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Learning of local predictable representations in partially learnable
environments

Mathieu Lefort and Alexander Gepperth

Abstract—PROPRE is a generic and cortically inspired
framework that provides online input/output relationship learn-
ing. The input data flow is projected on a self-organizing
map that provides an internal representation of the current
stimulus. From this representation, the system predicts the
value of the output target. A predictability measure, based
on the monitoring of the prediction quality, modulates the
projection learning so that to favor learning of representations
that are helpful to predict the output. In this article, we study
PROPRE when the input/output relationship is only defined
in a small subspace of the input space, that we define as a
partially learnable environment. This problem, which is not
typical of the machine learning field, is however crucial for the
robotic developmental field. Indeed, robots face high dimen-
sional sensory-motor environments where large areas of these
sensory-motor spaces are not learnable since a motor action
cannot have a consequence on every perception each time. We
show that the use of the predictability measure in PROPRE
leads to an autonomous gathering of local representations where
the input data are related to the output value, thus providing
good classification performance as the system will learn the
input/output function only where it is defined.

I. INTRODUCTION

According to sensory-motor theories, sensory-motor reg-
ularities that emerge from the interaction between an agent
and its surrounding environment are a key point for this
agent to build perceptions of the environment [16]. Moreover,
they seems to play a crucial role for humans as various
experiments in psychophysics show that stimuli consistent
with usual environmental interactions improve learning and
detection of events compared to unisensory or inconsistent
stimuli (see [3], [19], [22] for example). Hence, online and
progressive construction of sensory-motor representations is
one of the current challenge of the developmental robotics
field [10], [17], [20] that targets the conception of robots that
are able to learn to interact with an unknown environment
in an autonomous and lifelong open-ended manner.

As an agent catches its internal state and the one of its
surrounding environment through multiple sensors, sensory-
motor representations have to be learned from the fusion of
these various sensor data flows. Multimodal data fusion is a
very complex task that raises challenging problems such as
what, when and how to fuse data [1], even if databases are
well prepared as in the machine learning field. Additionally,
when learning multimodal data in the developmental robotic
field, one has to consider that large areas of the sensory-
motor space will never be learnable [2]. One example among
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many others is that it is hopeless to try to predict the olfactory
consequence of an eye movement. In this article, we consider
the problem of learning an input/output relationship where
the input/output function is well defined, even if noisy, in
some restricted areas of the input space - that we define as
learnable areas - but is not existing in most of the space
- that we defined as unlearnable areas. Learning in such
partially learnable environments is a very challenging and
crucial problem for the developmental robotic field.

To tackle this problem, we use an architecture that is
cortically inspired. At a macroscopic level of description,
the cortex is structured in interconnected functional areas at
various levels, from low level sensory areas (V1, A1, ...)
to high level areas in the frontal cortex. At a mesoscopic
point of view, structure and function of these areas seem to
be generic [8], [9], [15]. Especially, self-organization (i.e.
close neurons of a cortical area are sensible to close stimuli)
is a widely spread computational paradigm that is mainly
observed in low level sensory areas [4], [21], [23].

PROPRE (that stands for PROjection-PREdiction) is a
generic architecture for multimodal representations learn-
ing [5]. Each data flow is projected on a self-organizing
map, providing an internal representation of each current
stimulus. From each representation, the system tries to pre-
dict the ones of all other data flows. A correct prediction
can only be obtained if corresponding stimuli are correlated.
A predictability measure, that depends on the ability of
a representation to predict the other ones, modulates the
corresponding projection learning so that to favor learning
of predictable multimodal stimuli at the system level. In
previous works, we already show that this predictability
modulation provides better multimodal representations for
real data classification [14], where all data were labeled, and
that these representations are able to adapt to changes in the
input distribution [13]. This article studies the PROPRE ar-
chitecture facing the complex problem of partially learnable
environments.

In the next section we introduce the PROPRE paradigm.
In section III, we present the two partially learnable envi-
ronments that we use. The first one is derived from the
MNIST database [12] where we artificially corrupt some
digit categories. The second one is a robotic arm direct model
with a restricted visual field. We show that PROPRE provides
local representations gathered in the learnable areas of the
environments. This provides a simple way to discriminate
between learnable and unlearnable parts of the environment
and improves the performance of our model that learns the
input/output relationship only where it exists. We discuss
possible implications and extensions of our work in sec-
tion IV.



II. PROPRE

A. Main paradigms

PROPRE is a generic neural paradigm for online learning
of representations from multiple data flows. Its process-
ing is based on the coupling of projection and prediction
and its architecture is structured in three modules (see
figure 1). The projection module uses the self-organizing
map paradigm (SOM) to autonomously obtain a dedicated
non linear topological projection of each unimodal input
space. It thus provides a spatial representation of the current
stimulus of each data flow. In the prediction module, each
representation is used to linearly predict representations of all
other data flows. Each prediction can only be accurate if the
corresponding modal stimuli - through their low level internal
representations - are correlated. A predictability module
quantifies the quality of each prediction that represents the
interestingness of the learned unimodal representation as it
indirectly reflects the correlation between the multimodal
stimuli. This predictability measure is used to modulate
the corresponding projection learning so that to favor the
representations of stimuli correlated across modalities thus
providing an hybrid framework combining generative and
discriminative learning. For more details about the PROPRE
paradigm, please refer to [5].
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Fig. 1. PROPRE architecture is structured in three interacting modules. A
projection module learns a low dimensional representation of each modal
stimulus. A prediction module provides, from each unimodal representation,
a prediction of all other representations. A predictability measure quantifies
the quality of each prediction and modulates the corresponding projection
learning.

In the multimodal architecture, the target data flow is the
learned representations of other data flows. However, any
target value can be used to learn any arbitrary input/output
function (see figure 2) as we already did in [13] for pedestrian
pose orientation classification. In this article, we study this
data flow processing when learning a partially learnable
environment, i.e. that the output value does not depend on
the input value for large areas of the input space. In this
context, the predictability measure plays a crucial role for
identifying learnable areas from the environment.

From a computational point of view, the reception of a
stimulus in the model leads to one transmission and one
learning step so that the model provides online learning (i.e.
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Fig. 2. One data flow processing in PROPRE. The system learns internal
representations of the data flow that help the learning of the input (D)/output
(T ) relationship.

the stimulus is represented and learned at the same time).
Technically speaking, the transmission stage consists on the
feed-forward evaluation of each module activity (equations
1.a-b-c in figure 2). Then, the learning stage updates the
weights of the plastic connections linking the modules (equa-
tions 2.a-b). The equations are detailed in the three next
sections describing respectively each of the three modules
of PROPRE.

B. Projection

The projection step consists on a classical Kohonen self-
organizing map (SOM) [11] except for two points (see equa-
tion 2.a). Firstly, the neighborhood radius and the learning
rate are constant over time, instead of decreasing, in order
to have an online adaptation of the prototypes. Secondly, the
prototype learning is modulated by the predictability measure
to favor learning of representations that can predict the target
value, which is the main feature of PROPRE.

In practice, S is a discrete bi-dimensional square grid of
neurons that receives the input data flow D (see figure 2).
The prototype at time t of a unit x in the map is denoted
wSD(x, t). These prototypes are updated with the following
equation:

∆wSD(x, t) = ηPr(t)e
−||x−x∗(t)||22

2σ2 (D(t)−wSD(x, t))
(2.a)

with η the constant learning rate, σ the constant variance
of the Gaussian neighborhood radius, || · ||2 an euclidean
distance in the map, Pr(t) the predictability measure (see
section II-D) and x∗(t) the best matching unit defined as
the unit whose prototype is the closest to the current input
D(t), i.e. x∗(t) = arg min

x
|wSD(x, t)−D(t)|2, with | · |2

an euclidean distance on the input space.

The activity of any unit x of the map is defined as

S(x, t) =

{
1 if x = x∗(t)

0 otherwise
(1.a)

This simple map activation function provides a prediction
that only depends on the best matching unit (see sec-
tion II-C), so that there is no interference between units in
the predictability measure computation (see section II-D).
This allows to more precisely observe the influence of the
predictability measure on the unit prototypes learning in
partially learnable environments, which is the aim of this
article. However, in order to obtain a better classification
performance, other activation functions can be used [7].



C. Prediction

The projection activity S(t) is used to compute a predic-
tion P(t) of the current value of the target data flow T(t)
at each time t. The activity of a unit x in P is computed as
a weighted sum of the S activity:

P (x, t) =
∑
y

wPS(x, y, t)S(y, t) (1.b)

with wPS(x, y, t) the weight between the unit y in S to the
unit x in P .

The weights of the connection between S and P are
learned with a classical stochastic gradient descent imple-
mentation of a linear regression. This algorithm minimizes
the mean square error between the prediction P(t) and the
current target value T(t). Thus, the weights are updated with
the following equation:

∆wPS(x, y, t) = η′S(y, t)(T (x, t)− P (x, t)) (2.b)

with η′ the constant learning rate.

D. Predictability measure

The predictability measure modulates the projection
learning depending on the quality Q(t) of the prediction P(t)
with respect to the true target value T(t). It is defined as

Pr(t) =

{
Q(t)− θ(x∗(t), t) if Q(t) > θ(x∗(t), t)

0 otherwise
(1.c)

Q(t) =
P (z∗, t)∑
z

P (z, t)
with z∗ = arg max

z
T (z, t)

θ(x, t) =

{
(1− τ)θ(x, t− 1) + τQ(t) if x = x∗(t)

θ(x, t− 1) otherwise

In our experiments, the target value represents the cate-
gory of the input, if any, so that the index of the highest target
value corresponds to the input category, when it is defined
(see section III). Thus, the quality of the prediction Q(t)
represents the percentage of prediction of the right category.
Please note that this measure can also be consistent with a
regression learning task if the target value is encoded with a
spatial coding, i.e. that the real value is represented by the
spatial position of an activity in a map. This is precisely the
case when PROPRE is used for multimodal learning [14], as
the target value is the representation of other data flows (see
section II-A), which is the projection activity, here consisting
on the best matching unit activated (see section II-B).

θ(x, t) is a sliding threshold that is computed as the
average prediction quality of a unit when it is the best
matching unit (i.e. when x = x∗(t)). Thus, it represents the
average prediction quality in a local area of the input space,
corresponding to the Voronoi cell of the unit. This sliding
threshold is computed as an online average with a temporal
horizon τ .

The predictability measure is equal to the difference
between the current prediction quality and the average one of

the current best matching unit1. Thus, the current stimulus is
only learned if it provides a prediction locally more accurate
than the average and the learning strength depends directly
on this accuracy difference to the local average.

III. EXPERIMENTS AND RESULTS

For all our experiments, in order to quantify the influence
of the predictability modulation on the system learning, we
compare the PROPRE architecture described in section II
with the same one without the modulation influence (corre-
sponding to ∀t,Pr(t) = 1 in equation 2.a) that we denote
SOM+LR in the following of the article. Unless specified
otherwise, in section III-A (respectively III-B), all experi-
ments are done with a 10× 10 (respectively 20× 20) SOM
map and training occurs during 20 millions (respectively
100 millions) of time steps, where an input/output couple of
values is randomly picked in the train dataset at each time
step. Each initial connection weight is uniformly randomly
chosen in [0, 1[, τ , η and η′ are set to 0.01.

A. MNIST database with corrupted digit categories

1) Protocol: We define several datasets derived from
the classical machine learning MNIST database [12]. The
handwritten digits pictures are used as the input data flow.
The target value, which corresponds to the digit category, is
defined for every picture in the MNIST database. In order to
get partially learnable environments, we corrupt this target
value for some digit categories. In practice, the target value
is computed with the following steps (see figure 3):

• first, we corrupt some digits (1, 2, 4, 5 and 7 in our
experiments)2 by not providing the category to the
system when a corresponding picture is presented as
input

• second, distractors, i.e. other random categories, are
added to the category vector (the number of distrac-
tors can be different for uncorrupted and corrupted
digit categories)

• third, uniform noise is added to the category vector
(the noise amplitude can be different for uncorrupted
and corrupted digit categories)

So around half of the input space is unlearnable as the output
does not depend on the input for 5 digit categories.

For our experiments we define 4 databases with various
distractor numbers and noise amplitude, each time having
around 90% of training data and 10% of test data (only
containing uncorrupted digit categories)3:

1This is a slight adaptation of our previous algorithm, where predictability
value was binary (learning on or off) [14], that allows more precise
modulation.

2We initially choose 0, 3, 6, 8 and 9 as uncorrupted digit categories as the
digits are visually similar so that having more prototypes for representing
these digits may improve more clearly the classification performance.
However, tests on other configurations show that the results are qualitatively
independent of this ad hoc choice.

3In practice, we split the MNIST database in 80% of training data and
20% of test data. However, as we only test our model on uncorrupted digit
categories, we only keep around half of the initial testing dataset.
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Fig. 3. Input data are the handwritten digits of the MNIST database (top).
For uncorrupted digit categories - 0, 3, 6, 8 and 9 in our experiments -
(left column), the digit category is represented as in the MNIST database
by a 1 at the right position in the category vector, but is missing for the
other corrupted digit categories (right column). Some distractors, i.e. other
values at 1, are added at random positions in the vector. Then, some uniform
random noise with a fixed amplitude is added to all values of the vector,
providing the output target value of the system (bottom).

• setup 1: 1 distractor is added to corrupted digit
categories

• setup 2: random noise with amplitude 1 is added to
corrupted digit categories

• setup 3: random noise with amplitude 1 is added to
all digit categories

• setup 4: 1 (respectively 2) distractor(s) is (are)
added to uncorrupted (respectively corrupted) digit
categories and random noise with amplitude 0.1 is
added to all digit categories

Thus, setups 1 and 2 correspond to various kind of pertur-
bations when the input/output relationship is not defined,
whereas setups 3 and 4 also include perturbations of the
input/output function where defined. Moreover, we define a
fifth database as a baseline, where training data only contain
uncorrupted digit categories without noise and distractors,
denoted learnable environment in the following.

2) Learned representations: In figure 4, we present one
example of the learned self-organizations by the projection
map in the PROPRE and the SOM+LR architectures, that is
representative of all four partially learnable setups. Without
modulation, the projection map represents all the input space
data, i.e. all 10 digits, in a self-organized way, which is
the expected behavior of a Kohonen SOM. However, we
can clearly observe that, with the predictability modulation,
the SOM only represents digits from uncorrupted categories.
Thus, thanks to the predictability measure modulation of
the projection learning, the system autonomously learned to
map the input space area where an input/output function is
defined.

3) Classification performances: In the previous section,
we show that the modulation introduced in PROPRE leads
to representations that are gathered in the learnable area
of the input space. As these representations are used as
input of the prediction module, having a better mapping
of the learnable area of the input space leads to a better
classification performance of the system, which is shown in
figure 5. Indeed, PROPRE is more efficient than SOM+LR
in all setups, including the dataset where the input/output

Fig. 4. Top (respectively bottom): prototypes learned by the projection
map when no modulation (respectively predictability modulation) is applied.
Each square represents the prototype of the unit at the corresponding position
in the 10× 10 SOM.

function is defined everywhere, confirming our previous
results on other benchmarks [13]. Moreover, the PROPRE
performance on the partially learnable environments are close
or even slightly better than the one of SOM+LR on the
learnable environment. Thus, on this protocol, additionally
to autonomously avoid unlearnable part of the environment,
the predictability modulation is also able to improve the
representation of the learnable area of the environment to
get a better performance.

B. Motor direct model with restricted visual field

1) Protocol: We also tested our PROPRE architecture
with some simulated robotic data, which is the targeted
field of application of our model. We define several datasets
corresponding to a motor direct model of a robotic planar
arm with a restricted visual field (see figure 6). Thus, the



PROPRE SOM+LR
setup 1 8.56% 12%
setup 2 8.46% 13.9%
setup 3 9.63% 14.8%
setup 4 11.3% 14.2%

learnable environment 6.4% 9.2%

Fig. 5. Final classification errors on the different setups (refer to sec-
tion III-A1 for details) depending on the use of the predictability modulation.

robot is only able to see its hand in a limited area of its
reachable space. The visual input of the robot is a simple
5× 10 pixel matrix.

visual field

visible hand unvisible hand

brut visual data

+ distractors

+ uniform noise

Fig. 6. A robot moves its arm (d1 = 3 and d2 = 2.5) in a plan depending
on an input joint motor command (top). It can only see its hand in a restricted
visual field. If so (left), the corresponding pixel of the visual data is set to 1,
otherwise no activity is provided (right). Some distractors and some uniform
random noise with a fixed amplitude are added to the visual target data of
the system (bottom).

Datasets are generated as following:

• an input motor command corresponding to (θ1, θ2)
is randomly chosen in [0, π[×[0, π[ with an uniform
distribution

• if the hand is visible, a 1 is put at the corresponding
position in the 5× 10 pixel matrix

• some distractors, i.e. 1 values, are put at random po-
sition in the pixel matrix (the number of distractors
can be different if the hand is visible or not)

• the visual target value is obtained by adding some
random uniform noise with a fixed amplitude to the
pixel matrix (noise amplitude can be different if the
hand is visible or not)

Finally, the visual data only depends on the input motor
command in around 20% of the reachable space, where the
hand is visible. By the way, some part of the visual field are
not reachable.

Similarly to what we did with the MNIST database, we
generate 4 different datasets with various distractor number
and noise amplitude, each time having 90% of training

data and 10% of testing data (only containing motor inputs
providing a visible hand position):

• setup 1: 1 distractor is added when the hand is not
visible

• setup 2: random noise with amplitude 1 is added
when the hand is not visible

• setup 3: random noise with amplitude 1 is added
whenever the hand is visible or not

• setup 4: 1 (respectively 2) distractors are added when
the hand is visible (respectively not visible) and
random noise with amplitude 0.1 is added whenever
the hand is visible or not

Thus, setups 1 and 2 correspond to various kind of pertur-
bations when the input/output relationship is not defined,
whereas setups 3 and 4 also include perturbation of the
input/output function where defined. Moreover, we define a
fifth database as a baseline, where training data contain only
motor commands leading to a visible hand, denoted learnable
environment in the following.

2) Learned representations: We can clearly see in fig-
ure 7 the same effect that we observed with the MNIST
database. Indeed, without modulation of the projection learn-
ing, the prototypes represent all the input space in a genera-
tive way whereas, with the modulation by the predictability
measure, prototypes are gathered mainly in the learnable area
of the input space. It has to be noted that, with all initial
values between 0 and 1, prototypes are initialized far away
from the learnable area of the input space.

Another way to study this gathering of prototypes in the
learnable area of the input space is to use the distance to
the best matching unit to build a binary classifier between
learnable and unlearnable areas of the environment. Thus,
once the model has converged, we classify the input data of a
testing dataset (here including also data from the unlearnable
area) as coming from the unlearnable area (respectively
learnable area) if the distance between the input and the best
matching unit is above (respectively below) some threshold.
The corresponding ROC curves of these binary classifiers
when using prototypes learned by SOM+LR and PROPRE
are represented in figure 8.

We can clearly see that the classifier based on the pro-
totypes of PROPRE is largely better than the one built with
the prototypes learned without the predictability modulation.
This confirms that PROPRE can autonomously learn local
representations in the learnable area of the environment.

3) Classification performances: We also trained a multi-
layer perceptron (MLP) on all setups to have a baseline
of performances obtained by a standard machine learning
discriminative algorithm. The hidden layer of the MLP was
set to 400 units so that the internal representation in all
models have the same size. Performances obtained by the
various models on the different setups are shown on figure 9.
A prediction error is counted when the maximum of the
prediction does not correspond to the real position of the
hand in the visual field.



Fig. 7. Top (respectively bottom): examples of prototypes learned by a
10 × 10 self-organizing map, represented in the motor input space, when
no modulation (respectively predictability modulation) is applied (same
qualitative results are obtained on all four partially learnable setups). The
gray area represents the motor space leading to a visible hand, i.e. the
learnable area of the input space.

When trained only on the learnable area of the input
space, all models (SOM+LR, PROPRE and MLP) achieve
logically their best classification performance. In this case,
the best performance is obtained by the MLP, as expected,
as it is a discriminative learning algorithm. By the way,
PROPRE performance is, once again, better than the one of
SOM+LR. The more interesting results concern the 4 setups
where a large area of the input space is unlearnable, that does
not fit with classical machine learning framework. In these
cases, the SOM+LR performances decrease dramatically, as
the SOM represents the entire input space (see previous
section). Moreover, the MLP performances also decrease and
are worst than the one of PROPRE. By the way, Hartono
and colleagues proposed a model whose equations are close
to the ones of PROPRE but are derived from a stochastic
gradient descent so that the model is a discriminative learning
algorithm [6]. Preliminary results seem to indicate that this
model has the same qualitative behavior as a MLP, i.e. that
its performance is deeply impacted by unlearnable areas.
This illustrates the main interesting monitoring property of
the PROPRE predictability module to detect and gather

Fig. 8. Top (respectively bottom): ROC curves of a classifier that classifies
data as coming from the unlearnable or learnable area of the input space
depending on the distance to the best matching unit of the SOM learned
with SOM+LR (respectively PROPRE).

representations in the learnable area of the input space. Thus,
PROPRE only tries to regress the input/output function in
the learnable area and is quite insensible to the existence of
unlearnable areas contrary to classical discriminative learning
approaches.

4) Robustness to instabilities in the learnable area: In all
previously presented experiments, the input/output function,
even if noisy, was always present in the learnable area of the
input space and never defined elsewhere. This is precisely
what distinguishes learnable from unlearnable areas. In this
section, we study the robustness of PROPRE learning to
some missing target values in the learnable area to be more
representative of real data. For that purpose, we take the
setup 2 (see section III-B1) and, with some probability,
suppress the visual location of the hand in the pixel matrix
when the hand should be visible. This may correspond to the
occlusion of the hand behind an object for example. Perfor-
mances obtained with PROPRE and SOM+LR architectures
on this setup are presented in figure 10.

We can see that, for both models, the performance
decreases with the increase of the percentage of input/output
relationship instability in the learnable area as the prediction
step has more difficulties to get a relevant statistic in the



Fig. 9. Top (respectively bottom): temporal evolution of classification
errors on the different setups (refer to section III-B1 for details) when no
modulation (respectively predictability modulation) is used. On the bottom
figure, dashed lines represent the final performance obtained by a multi-layer
perceptron, the color indicates the setup on which the MLP was trained.

data. Interestingly, PROPRE performance is only gradually
degraded with the instability percentage and always achieves
a better performance than SOM+LR in all cases. By the way,
even with up to 30% of instability, PROPRE performance
remains better than the one of SOM+LR on the data without
any instability.

IV. DISCUSSION AND PERSPECTIVES

PROPRE is a generic and modular paradigm whose archi-
tecture and processing are inspired by the ones of the cortex.
It provides an input/output relationship online learning based
on the combination of projection and prediction, that is
well suited for multimodal learning. The input data flow
is projected on a learned self-organizing map that provides
a low dimensional representation of the current input. This
internal representation is used to predict the value of the
output target. The main originality of PROPRE is the use of a
predictability measure, that depends on the monitoring of the
prediction quality, to modulate the projection learning. This
predictability modulation leads to learning of representations
that are locally useful for the global output target prediction.

PROPRE was already successfully applied to unimodal

Fig. 10. Top (respectively bottom): temporal evolution of the performance
of SOM+LR (respectively PROPRE) when learning on setup 2 depending
on the percentage of input data in the learnable area of the environment
whose target value is missing (refer to the text for more details).

and multimodal learning in real data classification tasks [13],
[14], where all data are labeled. In this article, we study
the PROPRE paradigm when learning environments that
include a large unlearnable area in the input space, i.e. where
the output value does not depend on the input. This kind
of problem is not typical of the machine learning field,
where benchmarks assume an hidden and noisy input/output
function everywhere. However, this very challenging problem
is crucial for the robotic developmental field. Indeed, robots
face high dimensional sensory-motor environments, where
large part of these environments cannot be predicted at any
time of the development and is thus hopeless to try to
learn [2].

We construct multiple benchmarks of partially learnable
environments with various random uniform noise and dis-
tractors in the output target value. Firstly, we use the MNIST
database where we artificially suppress the category for half
of the digits. Secondly, we simulate a robotic arm in a plan,
whose hand can be seen in a restricted visual field only
covering around 20% of the reachable space.

The modulation mechanism introduced in PROPRE leads
to a gathering of the local representations in the learnable
areas of the input space. So, as PROPRE regresses the output



value from these internal representations, it only learns the
input/output relationship where it is defined. Thus, when
some areas of the input space are unlearnable, PROPRE
performances are better than the ones achieved by the same
architecture without predictability modulation and are also
better than the ones of a multi-layer perceptron, a standard
discriminative learning algorithm, in the robotic setup. On the
contrary, the MLP obtains the best performance when the in-
put/output relationship is defined on all the input space. This
validates the important role of the predictability module to be
able to learn in partially learnable environments by detecting
learnable areas from unlearnable ones. This property may
also be used to build a classifier that discriminates inputs
from the learnable areas in the input space based on the
distance between the input and the best matching unit as we
illustrate it on the direct arm model learning. By the way,
PROPRE performance is only slightly degraded by adding
noise to the input/output function where it exists and is
gradually degraded when the input/output function is missing
for some increasing percentage of inputs of the learnable
area, which are both interesting robustness properties.

The successful application of PROPRE to learning in par-
tially learnable environments, lies on the monitoring provided
by the predictability modulation. It is based on the prediction
quality measure that is defined as the percentage of prediction
of the right category. As mentioned in section II-D, it can
also be applied to a regression task as we already did it
in [14] for multimodal learning. Thus, a direct perspective
of our work is to study PROPRE facing real multimodal
data with a partial relationship between the modalities, which
is particularly relevant as each sensor usually has its own
characteristics. Moreover, preliminary results indicate that
this predictability measure can be extended to a multiple
categories representation, with some constraints, even if more
work is needed to conclude on this aspect.

The discrimination between learnable and unlearnable
areas of the environment, that is autonomously learned by
PROPRE, can be very interesting from a developmental
robotics perspective. Even if we show in this article that
PROPRE can deal with partially learnable environments,
exploration of highly dimensional sensory-motor environ-
ments cannot be extensive within a live time. Thus, active
exploration mechanisms have to be used for guiding ex-
ploration towards interesting sensory-motor areas, that are
defined as the one leading to competence progress in the
artificial intrinsic motivation framework [18] for example.
It may be interesting to study the coupling of PROPRE
with such intrinsic motivation framework as the autonomous
detection of learnable areas of the input space must provide
a great help for active exploration.
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