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Abstract: This paper deals with the problem of obstacle detection in traffic
applications. The proposed device allows a diver to receive the current road
and vehicle environment information. The environment perception is performed
through a fast processing of image sequence acquired from a vision system
embedded in a vehicle. The approach is based on frame motion analysis. Firstly,
the road motion is computed through a fast and robust wavelets analysis. Then, we
detect the areas which have a different motion thanks to a bayesian modelization.
Results shown in the paper prove that the proposed method permits the detection
of any obstacle on a road in various image conditions.
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1. INTRODUCTION

The ability to detect obstacles and the degree
of danger is essential for vehicle navigation. The
work described in this paper is part of a project
to develop a cooperative perceptual system for
traffic applications. It should inform the driver of
the presence of obstacles and critical situations
on the road and help him to adapt in advance his
behavior on the road.
The techniques used in the obstacle detection may
vary according to the definition of the obstacles.
When the definition is reduced to a specific object
(vehicle, pedestrian), the detection can be based
on search for specific patterns, possibly supported
by features such as texture, shape (Lutzeler and
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Dickmanns, 1998) (Broggi et al., 2000), symme-
try (Kuehnle, 1998) or the use of an approxi-
mate contour. In this case, the processing can
be limited to the analysis of a single image. On
the other hand, when the obstacle definition is
more general, obstacle detection is confined to
the area identification in which the vehicle can
safely move. In this case, two approaches are gen-
erally used: analysis of the optical flow (Lefaix et
al., 2002),(Kruger et al., 1995) and stereo vision
(Bertozzi and Broggi, 1998). These techniques are
huge calculation cost and sensitive to vehicle mo-
tion. Moreover, optical flow techniques fail when
obstacles have small or null speed. In this paper,
we describe a new strategy to detect obstacles in
road sequence from a single camera mounted on
a vehicle. Our method is based on optical flow
estimation. In order to obtain a fast algorithm, we
detected the interesting area in the image using a
method which detects the road. Then, we estimate



Fig. 1. Algorithm principle
the motion using wavelets analysis of the optical
flow equation only on the area of interest. To
detect the obstacles which have small speed, we
modelize the road velocity by a quadratic model.
Then, to achieve a robust algorithm, we use a
fast bayesian modelization instead of a simple
threshold between the expected and real veloc-
ity fields. The method proposed decomposes into
three steps: road detection, road motion estima-
tion and obstacle detection on the road. The paper
is organized as follows : section 2 briefly describes
the road detection in the image, section 3 presents
a robust algorithm which enables to estimate the
dominant motion, i.e., the road motion. In section
4, we show how to solve the problem of obstacle
detection. Some results are presented in section 5.

2. ROAD DETECTION IN IMAGE
SEQUENCE

At this step of the work, we consider the following
problem: extracting a part of the image which
corresponds to the road surface.
Our goal is to obtain a reliable three-dimensional
shape of the road in order to detect danger-
ous obstacles. To achieve this, we use a method
developed by Chapuis and al (Chapuis et al.,
2002),(Chausse et al., 2000). This approach, de-
scribed in Figure 1, is fast and robust. Moreover,
it enables us to detect marked or not-marked road
and uses an on-board single monocular monochro-
matic camera.
The algorithm is composed of five steps : training,
road detection, localization and tracking. The 3D
reconstruction profile of the road is computed
after the localization. The approach is based on
a recursive recognition of the road sides (or road
lines) driven by a probabilistic model (vector X
and its covariance matrix CX ). X is composed of
18 image parameters (9 image x-coordinates for
the left road side/lines and 9 for the right, denoted
u) and of 5 three-dimensional parameters (lateral
vehicle position x0, vehicle steer angle ψ, camera
inclination angle α, lateral road curvature C and

road width L).
X = (Xd,Xl)

t where Xd = (u1l, ..., u9l, u1r, ..., u9r)t

and Xl = (x0,ψ,α, C, L)t.

CX =

⎛

⎝ CXd

...
... CXl

⎞

⎠ where CXd (resp. CXl) is a

covariance matrix of Xd (resp. Xl)

2.1 Training

It’s an off-line process. The goal is to compute
initial vector model X(0) and its covariance ma-
trix CX(0). To do that, Chapuis and al use a
simple 3D road model projected randomly a great
number of times in the image (following fixed
intervals). The equation of a road side/line in the
image is defined by:

u = eu[− evZ0

2(v − evα)
C +

v − evα

evZ0
(x0 + γ

L

2
) − ψ](1)

where

u, vare pixel coordinates in the image,
γ = 1 (left road side/line),
γ = −1 (right road side/line),

eu =
f

du
, ev =

f

dv
with f: focal distance of the camera,

du, dv: width and height of a pixel,
Z0is the height of the camera.

2.2 Road detection

The road detection procedure is iterative. After
the training step, an optimal interest zone is
chosen to initialize the algorithm (depth p = 0).
If a piece of road line or road side is found, the
model is updated according to equation (2) and a
new optimal zone is located (now depth p = p+1).
The process is finished when p = pf (pf = 9 in
our case) valid detections have been found.

{
Xd(p) = Xd(p − 1) + K[y(p) − x(p − 1)]
CXd(p) = CXd(p − 1) − KHCXd(p − 1) (2)

where

y(p)are measurement at depth p,
x(p − 1)are measurement at depth p − 1,
K = CXd(p − 1)Ht[HCXd(p − 1)Ht + R]−1,
Ris the covariance matrix of the detection error.

In order to obtain a fast algorithm, all the v
coordinates of the zones of interest are fixed and
the detector used to extract a piece of road side
or a road line is very simple. To obtain an optimal
precision when depth pf is reached, the algorithm
looks for remaining zones of interest could not
have been scanned yet.



2.3 Localization

Once we have found the road in the image, we
compute the new X(k) vector from which we
extract the Xl vector. The method uses the result
of road detection module X̂d(k) and the old X
vector.
{

X(k) = X(k − 1) + K[X̂d(k) − HX(k − 1)]
CX(k) = CX(k − 1) − KHCX(k − 1)

(3)

where

X̂d(k) = HX(k),
K = CX(k − 1)Ht[HCX(k − 1)Ht + CXd(k − 1)]−1.

2.4 Tracking

The goal of the tracking step is to obtain X(k+1)
and CX(k + 1) from X(k) and CX(k). This new
vector and its covariance matrix will be used to
initialize the first road detection step for the next
image of the sequence. Tracking stage takes into
account the displacement of the vehicle between
two images (calculation of Xl(k + 1)).
{

X(k + 1) = X(k) + K[Xl(k + 1) − Xl(k)]
CX(k + 1) = CX(k) − KHCX(k) (4)

where
Xl = HX
K = CX(k)Ht[HCX(k)Ht + CXl(k + 1)]−1.

3. ROAD MOTION ESTIMATION

The previous step enabled us to detect area R of
the image corresponding to the road. Road motion−→
V in image sequence I(u, v, t) is performed by
a wavelets analysis of the well known Brightness
Change Constraint Equation :

∀(u, v) ∈ R
−→∇I((u, v), t).−→V ((u, v), t) +

∂I((u, v), t)
∂t

= 0
(5)

where −→∇I((u, v), t) and ∂I
∂t ((u, v), t) are respec-

tively gradient and temporal derivative.
In this article, we modelize the road motion by
a 2D quadratic model with eight free parameters
(Lefaix et al., 2002). This model can exactly rep-
resent the road motion due to the car motion. Let
us note Θ = (a0, a1, a2, a3, a4, a5, a6, a7)T , the op-
tical flow −→

V Θ(u, v) at pixel (u, v). The quadratic
motion is given by :

−→
V Θ(u, v) = B(u, v)Θ ∀(u, v) ∈ R

B(u, v) =
[

1 0 u v 0 0 u2 uv
0 1 0 0 u v uv v2

]
(6)

Let us consider the wavelets basis (Ψn)i=1···N in
L2(R2) centered around the origin (0, 0), and let

us consider the N functions centered around point
(2−jk1, 2−jk2) defined as :

Ψn
jk(u, v) = 2jΨn(2ju − k1, 2jv − k2),

where k = (k1, k2) and j is the index of resolution.
Taking the inner product of (5) with Ψn

jk, we
obtain the following system :

⟨−→∇I.
−→
V +

∂I

∂t
,Ψn

jk⟩ = 0 ∀n = 1 · · ·N, (7)

where

⟨f, g⟩ =
∫ ∫

f(u, v)g(u, v)dudv.

That leads to :

∀n = 1..N

⟨∂I

∂u
V1,Ψn

jk⟩ + ⟨∂I

∂v
V2,Ψn

jk⟩ + ⟨∂I

∂t
,Ψn

jk⟩ = 0.
(8)

If we suppose −→
V quadratic at this resolution j

with Θj = (aj
0, a

j
1, a

j
2, a

j
3, a

j
4, a

j
5, a

j
6, a

j
7)T .

By substituting quadratic model (6) in system
(8) and by integrating it by parts, we obtain the
following system :

aj
0⟨I,

∂Ψn
jk

∂u
⟩ + aj

1⟨I,
∂Ψn

jk

∂v
⟩ + aj

2

[
⟨I, Ψn

jk⟩ + ⟨uI,
∂Ψn

jk

∂u
⟩
]

+

aj
3⟨vI,

∂Ψn
jk

∂u
⟩ + aj

4⟨uI,
∂Ψn

jk

∂v
⟩ + aj

5

[
⟨I, Ψn

jk⟩ + ⟨vI,
∂Ψn

jk

∂v
⟩
]

+

aj
6

[
⟨3uI, Ψn

jk⟩ + ⟨u2I,
∂Ψn

jk

∂u
⟩ + ⟨uvI,

∂Ψn
jk

∂v
⟩
]

+aj
7

[
⟨3vI, Ψn

jk⟩ + ⟨v2I,
∂Ψn

jk

∂v
⟩ + ⟨uvI,

∂Ψn
jk

∂u
⟩
]

= ⟨
∂I

∂t
, Ψn

jk⟩

∀n = 1..N, ∀(u, v) = (2−jk1, 2−jk2) ∈ R

(9)

So, at fixed resolution j, we obtain N equations
for each point (2−jk1, 2−jk2) ∈ R. We note this
system :

MjVΘj = Pj . (10)

3.1 Temporal aliasing

As the image sequence is sampled in time, we have
to estimate the temporal derivative of I with a
finite difference:

⟨∂I

∂t
,Ψn

jk⟩ ≃ ⟨I(t + 1) − I(t),Ψn
jk⟩ (11)

We can show (Bernard, 1998) that this approxi-
mation is valid if the optical flow verifies :

||−→v || < Cst.size of wavelets support (12)

So, at a fine scale, only the minor displacements
can be estimated. Consequently, to compute the
large displacements, we have to compute recur-
sively an estimation of the flow at a coarse scale



and estimate the residue between this value and
the real flow in a finer scale.
Let us suppose that in a coarsest scale j = J ,
the solution of (10) is ΘJ . At scale J + 1, we can
decompose vector Θ as follows :

Θ = PJ→J+1(ΘJ) + ΘJ+1 (13)

where Pj→j′ is the projection of the scale j on to
the scale j′:

Pj→j′(Θ) = (2j−j′
aj
0, 2

j−j′
aj
1, a

j
2, a

j
3

, aj
4, a

j
5, 2

j′−jaj
6, 2

j′−jaj
7)

T

and where ΘJ+1 is smaller than P(ΘJ ). Let us
introduce ĨΘJ (t + 1) :

Ĩ((u, v), t + 1) = I((u, v) + −→
V P(ΘJ ), t + 1). (14)

The dominant motion between I(., t) and Ĩ(., t+1)
is exactly VΘJ+1 .
So,ΘJ+1 is solution of system (10) where we
replace ⟨∂I

∂t ,Ψn
jk⟩ ≃ ⟨I(t+1)−I(t),Ψn

jk⟩ by ⟨Ĩ(t+
1) − I(t),Ψn

jk⟩. Then, we iteratively compute the
optical flow by motion compensation from the
coarsest scale at the finest scale.
Finally, we obtain an estimation of the dominant
motion at each scale of the resolution :

VΘj = B.(
J∑

j′=j

Pj′→j(Θj′
) + Θj) (15)

3.2 Robust estimation

To solve system (10) at N×2m+j×2n+j equations
for eight unknowns and ensure robutness in the
presence of independent motion, we use an M-
estimator of Tukey, we look for V̂Θj solution of
:

V̂Θj = argminV

∑
ρ(ri, C)

ri = Mj(i)V (i) − Yj(i)
(16)

with,

ρ(r, C) =

⎧
⎪⎨

⎪⎩

C2

6
(1 − (1 − (

r

C
)2)3) if |r| ≤ C

C2

6
else

This minimization is performed using an iterative
reweighted least squares procedure. This method
allows us to get a robust estimation of the domi-
nant motion at scale j.

4. OBSTACLE DETECTION

The previous step provides the road motion. As we
have no a priori knowledge about the obstacle, we

define an obstacle in the image as a set of pixels
which are not in accordance with the road motion.
To find these pixels, we can do a simple threshold.
However, because of the noise in the image and the
error of the optical flow estimation, this method
is not sufficient. For this reason, we opt for a
Bayesian template. But these methods are either
too long in time (stochastic methods) or too de-
pendent on initialization (determinist methods).
Here, we choose a new Bayesian modelization : a
hierarchical model (Pérez et al., 2000) which has
the advantage to be fast and not very dependent
on initialization.

Let us note S = ∪J
n=0S

n where Si indicates the
level i of the image resolution, E = {Es, s ∈ S}
and O = {Os, s ∈ S} respectively the random
field of the labels of the detected motion and the
random field of the observations. Es can take two
values, 0 or 1, where 0 corresponds to a site non
conform with the road motion and 1 to a site
conform with this motion. Let us note En the
whole of the labels at level n, i.e. En = {Es, s ∈
Sn} and in the same way On = {Os, s ∈ Sn}.
Finally, let us note i the parent of site i, i the
whole of the children of i, and i the whole of
the sites forming the tree of root i. Given this
graphical structure, the distribution of (E,O) can
be written :

P (E = e,O = o) ∝ exp − [
∑

<i,j>∈SJ

vi,j(ei, ej)

+
∑

i/∈SJ

wi(ei, ei) +
∑

i∈S

li(ei, oi)]
(17)

where < i, j > designates pairs of neighbors in
SJ , vi,j and wi are local functions capturing re-
spectively the spatial a priori and the hierarchical
a priori and li expresses the point-wise relation
between observed variable oi and the unknown ei.
The associated MAP estimator at this distribu-
tion :

ê ∈ argmaxeP (e|o) = argmaxeP (e, o) (18)

is computed from the semi-iterative algorithm de-
scribed in (Pérez et al., 2000). Let us note that the
algorithm is applied only to one coarse resolution
of the image where the data file is weaker. It
is why this algorithm is less sensitive to initial-
ization than a simple algorithm of deterministic
minimization on the whole of the image.
Let us now interest to the field known on the
image, called observations Y .

4.1 Observations

At a fixed scale j, we pose:

E(j, k,Θj) =
N∑

n=1

|⟨−→∇I.
−→
V Θj +

∂I

∂t
,Ψn

jk⟩|2 (19)



We can show that : ∀ϵ > 0
E(j, k,Θj) ≤ λ1.ϵ⇒ ||VΘj − Vjk|| ≤ ϵ
E(j, k,Θj) ≥ λ2.ϵ⇒ ||VΘj − Vjk|| ≥ ϵ.
where Vjk is the real flow at scale j at the
point (2−jk1, 2−jk2) and λ1, λ2 respectively the
smallest and the greatest eigenvalue of

A =

⎛

⎜⎜⎜⎜⎝

N∑

n=1

|⟨I,
∂Ψn

jk

∂u
⟩|2

N∑

n=1

⟨I,
∂Ψn

jk

∂u
⟩⟨I,

∂Ψn
jk

∂v
⟩

N∑

n=1

⟨I,
∂Ψn

jk

∂u
⟩⟨I,

∂Ψn
jk

∂v
⟩

N∑

n=1

|⟨I,
∂Ψn

jk

∂v
⟩|2

⎞

⎟⎟⎟⎟⎠
(20)

We will note λ1.ϵ (resp. λ2.ϵ), ljk (resp. Ljk).
Consequently, E(j, k,Θj) translates the error
made by approaching the real optical flow at point
(2−jk1, 2−jk2) by VΘj . If E(j, k,Θj) ≤ ljk, we
can affirm that the error is smaller than ϵ and
if E(j, k,Θj) ≥ Ljk, the error is larger than
ϵ. This error will enable us to judge if point
(2−jk1, 2−jk2) follows the dominant motion.

4.2 The choice of potentials

For the space and hierarchical potentials, we
choose a priori classical functions of Potts :

vi,j(ei, ej) = α[1 − δ(ei, ej)],

wi(ei, ei) = β[1 − δ(ei, ej)].

These potentials favour the labels field of detec-
tion being homogeneous in space and in scale.
Energy li is defined by :

∀i = (2−jk1, 2−jk2) ∈ Sj

li(ei, ei) =⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
1 + exp(E(j, k,Θj) − ljk)

if ei = 0

1 − 1
1 + exp(E(j, k,Θj) − Ljk)

if ei = 1

This potential encourages the sites to take label 1
(conform to motion dominant) in the case where
E(j, k,Θj

D) ≤ ljk and to take label 0 (non conform
to motion dominant) if E(j, k,Θj

D) ≥ Ljk.

5. RESULTS

For our experimentations, we use 360×280 (high-
ways images) and 256 × 256 (other road images)
pixel image size. The used camera has a focal
length of f = 11.48mm and its position is on the
top of the vehicle (Z0 = 2.32m). This high posi-
tion authorizes a 3D shape road reconstruction of
one hundred meters in front of the vehicle.
For the training step, because we have two
types of images (highways sequences(h.) and other

(a) (b)

Fig. 2. Initial search zone obtained after the train-
ing step for highways (a) and semi-marked
roads (b).

(a) (b)

Fig. 3. Detection road result for highways and 3D
projected model with different conditions.

roads sequences (r.)), we use two sets of data :
α(deg.) ψ(deg.) C (m−1) L (m) x0 (m)

µ(h.) 4.5 0 0 4 2
µ(r.) 0.9 0 0 3.5 1.75
σ(h.) 0.5 3 0.0001 0.5 2
σ(r.) 0.5 3 0.005 0.5 1.75

In Figure 2, training results are shown. Horizontal
limits of the search zone are a priori fixed and
represented as white lines. We can see the eight
trapezoidal zones of interest found for the left road
side/line (fine black line for both vertical limits)
and the right road side/line (large black line).
In Figures 3 and 4, we can see both recognition
results (large black line) of the road detection
module and a 3D projected model (fine black line)
of the road after the localization step. For all
types of road, in most situations, the number of
valid detected segments is never lower than 11 in
spite of obstacles or road occlusions. Concerning
the projected model, the errors made in the es-
timation of curvature parameter C and vertical
angle camera α at localization stage introduce an
error on the road localisation in the upper part
of the image. Nevertheless, this approximation is
sufficient for our application. For the parameters
of the hierarchical model, we fix α = 8, β = 100.
In the highway sequence, error ϵ = 2 and in road
sequence ϵ = 1.2.
In Figures 5 and 6, we can see the results of the
obstacle detection where the rectangles include
the dense areas detected as obstacles. Generally
we detect the obstacles correctly. In the highway
sequence (Fig 5), the vehicle in the foreground,
and in the road sequence (Fig 6), the truck are
correctly detected. But for example, in the image
t = 31 in the highway sequence, we do not de-



(a) (b)

Fig. 4. Detection road result for semi-marked
roads and 3D projected model.

(a) (b)

(c) (d)

Fig. 5. Obstacle detection on the highway se-
quence. α = 8, β = 100, ϵ = 2. (a) t = 10, (b)
t = 15, (c) t = 31, (d) t = 59.

(a) (b)

Fig. 6. Obstacle detection on the road sequence.
α = 8, β = 100, ϵ = 1.2. (a) t = 66, (b)
t = 70.

tect the vehicles in the background. It’s because
these vehicles are too far and at this distance the
difference between their real velocity in the image
and the road motion is lower than ϵ. To solve this
problem, we will incorporate in a future work a
tracking of the labels field in time.

6. CONCLUSION AND FUTURE WORKS

In this work, a vision technique for obstacle de-
tection has been proposed. The originality of this
work lies in the exploitation of motion to obtain a
robust search and tracking of moving obstacles.
Initially, the road is detected in the sequence

through a recursive algorithm with a probabilistic
road model. A second phase based on motion
analysis is performed using wavelets approach and
a Bayesian hierarchical model. This vision system
is fast and robust. Indeed, the tests have proved
that it is possible to detect any obstacle on the
road in presence of shadows, occlusions or varying
illumination conditions. However, in future works
it will be interesting to add a tracking of the labels
field in time in order to limit the number of false
alarms and especially to detect obstacles in the
background.
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