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We reply to the preceding Comment that attempts to clarify the connection between chaos and entanglement
exposed in our previous paper [Phys. Rev. E 83, 016207 (2011)]. We present additional computations that show the
argument exposed in the Comment to explain the entangling power of some regular states is not important in the
present case. More fundamentally we argue that the example chosen in the Comment is not the most significant in
order to understand why specific regular dynamics can entangle as efficiently as when the corresponding classical
dynamics is chaotic.
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The quantum-classical correspondence is a fascinating
topic. In the past decades, semiclassical tools have al-
lowed for interpreting the dynamics and spectral statistics of
quantum systems in terms of phase-space properties of the
corresponding classical system [1]. Classical systems with
chaotic dynamics have specific signatures in quantum systems,
different from classical systems with regular dynamics. These
signatures are universal and hold for generic quantum systems
(there are departures from universality, but these departures
are also well understood in semiclassical terms).

Whether there are such types of signatures ruling the
generation of entanglement has remained inconclusive. The
main reason is that entanglement is a specific quantum property
with no classical counterpart. From the classical viewpoint,
several classical features can quantum mechanically give
rise to entanglement. Although an interaction between two
particles is common to all the works that have been performed
so far, the role of this interaction with regard to the dynamics
of the uncoupled particles has taken many forms. Although
some general trends can be expected—in particular, chaotic
dynamics will tend to be correlated with high quantum
entanglement—it is unlikely that strong universal statements
as the ones mentioned above for spectral statistics can be
formulated for entanglement.

In a previous work [2], to be labeled as KT, we investigated
entanglement in the quantum kicked top as a function of the
dynamics of the classical kicked top. Previous results [3,4]
suggested that entanglement generation in the quantum top is
correlated with chaos in the classical counterpart and that,
at least in this system, entanglement could be seen as a
signature of chaos. On the other hand our own works [5,6]
on a more general two-particle top (that yields the standard
kicked top as a limiting case) indicated that entanglement
dynamics did depend on classical phase-space properties but
in a specific and system-dependent manner rather than in a
universal fashion. Although the two-particle top has more
complex richer dynamics than the kicked top, our findings
in KT were in line with the results for the two-particle top,
displaying regular states with a high entangling power. Notice
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that several other authors (e.g., Refs. [7–9]) investigating
systems other than the simple kicked top have also concluded
that large entanglement can occur in nonchaotic cases.

In the accompanying Comment on KT [10], Madhok makes
two points. (i) First, he discusses a specific example given in
Fig. 9 of KT where, in a mixed phase-space situation, we had
compared the entanglement for initial states lying in regular
and chaotic regions. Madhok argues that in mixed phase space,
regular states will tend to flood the chaotic sea (and gives an
illustration of this effect), so it is not appropriate to attribute the
dynamical evolution and the ensuing entanglement generation
to regular dynamics. (ii) Second, Madhok takes a single initial
coherent state and varies the coupling κ , going from regular
to chaotic classical dynamics; he then shows that the time-
averaged entanglement increases with κ .

Concerning point (i), we start by noting that the mixed
phase-space illustration portrayed in Fig. 9 of KT is not the
most compelling of our examples displaying entanglement
with regular states and dynamics. For the modified kicked
top, Figs. 7 and 9 of Ref. [6] show initial regular states
evolving with pure regular dynamics entangling as efficiently
as states evolving in a fully chaotic regime. Figures 4 and 6 of
KT also illustrate entanglement in a regular regime reaching
maximal entanglement (in a slower time but staying longer
at maximum entanglement). From the point of view of the
quantum-classical correspondence, mixed phase is notoriously
more difficult to deal with than the integrable and fully chaotic
limits (see, e.g., Sec 8.12 of Ref. [1]).

Although the argument given in the Comment concerning
the flooding of the wave packet in the regular island onto the
chaotic sea, or the blurring due to the finite size of Planck cells
is cogent, it remains to be shown that the associated effects
are at play. This does not seem to be the case. Indeed, recall
the linear entropy S2(t) employed to quantify entanglement is
given by

S2(t) = 1

2
− 1

2J 2
(〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2), (1)

where J is the angular momentum. Although 〈Ji〉2 should
be small in order for S2(t) to be large, the behavior of the
quantum averages 〈Ji〉 is also an indicator of the wave packet
distribution. In the case of Fig. 9, 〈Jx〉 is particularly relevant
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FIG. 1. (Color online) Average of the angular momentum pro-
jection Jx(t) for a kicked top with Te = 0.95 and k = 5 when the
initial distribution is in the chaotic region shown in Fig. 9 of Ref. [2].
Compare with the evolution of Jx(t) when the initial distribution lies
in the regular region, shown in Fig. 10 of Ref. [2].

(the x axis crosses the Poincaré sphere at the center of the
large regular island). As can be inferred from Figs. 9(d)–9(f),
when the initial state is in a regular region, most of the classical
distribution remains in the island, thereby encircling the x axis.
This is reflected in 〈Jx〉, shown in Fig. 10 of KT, that remains
positive and mostly confined in the interval 1 � 〈Jx〉 � 4,
consistent with an evolution of most of the quantum wave
packet around the x axis. On the other hand, when the initial
state is in the chaotic sea the classical distribution spreads
throughout the chaotic sea [Figs. 9(a)–9(c)]. The quantum
average 〈Jx〉, not given in KT, is shown in Fig. 1 of the present
Reply: It lies in the interval −6 � 〈Jx〉 � 1 at the back of the
sphere and hence away from the main regular region.

The comparison of 〈Jx〉 in the two cases is not consistent
with the idea of substantial flooding since in that case we would
expect 〈Jx〉 to display after a few kicks a similar behavior
for wave packets lying initially in regions associated with
classical regular and chaotic dynamics. In contrast, in the
example given in Fig. 1 of the Comment, the initial state is
closer to the edge of the regular island, and a non-negligible
fraction of the initial distribution lies in the chaotic sea. Note
that for the two-particle top, a similar mixed phase-space
situation was examined [11] for higher quantum numbers
(J = 100); no substantial flooding can be inferred from the
results given in Figs. 2(a) and 2(b) of Ref. [11], which show
S2(t) for states evolving in a regular island and the chaotic sea,
respectively (the corresponding Poincaré surfaces of section
are given in Figs. 3(a)–3(c) of Ref. [11]), and compare S2(t)
with the classical counterpart (the mutual information obtained
from classical distributions). The agreement between S2(t) and
the classical mutual information in Ref. [11] indicates that
finite � and edge effects are not important enough to affect, to
first order in �, the quantum-classical correspondence.

At any rate, it is important to stress that pure regular
dynamics (i.e., without any possible edge effects) achieves
high entanglement in the kicked top. We display here in
Fig. 2(a) a case similar to Fig. 9 of KT but with a coupling k

reduced from 5 to 1 and larger quantum numbers (J = 100).
The resulting phase space is nearly entirely regular, being
filled with Kolmogorov-Arnold-Moser (KAM) tori seen here
as trajectories on the sphere. We highlight two of them, the
separatrix (in red), and a particular trajectory on which we
will launch a wave packet (in green). Notice first that chaos
is negligible for k = 1. As usual chaos will start from the
separatrix to become sizable for larger values of k as in

FIG. 2. (Color online) Case (a) Poincaré surface of the section (top: view of the front of the sphere and bottom: back of the sphere) for
Te = 0.95 as in Fig. 9 of Ref. [2], but k = 1. The separatrix is shown in red, and a particular KAM torus is shown in green. (b) Initial Husimi
distribution, centered on the KAM torus shown in green in (a). (c) After 40 000 iterations, well above all needs: The distribution spreads over
the green KAM torus without any sizeable crossing of the separatrix.
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FIG. 3. (Color online) (Top) Averages of the angular momentum projections of �J (t) for a kicked top with J = 100, Te = 0.95, and k = 1,
corresponding to Fig. 2 for short times. (Bottom) S2(t) for short and long times.

Fig. 9 of KT. As is well known [12], the KAM tori fill
nearly all the phase space when k → 0, and in dimension
2 + 1 they act as barriers for classical trajectories. We
then launch a Husimi packet initially centered on the chosen
trajectory (green), which is away enough from the separatrix
to give a negligible overlap at t = 0 between the exponentially
decreasing tail of the distribution and the separatrix. We see
that after 40 000 iterations (we have checked up to more than
106) the distribution remains confined between the trajectories
which limit it at t = 0. There is no flooding across the
separatrix. Semiclassically this is an obvious consequence of
the containment of the classical trajectories, and we see that
this remains valid for the corresponding quantum calculation.

We then display in Fig. 3 the evolution of the averages
〈Ji〉 and of the linear entropy S2(t) employed to quantify
entanglement, which starts from zero to attain nearly 0.5, i.e.,
a fully entangled value, after a few hundred kicks.

The results immediately follow from Eq. (1). If a small
wave packet is launched from the center of a regular island,
it remains fixed on a point of the sphere, and the averages
〈Ji〉 are nearly equal to their center value as a point on the
sphere so that the second term of Eq. (1) is equal to the first
and S2 ∼ 0. This will be valid each time the wave packet
will be of the limited (small) size allowed by the high value
of J . For the evolution at hand, we see following the green
line, first that Jx(t) starts from a small negative value and
oscillates between negative and positive values with a small
positive average value. Then the wave packet spreads along
the torus. The averages 〈Ji(t)〉 become roughly equal to a
uniform distribution averaged on this strip. S2(t) then goes to a
limiting (constant) value near 0.5, depending on the geometry
of this strip. For longer times there are periodic “revivals”
when the packet returns to some concentrated shape as could
be supposed from the local concentrations for long times in
Fig. 2. But this is increasingly unlikely so that S2(t) tends to its

limiting large value. Maximal entanglement is hence achieved
without flooding playing any role.

Finally, notice the similarity of this explanation with that
given at the end of Sec. IV A of KT for the case regular
at resonance. In this latter case there is no separatrix, phase
space is homogeneously regular, but the phenomenon is the
same. Simply the shape of the strip elongated along a KAM
torus is different. These shape considerations seem relevant,
whereas presence or absence of chaos plays no role. It seems
that presence of chaos is relevant only as far as full chaos
implies occupation of a strip extended to the whole sphere.
But it does not give a larger S2(t) than a simple strip with
minimal width so that one cannot deduce any amount of chaos
from a large value of S2(t).

Concerning point (ii), we first remark that if the take-home
message of this point is that “generically regular classical
dynamics will tend to be correlated with lower quantum
entanglement than when the classical dynamics is chaotic,”
we fully agree—this citation is precisely copied from Sec. V
of KT. Actually it is known that states that are quantum
chaotic (in the sense of random matrix theory) will display
near maximal bipartite entanglement [13]. On the other hand,
we remain skeptical that the terms “universal signature of
chaos,” employed without a restrictive definition, convey this
meaning (in particular, these terms have been employed in the
past to correlate entanglement with chaos in definite situations
involving the evolution of a single initial state for a given
kicked top with fixed dynamics, not by averaging over families
of initial states or different kicked tops). We are also not
convinced that choosing a fixed distribution on the sphere
and computing the time-averaged entanglement for different
kicked tops characterized by increasing values of κ as shown in
Fig. 2 of the Comment is significant. At the very least, averages
over the initial states must be taken (this was subsequently
performed in the Comment).
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But even when averaging over the sphere (of specific
regions thereof), two important issues should be kept in
mind. First, the functional form of the initial state will be
crucial, not when the dynamics is uniform over the sphere
(i.e., in the chaotic limit), but when the dynamics is regular.
Indeed, choosing coherent states as initial distributions is rather
arbitrary—in our modified kicked tops, it is physically more
meaningful to choose slices of the sphere as initial states
(as illustrated, e.g., in Fig. 3 of Ref. [11]). Averaging over
the sphere employing these slices or coherent states will not
give the same result when the dynamics over phase space is
not uniform. Note that in order to circumvent this problem,
intrinsic state-independent measures of the entangling power
of unitary operators have been proposed [8]. The second
issue concerns the entanglement of the eigenstates, which is
intrinsic (in the sense that they are not relative to choices of
initial distributions). In the chaotic regime, the eigenstates will

tend to display high entanglement. In the regular regime, the
structure of phase-space is highly correlated with the degree of
entanglement. This was nicely illustrated in Fig. 5 of Ref. [6]
in the case of the two-particle kicked top: For a fixed value of
κ corresponding to regular dynamics, phase space is modified
when the period of the kick and the period of the kicked particle
become resonant; at resonance, many eigenstates are as highly
entangled as eigenstates in the chaotic regime.

To conclude, we stay firm with our previous findings
according to which entanglement is not a clear-cut signature
of chaos as compared for example to the signatures of the
classical dynamical regime visible in the spectral statistics of
the quantum system. Notwithstanding, it would be valuable to
pursue the work undertaken in the preceding Comment [10]
in order to bring out whether there exist situations for which
entanglement could be taken as a nonambiguous indicator of
chaos.
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