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Abstract—In this article, we present some preliminary work
on integrating an artificial curiosity mechanism in PROPRE, a
generic and modular neural architecture, to obtain online, open-
ended and active learning of a sensory-motor space, where large
areas can be unlearnable. PROPRE consists of the combination
of the projection of the input motor flow, using a self-organizing
map, with the regression of the sensory output flow from this
projection representation, using a linear regression. The main
feature of PROPRE is the use of a predictability module that
provides an interestingness measure for the current motor stim-
ulus depending on a simple evaluation of the sensory prediction
quality. This measure modulates the projection learning so that
to favor the representations that predict the output better than
a local average. Especially, this leads to the learning of local
representations where an input/output relationship is defined [1].
In this article, we propose an artificial curiosity mechanism based
on the monitoring of learning progress, as proposed in [2], in
the neighborhood of each local representation. Thus, PROPRE
simultaneously learns interesting representations of the input flow
(depending on their capacities to predict the output) and explores
actively this input space where the learning progress is the higher.
We illustrate our architecture on the learning of a direct model
of an arm whose hand can only be perceived in a restricted visual
space. The modulation of the projection learning leads to a better
performance and the use of the curiosity mechanism provides
quicker learning and even improves the final performance.

I. INTRODUCTION

Developmental robotics is a recent and active research field
that targets the conception of robots that are able to learn to
interact with an unknown environment in an autonomous and
lifelong open-ended manner, which raises a lot of challenging
and yet unsolved problems [3], [4], [5]. The constructivist
learning of predictive representations from a sensory-motor
data flow is one of them. Especially, this learning does not
fit with the classical machine learning framework as large
areas of the sensory-motor space are unlearnable such as,
for instance, trying to predict the gustatory consequence of
moving your arms. One way to deal with learning in such high
dimensional sensory-motor spaces is to take inspiration from
the infant’s development, especially studied in developmental
psychology (see [6] e.g.), by providing to the agent intrinsic
motivation [7] by mean of an artificial curiosity mechanism.
This curiosity mechanism will motivate the agent to explore
areas of the sensory-motor space that are interesting for its own
development. Various implementations of artificial curiosity

were proposed, based on different measures, such as error
maximization [8], [9] (areas where the prediction error is the
higher are the more interesting) or similarity-based progress
maximization [10], [11] (areas where the learning progress is
the higher are the more interesting, thus avoiding to get stuck
in stochastic areas of the input space) (see [2] for a review).

Especially, IAC [2] (Intelligent Adaptive Curiosity) and
its derivative R-IAC [11] (Robust IAC) propose a generic
framework for implementing a curiosity mechanism upon a
prediction learning model and was applied to the developmen-
tal robotics field. This framework consists of the monitoring
of the prediction learning progress in various local regions
paving the input space. This progress is measured in each
region by the difference of accumulated errors in two equal
and consecutive sliding temporal windows. In R-IAC, the
next input experienced by the prediction learning model is
randomly chosen either in the input space (typically 30%
of times) or in one of the regions that is picked up with a
probability depending on its learning progress. When some
predefined number of experiments have been processed in one
region, it is split in two along one axis of the input space, so
that to maximize the difference between the learning progress
in the two newly created regions. For more details on the
algorithm, please refer to [11].

PROPRE, that stands for PROjection-PREdiction, is a
generic and modular hybrid framework that provides online
learning of input data flow representations that are useful
to predict another data flow. It combines an unsupervised
learning module, based on a self-organizing map (SOM),
that autonomously learns representations from the input flow,
with a discriminative module that learns the correspondence
between the SOM representations and the output by mean of
a linear regression. The main originality of PROPRE consists
of a predictability module that computed an interestingness
measure of the current stimulus, based on the comparison
between a prediction quality measure and a sliding threshold.
This interestingness measure modulates the generative learning
so that to favor the learning of representations that predict the
target better than a local average. This predictability modu-
lation mechanism provides a better representations learning,
for instance for visual pedestrian pose classification [12].
Moreover, it leads to the gathering of the representations



where a relationship with the output is defined, thus avoiding
unlearnable areas of the input space [1], so that PROPRE can
be well suited for the developmental robotics field.

In this article, we propose to extend the PROPRE capa-
bilities by including a curiosity mechanism in order to si-
multaneously learn and actively explore an unknown sensory-
motor space in a closed perception/action loop. The curiosity
mechanism is inspired by the one proposed in R-IAC [11].
For that purpose, each unit of the SOM, that provides a local
representation of the input flow based on prototype learning, is
associated with a learning progress measure that monitors the
model performance evolution in the corresponding Voronoi
cell in the input space. Thus, a SOM unit is similar to a
region in R-IAC, except that the region is here not defined
by a splitting mechanism but dynamically depends on the
SOM learning, thus providing a fixed a priori memory usage.
The next motor action performed by the system is chosen
in some unit prototype neighborhood, the unit being picked
up randomly with a probability depending on its learning
progress, similarly to what was proposed in R-IAC.

In the next section, we introduce the PROPRE architecture
including the new artificial curiosity mechanism. In section III,
we show that the curiosity mechanism leads to better asymp-
totic performance and better performance in almost every time
steps when PROPRE learns the direct model of a simple two
dimensional planar arm with a limited visual field so that large
areas in the motor space are unlearnable. We conclude and
discuss possible perspectives of our work in section IV.

II. PROPRE
A. Architecture

PROPRE is a generic and modular neural paradigm that
combines projection and prediction for online learning of
input/output relationship from raw data flows. It consists of
the interaction between three modules (see figure 1):
• A projection module (see section II-B for details) that

transforms the current input stimulus in a low di-
mensional representation. This module uses the self-
organizing map paradigm (SOM) that provides a topolog-
ical projection of the input space on the map manifold.

• A prediction module (see section II-C for details) that
learns to predict the current output target from the repre-
sentation given by the projection module. This learning
is done with a linear regression.

• A predictability module that analysis the quality of the
current prediction and plays two roles. First, it modulates
the projection module so that to learn representations
that are more efficient to predict the target flow than
a local average (see section II-D1 for details). Second,
it influences the choice of the next input of the model
so that to favor areas of the input space leading to
learning progress, thus providing an active learning of the
input/output relationship (see section II-D2 for details).

Thus, PROPRE is an hybrid architecture that provides
online, adaptive, active learning [12] that can also be unsu-
pervised when using PROPRE in a multimodal context where
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Fig. 1. Data flow processing in PROPRE. The system learns representations
of the input data flow (D) by combining generative learning (S) and
discriminative learning of the target (T ). The predictability module, that
monitors the quality of the prediction (P ), modulates the generative learning
so that to favor representations that are better to predict of the input/output
relationship than a local average. It also chooses the next input received by
the model, depending on the learning progress, closing the perception/action
loop.

representations learned from each flow try to predict the one
of the other flow [13]. Besides, depending on the way to use
the SOM activity to define the representations, PROPRE can
be seen as an extension of a radial basis function network [14].

From a computational point of view, the next input stimulus
of the model is the (proprioception of the) motor command that
is actively determined depending on the predictability module
(equation 1.d in figure 1). The value of the target corresponds
to the perception of the environment resulting from the execu-
tion of this motor command. The input stimulus is processed
in the model by a feed-forward evaluation of each module
activity (equations 1.a-b-c). Then, the plastic connections are
updated depending on the corresponding modules activities
(equations 2.a-b) and so on.

B. Projection

In our previous articles [1], [12], the projection step con-
sisted of the classical self-organizing map model proposed by
Kohonen [15]. This model is related to the minimization of
the quantization error - plus a topological term - so that the
distribution of the prototypes tends to be similar to the one
of the input data [15], [16]. In this article, we introduce a
curiosity mechanism to actively choose the next input (see
section II-D2 for more details), thus deeply modifying the in-
put data distribution. The coupling of this curiosity mechanism
with the Kohonen learning rule creates an undesirable dynamic



attractor corresponding to the convergence of all prototypes in
a very tiny area of the input space. Indeed, the input are chosen
around some of the learned prototypes, i.e. in a subspace of
the one mapped by the SOM, leading to the mapping of this
subspace by the SOM and so on and so forth.

In order to tackle this problem, in this article, we use a
Dynamic Self-Organizing Map (DSOM) [17] for the prediction
module. DSOM model, compared to the one of Kohonen,
includes the distance between the stimulus and the best match-
ing prototype in the computation of the learning rate and the
Gaussian neighborhood (see equation 2.a) so that the model
is only slightly changed if a prototype is already close to the
stimulus. Thus, even if the curiosity mechanism concentrates
the input in some new interesting subspace of the input space
for some time, it will have few consequences on the previously
learned projection as DSOM does not reduce a quantization
error but tends to map the input space [17]. Thus, DSOM
provides a kind of incremental learning, dealing with a fixed
number of units in the map, necessary to the use of a curiosity
mechanism [11].

In practice, S is a discrete bi-dimensional square grid
of neurons, each one receiving the input data flow D (see
figure 1). Each prototype of a unit x in the map, denoted
wSD(x, t), is updated at each time step t with the following
equation, corresponding to the one of DSOM modulated with
the interestingness measure I (t) provided by the predictability
module (see section II-D1):

∆wSD(x, t) = d∗(t)ηI(t)e
−||x−x∗(t)||22

2(d∗(t)σ)2 (D(t)−wSD(x, t))
(2.a)

with η the learning rate and σ the variance of the Gaussian
neighborhood radius which are both constant to provide a
lifelong learning. || · ||2 is an euclidean distance in the
map, x∗(t) is the best matching unit defined as the unit
whose prototype is the closest to the current input D(t),
i.e. x∗(t) = arg min

x
|wSD(x, t)−D(t)|2 and d∗(t) is the

distance between this best matching unit and the current input,
i.e. d∗(t) = |wSD(x∗(t), t)−D(t)|2, with | · |2 an euclidean
distance on the input space.

The activity of any unit x of the map is defined as:

S(x, t) =

{
1 if x = x∗(t)

0 otherwise
(1.a)

This classical activation function [14] provides a prediction
that only depends on the best matching unit (see section II-C).
Thus, it is consistent with the monitoring of the prediction
quality, computed in each Voronoi cell of DSOM units,
processed in the predictability module (see section II-D).

C. Prediction

The projection activity S(t) is used to compute a prediction
P(t) of the target data flow T(t) at time t. The activity of a
unit x in P is computed as a weighted sum of the S activity:

P (x, t) =
∑
y

wPS(x, y, t)S(y, t) (1.b)

with wPS(x, y, t) the weight from the units y in S to x in P .
The connection weights between S and P are learned with

a classical stochastic gradient descent implementation of a
linear regression [18], which minimizes the mean square error
between the prediction P(t) and the current target value T(t).
Thus, the weights are updated with the following equation:

∆wPS(x, y, t) = η′S(y, t)(T (x, t)− P (x, t)) (2.b)

with η′ the constant learning rate.

D. Predictability module

The predictability module monitors the quality Q(t) of the
current prediction P(t) with respect to the true target value
T(t) with a simple and generic measure:

Q(t) =
P (z∗, t)∑
z

P (z, t)
with z∗ = arg max

z
T (z, t)

In our experiments, the target value represents the visual
position of the end effector in a matrix of pixels, when the
hand is visible (see section III). Thus, Q(t) represents the
percentage of prediction of the right position of the hand.
This measure was also used for classification learning [12]
or multimodal regression [13].

1) Projection learning modulation: In each Voronoi cell1

associated to a unit x of DSOM, we compute online the
average prediction quality θ(x, t) over a sliding window:

θ(x, t) =

{
(1− τ)θ(x, t− 1) + τQ(t) if x = x∗(t)

θ(x, t− 1) otherwise
(1)

with τ the smoothing factor and x∗(t) the best matching unit
at time t (see section II-B).

The interestingness measure of the current stimulus for
predicting the target, that modulates the projection learning
(equation 2.a), is defined as:

I(t) =

{
Q(t)− θ(x∗(t), t) if Q(t) >= θ(x∗(t), t)

0 otherwise
(1.c)

Thus, the current stimulus is only learned if it provides a
prediction locally more accurate than the average and the
interestingness measure depends directly on this accuracy
difference to the local average.

2) Artificial curiosity: As proposed in [2], [11], the artificial
curiosity mechanism is based on the monitoring of learning
progress of the model on various local areas paving the input
space, here the Voronoi cells associated with the DSOM units.
In practice, the learning progress LP(x, t) of each unit x of
the DSOM at time t is computed as the difference between
two average prediction quality computed online with different
smoothing factors τ and τ ′ (τ ′ < τ ). The learning progress
itself is averaged over time with τLP as smoothing factor:

1In practice, as the system continuously learns, unit prototypes are contin-
uously smoothly modified so that θ(x, t) is only a reasonable approximation
of the average prediction quality in the Voronoi cell of the unit.



LP(x, t) =


(1− τLP)LP(x, t− 1) + τLP(θ(x, t)− θ′(x, t))

if x = x∗(t)

LP(x, t− 1) otherwise

θ′(x, t) =

{
(1− τ ′)θ′(x, t− 1) + τ ′Q(t) if x = x∗(t)

θ′(x, t− 1) otherwise

The average prediction quality θ(x, t), computed on the short-
est time window, is the one used for the interestingness
measure (see previous section).

The next action to perform is uniformly chosen in the input
space with some probability (25% in our experiments) for
exploration, otherwise it is actively determined by the curiosity
mechanism. For that purpose, the model computes for each
unit x of the DSOM a probability p(x, t), depending of its
learning progress, to be picked up :

p(x, t) =
|LP(x, t)|∑

x′

|LP(x′, t)|

Let denote x̂(t) the effectively randomly picked up unit by the
model at time t. Then, the next input D(t+1) = (D(i, t+1))i
of the model is obtained by adding to each dimension of the
prototype wSD(x̂(t), t) = (wSD(x̂(t), i, t))i, associated with
the randomly chosen unit x̂(t), a value in [−r,+r] picked up
with an uniform probability:

D(i, t+ 1) = wSD(x̂(t), i, t) + σi (1.d)

with σi ∼ U(−r, r).
It has to be noticed that the interestingness measure (sec-

tion II-D) can be interpreted as the rectified temporal evolution
of the prediction quality measure between short term (current
quality Q(t)) and medium term (θ(x, t)) averages. Thus, both
the projection modulation and the artificial curiosity are based
on the same mechanism operating at different time scales and
their intertwining leads to the emergent properties of PROPRE.

III. EXPERIMENTS AND RESULTS

A. Protocol
We tested our PROPRE architecture on the learning of the

direct model of a simple simulated robotic planar arm (see
figure 2). In our setup, the hand is seen by a 5 × 10 pixels
matrix covering a restricted part of the reachable area so that
the direct model is learnable only for around 20% of the motor
space (see figure 3). This experiment, a simplified and adapted
version of the hand-eye-clouds experiment proposed in [11],
illustrates one of the main problem in developmental robotic:
exploration of a sensory-motor space where large areas are
unlearnable.

With the curiosity mechanism, the next motor command
is chosen in some neighborhood of a learned prototype (see
section II-D2) so that it can be outside of the joint limits.
In this case, the motor command is bounded within the joint
limits and the input/output couple provided to PROPRE is
the proprioception and visual perception of the effectively
performed motor command.

Fig. 2. A robot moves its arm (d1 = 3 and d2 = 2.5, the units are arbitrary)
in a plan depending on an input joint motor command ((θ1, θ2) ∈ [0, π[2).
It can only see its hand with a pixel matrix providing a restricted visual field.
If it sees its arm (left), the corresponding pixel is set to 1, otherwise (right)
the visual perception is a white noise with amplitude 1.

Fig. 3. Example of visual (top) and motor (down) couples. White area
correspond to an invisible hand, whereas each colored area corresponds to
some pixel activated in the visual matrix (better viewed in color).

B. Results

In order to study the influence of the predictability module
on the performance, we tested three different architectures:
• no modulation of the projection learning (i.e.
∀t, I(t) = 1) and no curiosity, denoted DSOM+LR,

• modulation of the projection learning and no curiosity,
denoted PROPRE,

• modulation of the projection learning and curiosity, de-
noted PROPRE ACTIVE.



When no curiosity mechanism is used, the motor actions
are randomly chosen in the input space with an uniform
distribution. When used, the curiosity mechanism chooses 75%
of the performed actions, the others are randomly picked up
in the motor space.

For each architecture, the DSOM size was 10 × 10, the
prediction learning rate was set to η′ = 10−3 (equation 2.b).
We independently tuned, with reasonable effort, the projection
parameters for DSOM+LR (σ = 3, η = 1) and PROPRE
(σ = 4, η = 3) (equation 2.a). Then, we tune the smoothing
factor used in the interestingness measure, τ = 10−3 (equa-
tion 1.c). These parameters, found for PROPRE, are also used
for PROPRE ACTIVE is order to fairly quantify the influence
of the curiosity mechanism. Finally, we tuned the curiosity
mechanism and set the long term smoothing factor τ ′ = 10−4

and the range r = 0.35 (see section II-D2). Moreover, the
initial weights of each unit of DSOM were initialized in
[(π − 1)/2, (π + 1)/2]2, i.e. in the center of the motor space
but outside of the motor area providing a visible hand.

In order to evaluate the performance of the models, we
defined a benchmark of 10000 motor/visual couples where the
hand is visible and recorded an error each time the maximum
of the prediction did not correspond to the real position of the
hand. The results are presented in figure 4. By the way, similar
qualitative results are obtained with the same parameters when
putting a random pixel at 1 and the others at 0, instead of white
noise, when the hand is not visible during learning.

Fig. 4. Average and variance (over 10 simulations) of the temporal evolution
of performance obtained by the different models.

We can clearly see that the modulation of the projection
learning provides better performance at each time step com-
pared to the DSOM+LR system. This confirms the results
we obtain in [1] but when using a Kohonen SOM module
for the projection. More interestingly, we can observe that
the curiosity mechanism, other things being equal, has also a
significant influence on the performance. Indeed, the PROPRE
ACTIVE model is the one that has better performance at almost
every time step including the better asymptotic performance.

This improvement is obtained because the curiosity mecha-
nism performs mainly motor actions providing a visible hand,
60% in average over the ten simulations2, whereas only 20%
of the total motor space leads to a visible hand.

On figure 5, we illustrate an example of the temporal
evolution of the repartition of the performed motor actions
obtained when using the curiosity mechanism. We can observe
that the motor actions seem to first mainly concentrate on the
orange-red areas of figure 3 before spreading over all the motor
area leading to a visible hand. These orange-red areas are the
easiest ones to learn as the activation of one specific pixel can
be obtained by a larger range of motor actions (compare the
relative size of the colored areas in the motor space in figure 3).
Thus, this seems to indicate that the curiosity mechanism
leads to a developmental trajectory of the model from simple
to more complicated learning as already found when using
the IAC framework [11]. A more extensive study, including
statistical results over various trials, is necessary to confirm
this developmental trajectory in PROPRE.

Fig. 5. From top left to bottom right: temporal evolution of the distribution of
motor actions executed by the system using the curiosity mechanism in one
of the simulations. Each figure represents, in the motor space, the 100000
actions executed by the system during the time window mentioned above the
correspond figure.

IV. CONCLUSION AND PERSPECTIVES

PROPRE is a neural paradigm for online and open-ended
learning of input/output relationship from raw data flows.
It combines a generative learning, by projecting the input
space on a self-organizing map - here the DSOM model,
with a discriminative learning, by mean of a linear regression

2For exploration purpose, 25% of actions are randomly chosen in the motor
space (see section II-D2), leading to around 20% of total actions performed
by the system in the unlearnable area. So that half of the actions leading to
an invisible hand are due to the exploration mechanism.



of the output. The main originality of PROPRE is the use
of a predictability module that monitors the quality of the
prediction, with a simple measure, and modulates the pro-
jection learning so that to favor representations that predict
the output better than a local average. Especially, when the
input/output relationship in only defined in some areas of
the input space, this predictability modulation leads to the
gathering of representations in these learnable areas [1], an
important property for developmental robotics.

In this article, we propose to integrate in PROPRE an artifi-
cial curiosity mechanism, derived from the IAC paradigm [2],
based on the monitoring of learning progress in various regions
paving the input space. For that purpose, we compute the
temporal evolution of the prediction quality obtained in each
Voronoi cell of the DSOM by the difference between two
averages computed online with different smoothing factors.
The next input is randomly chosen, with an uniform distribu-
tion, in some neighborhood of the prototype of one DSOM
unit picked up with a probability depending of its associated
learning progress. Thus, PROPRE simultaneously learns to
represent efficiently the input space and actively explores
around learned areas, where it seems the more promising
(through the curiosity mechanism monitoring the learning
progress), in a closed perception/action loop.

We tested this architecture on the learning of a direct model
of a two degrees of freedom planar arm, whose hand position is
perceived by a matrix of pixel only covering a limited subspace
of the reachable space. The modulation of the projection
learning by the predictability module provides a better visual
prediction performance. The additional use of the curiosity
mechanism provides an even better asymptotic performance.
Moreover, by performing mainly motor commands providing
a visible hand, the curiosity mechanism reduces the number
of actions needed to obtain a defined performance.

These very promising results on a simple setup open the
way to test PROPRE for the learning and exploration of more
realistic sensory-motor spaces, especially high-dimensional
and redundant. We also want to improve the exploration part
of the curiosity mechanism, which require yet to know a priori
the boundaries of the motor space, for example using social
guidance. Moreover, IAC was improved by two paradigms
including some features whose integration in PROPRE can
lead to interesting perspectives.
First, R-IAC (Robust IAC) [11] monitors the learning progress
at several scales by using a tree structure of regions. One way
to include this feature in PROPRE can be to use a tree of
self-organizing maps, a structure that was already studied to
obtain different granularities in the mapping (see [19] e.g.).
This question can be coupled with the study of the differences
between having an increasing number of fixed regions, as in
IAC and its derivatives, versus a fixed number of dynamic
regions, as in PROPRE ACTIVE.
Second, SAGG-RIAC (Self-Adaptive Goal Generation
RIAC) [20] monitors a competence progress, i.e. the ability
to reach some goal in the output space, instead of a learning
progress, i.e. the ability to predict the consequence of a

motor action. This competence-based curiosity seems to
be particularly efficient in highly redundant sensory-motor
spaces. PROPRE can be use for multimodal learning,
by providing as output of a data flow processing the
representations learned from another data flow [1]. Thus,
one way to integrate competence-based curiosity in PROPRE
could be to learn representations from the sensory and the
motor flows and to associate the curiosity mechanism to the
sensory representations instead of the motor representations as
in this article. Moreover, both mechanisms could be coupled
and alternatively used depending on the sensory-motor area
currently explored.
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