this notion of Living Design is the paper main
topic and it is centered on the AMAS theory, the section 2
briefly expounds this theory. In a second time, to illustrate
this, a sample design is discussed in section 3 about a
classical problem: ant foraging [5]. By analyzing this
example, the need of a new approach to design OCSs
emerges and is expounded in section 4. Beside, the fast
living prototyping solution is proposed as a solution to
concretize the notion of Living Design in section 5. Finally,
the notion of Coached Living Design is projected as a long-
term perspective and the logical consequence of the Living
Design.



2. A Theory for OCSs

In the AMAS theory [7], a multi-agent system is a system
composed of autonomous entities interacting in a common
environment. But the MAS itself also an environment and it
has to reach a behavioral or a functional adequacy in this
environment. For example, in a simulation, reaching a
behavioral adequacy is to reproduce the behavior of the
simulated entity; a functional adequacy is to perform the
right task, the task for which the system had been built. We
are specifically interested in Adaptive MAS which are
classically defined by the fact that they are able to change
their behavior to react to the evolution of their environment.
Such a system has the following characteristics:

e the system is evolving in an environment with which it
interacts,

o the system is constituted by parts : the agents,

e cach agent has its own function to compute.

Moreover, our approach induces two other characteristics:

e the global function of the system is not implemented in
the agents and there is no global control,

e the development is a bottom-up development : agents are
defined first.

The AMAS theory is an example of collaborative

emergence, in which the goal is not to obtain a given end

state but a never ending adaptation process because the

systems are plunged in a dynamic environment. We think

that it is an important class of MAS simulating hard

problems and having specific characteristics (dynamic

environment, non termination, huge space search).

This theory has given many interesting results in domains
like flood forecast, electronic commerce, training in
information retrieval, mechanism design, telecommunication
network management (for further information see also
http://www.irit.fr/SMAC)

2.1. Openness and Self-Organization

In our vision, the important notion is the collective; the
AMAS theory must therefore lead to a coherent collective
activity that realizes the right task. We name this property
“functional adequacy” and we proved the following theorem
[10]: “For any functionally adequate system, there is at least
a cooperative interior medium system which fulfills an
equivalent function in the same environment”. Therefore, we
focused on the design of cooperative interior medium
systems in which agents are in cooperative interactions.

The specificity of our AMAS theory resides in the fact that
we do not code the global function of the system within the
agents. Due to the agents’ self-organization ability, the
system is able to adapt itself and realize a function that it is
not coded in the agent, i.e. emerging from the interactions
between components. If the organization between the agents
changes, the function which is realized by the collective
changes. Each agent possesses the ability of self-
organization i.e. the capacity to locally rearrange its

interactions with others depending on the individual task it
has to solve. Changing the interactions between agents can
indeed lead to a change at the global level and this induces
the modification of the global function. This capacity of self-
organization at the lowest level enables to change the global
function without coding this modification at the upper level
of the system. Self-organization is founded on the capacity
an agent possesses to be locally “cooperative”, this does not
mean that it is always helping the other ones or that it is
altruistic but only that it is able to recognize cooperation
failures called “Non Cooperative Situations” (NCS, which
could be related to exceptions in classical programs) and to
resolve them.

2.2. Cooperation for OCSs

The local treatment of NCS is a means to build a system
that does the best it can when a difficulty is encountered.
Such a difficulty is primarily due to the dynamical nature of
the environment of the system, as well as to the dynamics of
the interactions between agents. More precisely an agent can
detect three kinds of NCS:

e when a signal perceived from its environment is not
understood without ambiguity;

e when the information perceived does not induce the agent
to an activity process;

e when concluding results lead to act in a useless way in the
environment.

Briefly, in order to design an AMAS, designers have to

design agents by giving them a cooperative behavior — see

example in the next section.

3. Example: Designing an Anthill

Natural selection has acted upon ant species to produce a
large range of foraging strategies [13][17]. At one extreme
one can find species that forage almost exclusively solitarily.
At the other extreme one can find species such as “army-
ants” in which almost blind workers forage exclusively
collectively by traveling on a network of chemical trunk-
trails radiating from their nest [11].
Thus, ant foraging seems to be a good domain for testing the
efficiency of the AMAS theory. In order to do that, suppose
we want to develop a simulation platform and, as a software
engineer, we currently specified entities: the nest and an ant
class. At this stage, the designer has embedded ants with
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Figure 1. Two examples of non co-operative situations ants
can detect during exploration: at the left the uselessness
situation and at the right the concurrency situation.




classical capabilities such as explore, pick up food, etc...
Living design simply allows observing, on the platform, ants
having a random behavior in the environment because they
are incompletely specified. The designer is then an observer
of the running system. Therefore, he may find new behaviors
to add to ants.

The two following sections show the interest of the living
design approach by examples (Figure 1).

3.1. Avoiding Uselessness During Exploration

Even if the platform is not completely designed, ants are
able to explore the environment in order to find resources
during the living design. The designer can observe that two
ants meet (see figure 1) and he has not yet taken into account
this situation. The basic behavior would be to avoid each
other and continue exploration in the same direction (from
evidence this is useless). Therefore, the designer is facing an
interesting case for the AMAS theory: the co-operation
reasoning implies that they must deviate to explore
unexplored space. Living Design enabled the designer to see
a situation he may not have thought of and thus specify more
precisely the system he is building.

3.2. Avoiding Concurrency During Exploration

Later, the designer adds resources in the environment
since the resource class has been defined. A new unforeseen
situation occurs when an ant perceives two patches where
one is currently exploited by colleagues. The designer has to
take into account this situation by adding an adequate
behavior to ants. Thus, according to the AMAS theory, this
ant must preferably exploit the patch where concurrency is
avoided (i.e. where there are less partners).

3.3. Contribution of Living Design

Some years ago, we developed a platform for ant
foraging has been developed in order to test different
behaviors. We have shown that co-operative foraging based
on the AMAS theory is at least as good as that of natural
ants [18]. In order to do that we have slightly modified the
natural behavior in adding the following rules:

1. An AMAS ant preferably explore a part of the
environment which is not currently occupied by other
ants (section 4.2.2).

2. When an AMAS ant sees two patches of food
simultaneously, it chooses to exploit the patch where the
concurrence with other ants is the lower (section 4.2.1)

3. When an AMAS ant comes back to the nest, it lays
pheromone only if there is still some food left on the
patch just exploited

4. The amount of pheromone dropped by an AMAS ant is
a function of the total number of food items encountered
while returning to the nest.

5. The recruitment of nestmates depends on the amount of

pheromone dropped, not on the amount of food brought
to the nest.

We have really spent a lot of time to find these five rules
during development, and no doubt that Living Design would
have greatly improved this activity, by helping us to find
these rules.

The emergence isn't in any way located in the ants but in
the efficiency of the collective behaviour. Thus, living
design is relevant for components (here individual ants)
which are fully specified during the design phase without
any knowledge of an evaluation function related to the
global anthill performance. Generally speaking, living
design uses the basic property of an OCS constituted of
autonomous components as a help for their design.

4. The Need to Shift Artificial
Development Processes to Living Phases

System

In this section, a new approach to artificial system
designing is discussed over biologists’ experiences [15].
Beside, former artificial system design methods are
confirmed not to be sufficient and adequate to apprehend
open systems modeling.

4.1. The Gap between Present Methods and
Required Methods

Today trend to model and specify software is to use the
object paradigm and associated notation and methods.
Considering the agent concept as a way to design artificial
systems as biological systems, we can admit yet a huge gap
between classical software design method and OCS design
as this gap exists between agent and object notions [16].
Fundamental discrepancies are:

e There is no more control on the complete system during
run-time;

e All the situations the system may encounter cannot be
specified;

e The function of the system may evolve during run-time in
comparison to original requirements.

e The size of the system is not constant: components may
appear or disappear.

Thus, methods to design such systems must be different from

existing ones. With the complexity increasing, the huge

distribution and the environment dynamics of such systems,

the classical software engineering methodologies are not

sufficient. The specifications are not complete, the system

has to evolve because it is open, and the control is

distributed because agents are autonomous in the system.

However, such consideration need to provide some

methodological helps, methods and associated tools.

4.2. Object-Agent Overlapping Processes Shifting

One way to apply this idea may be to use and to shift
processes in terms of their abstraction concepts: object or
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Figure 2. Object-Agent Overlapping Processes Shifting. The whole OCS Process is composed of two parallel sub-
processes: the object sub-process on top and the agent sub-process on bottom. The agent process is shifted to the last

phases of the object process.

agent. We call this Object-Agent Overlapping Processes
Shifting.

4.2.1. A Two-Layered Process. At present, known methods
and processes to model agent systems either manipulate new
formalisms or reuse object formalisms, such as UML
language (Unified Modeling Language), and associated
processes, such as RUP (Rational Unified Process) [14]. For
instance, TROPOS proposes a very new method with
associated notations (i*) to express agent concepts, but does
not manage object entities [3]. On the contrary, AOR
(Agent-Object Relation) [19] or MESSAGE/UML [2]
models agents by using UML formalism and by adding some
agent-specific concepts to an already existing language.
Beside, ADELFE [1], we are developing by now, takes part
in the RUP by adding or modifying steps or activities. A first
step to living design systems may be to manipulate the two
paradigms, object and agent, in a two-layered process or
Object-Agent Overlapping Processes. However, even if
object or agent concepts might be expressed with the same
language, it is clear that they require different views. A
solution to link the two layers may be to use in parallel the
two methods in which agent process is shifted to the latest
phases of the object process (test, deployment and
maintenance), called “living phases”, during which the
system is “living”. To sum up, the OCS development
process is now composed of two sub-processes: object and
agent.

4.2.2. Shifting the Overlapping Processes to Living
Phases. Figure 2 shows the two sub-processes (agent and
object) which are shifted. The agent sub-process is shifted to
the “living phases” of the object sub-process. In this paper,
we only focus on the Living Design, i.e. light grey areas in
the figure. The link between the two phases means that
designing agents correspond to a test phase in the object
sub-process. Briefly, regarding the other phases, the
requirements for the agent sub-process are considered by the
designer at the same time than the three first phases of the
object sub-process: Requirements, Analysis and Design.
This shifting between the two sub-processes appears in the

ADELFE method when during the analysis work definition',
a step, called Verify the AMAS Adequacy, determines
whether the agent technology is necessary to develop the
system [1]. At the end of the process, the Implementation,
Test, Deployment and Maintenance phases of the agent sub-
process are considered at the same time than Deployment
and Maintenance phases of the object sub-process.
Moreover, the design phase is not entirely at the
responsibility of the designers as in classical software design
but the system must have capabilities to react to situations
non-predefined in the specifications. Therefore, systems may
become more robust, more autonomous, and more complex.
They may self-modify, self-repair or work in progressive
degradation.

4.2.3. Living Design Pre-Requisites. Living Design is
defined by the link between Design and Test phases of the
two processes. Namely, Living Design means ‘“‘construct
agent during run-time”. Therefore, the designer is like a
biologist who studies the behavior of living creatures and
who can modify its model according to his observations. It
induces that tools exist to model and to simulate agents
which lack aptitudes, skills or other components. Beside, we
could have considered a kind of Living Design, during the
deployment phases, i.e. the system is evolving and in
construction in its real-life environment. Yet, it seems
difficult by now for final users to accept their software as
incomplete ones that cannot achieve all the possible tasks
after the deployment.

In the next section, a solution to Living Design is suggested
and an example is proposed.

5. A Solution: Fast Living Prototyping

As discussed above, to design open systems in dynamical
environments, designers certainly need tools to test the
components of the system during run-time. In this section we
expound a solution to Living Design: fast living prototyping.

" A work definition is a set of activities in the Software Process
Engineering Metamodel (SPEM) of the OMG.



The software OpenTool is a classical UML editor and
verifier. In a near future, it will be AUML-compliant by
taking into account AUML notation such as AIP protocols.
This is the first reason why, the project ADELFE has chosen
this tool to support the ADELFE method. The second reason
for ADELFE to use OpenTool is its simulation functionality.
This latter allows testing behaviors of classes by simulating
state-machines from an initial configuration describe by a
collaboration diagram.

ADELFE proposes in the fast prototyping activity to test
interactively agents’ behaviors by simulating their state-
machines [1]. For example, it simulates interactions between
agents by  simulating  concurrent  state-machines
corresponding to protocols. During this activity, designers
may find agents lack skills, aptitudes, or even non co-
operative situation detection rules. For example, by
simulating artificial ants from a simple collaboration
diagram, designers may detect that two ants exploit the same
resource item by looking at their state status. Then, by
simply adding a rule to avoid this situation, he can enhance
his system. Moreover, he may need to modify ant perception
to perceive resource items and ants at the same time. In a
nutshell, the concurrency non co-operative situation has
been found.

6. One Step Further: Coached Living Design

Let us now consider that we have a particularly complex
system to design. We managed to identify some high level
components/agents but we are unable to fully or formally
describe their behavior and their competences. Very
naturally, in a classic top-down problem approach applied to
multi-agent problem solving, we will go down one level and
describe the agent as a multi-agent system. These agents will
be smaller and simpler agents but by cooperating as an
organization, they will be able to execute the function
expected from the "big" agent they are composing.

But these agents may be too difficult to code. So we will
reiterate the previous step and go down one level more. If
you do this for some steps, depending of the initial problem,
you will come to the lowest possible level: the instructions
of a programming language. Thus we have maximal
expressivity: anything which can be done with a computer
program will be able to be realized, as long as we can find a
way to make the instructions interact in the right way.

The "Living" part of the design will be the most important
here because it is through it that the system will be able to
become what it has to become. And that which enables this
"becoming" is the ability of the system to adapt.

6.1. Emergent Programming: Description of the
Idea

Let us imagine that the whole set of instructions of a
programming language is designed as agents. Each
instruction (like an addition, an equality test, a variable) is

an autonomous agent with a competence, the ability to
communicate and work with the other agents, and a social
behavior. The competence of an instruction agent is simply
what the associated instruction is meant to do. Thus, the
addition agent will receive two values from some other
agents, sum them up, and send the result to some third agent.
The ability to communicate and work with the other agents
allows the instruction agents to make calls between one
another, make requests, forward values. The whole calculus
done in a classic computer program can thus take place. And
the social behavior can be said to be the way the agents
work together, which protocols they have to follow. For
example, depending of its competence, an agent will have
only a specific number of acquaintances with which it is
working at a given time. And some synchronization will
have to take place.

6.2. Self-organizing capability and openness of the
system

So we have agents which are able to simulate a classic

computer program. Now, since we want to build OCS, the
agents have to self-organize so as to find organizations
which are adequate when confronted to the environment.
And the openness means that agents can be introduced in the
system and some others disappear.
We want the system to be able to adapt to the environment
and learn the right behavior. So we need to have agents able
to produce this capability to adapt. Since instruction agents
are very simple, they can't change their competences. But
since what the system does depends from what agents are in
the system an how they are working together (the topology
of the organization), we only have to give the agents the
ability to change their place in the organization, and let them
introduce or suppress other agents when needed.

6.3. Coached Living Design

We can begin to build these agents in a very classical way
and then confront the system to the environment in the
Living Design phase we described earlier. Thus we can
indeed fine tune the agents to make them work together and
self-organize. But how can we obtain the right system at the
end (meaning a system behaving adequately)?

Indeed, we cannot code the global goal into the instruction
agents. As we said, if we could do that, we could write the
program directly. But since the agents have the ability to
self-organize, we can influence this self-organization toward
the desired goal, like a coach of a team encouraging or
reprimanding it. That's why we call it Coached Living
Design.

In fact, during this phase, the designer is observing and
judging the system while it is really /iving, i.e. interacting
with the environment and self-organizing. But whereas in the
Living Design the designer then modifies some agents to
behave accordingly to what he wants, here he will have the



means to give specific feedbacks to the whole system. Of
course the agents will have to be able to take into account
theses feedbacks and use their self-organizing capabilities to
respond to these feedbacks.

6.4 Living Design vs. Coached Living Design

Coached Living Design is necessary to guide the
adaptation process of components when they are coded by
the way of emergent programming. Nevertheless, it could
even be relevant for higher levels of the overall system when
the designer is unable to specify the organization and the
social behavior of coarse-grained components which he
considers already sufficiently specified.

So, to resume, the Living Design phase can be split into two

parts:

1. The specification of the function of a component when
the designer knows that an unexpected event occurring
during simulation is due to the temporary lack of some
parts of code.

2. The specification of the social behavior of a component
when the designer knows that the unexpected event
encountered during simulation is not relevant for the
system function.

And the Coached Living Design regroups these two parts in

one and goes up a level:

The "Coaching" of the whole system when the designer
knows that an unexpected event occurred during
simulation (the system has not the adequate behavior)
but he doesn't want, for some reason, to modify the
agents, or he may be unable to identify the agent which
poses problem. In this case the designer specifies only
the desired global behavior that the system should have,
and the system will adapt itself to reach it.

This approach could be useful for any component sublevel,

but we showed that it is essential for the Emergent

Programming approach.

7. Conclusion

We have shown the need to define new approaches for
designing OCSs. We propose Living Design as a way to take
into account openness and dynamics as soon as their design
phase. The fast prototyping planned in the ADELFE
methodology for designing AMAS systems is the first step to
a living design application.

Coaching, the further step is also involved in Living Design
when the designer cannot further specify the system and its
components but he knows the right behavior he wants the
system to achieve.

From our experiments in the development of adaptive
systems, we think that Living Design and coached living
design will improve greatly their reliability and efficiency.
This assertion cannot today be proved, before using and
testing this approach by developing related tools in many
applications.
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