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We report on the observation of suppression and revival of coherent backscattering of ultra-cold
atoms launched in an optical disorder in a quasi-2D geometry and submitted to a short dephasing
pulse, as proposed in T. Micklitz et al., Phys. Rev. B 91, 064203 (2015). This observation
demonstrates a novel and general method to study weak localization by manipulating time reversal
symmetry in disordered systems. In future experiments, this scheme could be extended to investigate
higher order localization processes at the heart of Anderson (strong) localization.
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Weak localization is a fundamental phenomenon in
mesoscopic physics. It arises from constructive inter-
ferences between time-reversed multiple scattering paths
that modify the transport properties of (matter) waves
in disordered media. For electronic systems, these inter-
ferences increase the probability that an electron remains
around its initial position, thereby acting against propa-
gation and resulting in an increased resistivity [1–3]. In
AMO physics, these interferences lead to the coherent
backscattering (CBS) phenomenon [4, 5], that is an en-
hancement of the scattering probability in the backward
direction when a plane wave is launched into a disor-
dered medium [see Fig. 1(a)]. This was first observed
with light [6–8], and then with a large variety of classical
waves (see e.g. [9] and references therein).

Weak localization is extremely sensitive to any pertur-
bation of the time reversal symmetry of the wave prop-
agation [10]. For electrons, it is therefore suppressed in
the presence of spin-orbit coupling or magnetic impuri-
ties [11], or when a time dependent potential is applied
to the system (e.g., using high frequency rf fields) [12]. In
turn, the controlled manipulation of time reversal sym-
metry provides direct signatures of phase coherence in
condensed matter physics. Electrons are sensitive to ex-
ternal magnetic fields, which induce, via the accumu-
lated Aharonov-Bohm phase, a dephasing between the
counter-propagating paths responsible for weak localiza-
tion. Depending on the geometry, this leads either to
the magneto-negative resistance effect in thin metallic
films [3], or to the oscillations of the resistivity in thin
walled cylinders [13]. In direct analogy, the suppression
of CBS under time reversal symmetry breaking has been
studied with classical waves, as for instance with acoustic
waves in a rotating medium [14], with light in a Faraday
medium [15, 16] or recently in a disordered medium sub-
jected to an ultrafast modulation [17].

In this letter, we use neutral ultracold atoms to demon-
strate a novel method, as proposed by T. Micklitz and
coworkers [18], to manipulate time reversal symmetry

and study weak localization. In our system, the atoms
propagate in an optical disordered potential in a quasi-2D
configuration. CBS manifests itself as a backward peak in
the momentum distribution of the scattered atoms [19–
21]. Time reversal symmetry is broken by applying, at a
chosen time T , a quasi-instantaneous dephasing kick on
the atoms. Following this kick, we observe the suppres-
sion of the CBS peak, except for a revival that happens at
time 2T . This revival constitutes a new direct signature
of phase coherence in disordered systems.

The principle of the suppression and revival effect is
illustrated in Fig. 1, where we consider atoms with ini-

FIG. 1. Principle of CBS suppression and revival
following a dephasing kick. (a) CBS results from the
constructive interference between the scattering amplitudes
of direct (1, solid line) and reciprocal (2, dashed) multiple
scattering paths, for a plane matter wave launched with a
wave vector ki and detected in the backward direction, at
kf = −ki. The time diagram shows the switching on at 0,
and off after time t of the disordered potential (amplitude
VR). (b) CBS suppression: A pulsed perturbation at time
T 6= t/2 entails a phase difference [φkick(r1) 6= φkick(r2)] be-
tween the amplitudes associated with paths 1 and 2, where
r1 and r2 are the positions on each path at time T . The con-
structive interference is destroyed. (c) CBS revival: For the
special case T = t/2, one has r1 = r2 and the constructive in-
terference between the direct and reciprocal paths is restored.
A CBS revival is then expected at t = 2T .
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tial momentum ~ki, launched into a disordered potential
at time t = 0, and whose momentum distribution is ob-
served at time t. In the absence of any perturbation, the
constructive interferences between counter-propagating
multiple scattering paths lead to an enhancement of the
scattering probability towards kf = −ki [Fig. 1(a)]. That
is the CBS peak. At a chosen time T during the prop-
agation in the disorder (0 < T < t), we apply an in-
homogeneous potential V (r) on the atoms [Fig. 1(b)],
for a duration ∆t short enough that the perturbation
can be considered as an instantaneous kick. It imprints,
on each multiple scattering amplitude, a local phase
φkick(r) = V (r)∆t/~ that depends on the position of
the atom r at the time T [22]. It also entails a mo-
mentum change ~∆k = −∇V (r)∆t. If this change is
small, one can neglect the subsequent modifications of
the atomic trajectories. The overall effect of the kick
is then to introduce a controlled dephasing between the
counter-propagating paths [23],

∆φkick = φkick(r2)− φkick(r1) = ∆k · (r2 − r1), (1)

where ∆k will be referred to as the strength or the am-
plitude of the kick. r(1,2) correspond to the respective
positions of the atoms on each path at time T . In gen-
eral, these two positions are separated in space, and the
dephasings ∆φkick are finite. The averaging of these de-
phasings over all possible multiple scattering paths leads
to the suppression of the CBS peak.

If, however, the kick is applied at T = t/2, the two
positions r1 and r2 always coincide [Fig. 1(c)], so that
the dephasing in Eq. (1) is null and the constructive in-
terference between the counter-propagating paths is re-
stored. Altogether, we therefore expect a suppression of

FIG. 2. Generalization of the revival mechanism for
strong momentum changes. All multiple scattering paths
that participate to the momentum distribution at kf = −ki

must conserve the modulus of the momentum at the kick:
|k(T+)| = |k(T−) + ∆k| = |k(T−)|, where T− and T+ are the
times just before and after the kick (see inset). For the ob-
servation time t = 2T , each direct path (solid line) satisfying
that condition has a time-reversed counterpart (dashed line)
satisfying the same condition, and for which the momentum
change happens at the same position. The constructive in-
terference between these reciprocal paths leads to the CBS
revival at kf = −ki, ideally with a contrast of unity.
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FIG. 3. Experimental Setup. (a) and (b): A cloud
of ultracold atoms (orange disk) is launched upwards, along
the z axis, with an initial momentum ~ki. The disordered
potential is created by an anisotropic laser speckle, elongated
along the x axis, obtained by passing a laser beam through
a scattering plate (shaded blue). The atoms are suspended
against gravity by magnetic levitation provided by the pair
of large coils (yellow). The small red coil is used to create a
magnetic gradient pulse resulting in a downward momentum
change ~∆k, along the z axis, to the atoms. After a time of
flight of 150 ms, fluorescence imaging recorded by an EMCCD
camera along x gives the transverse momentum distribution
(in the y−z plane, see text). (c) 3D false color representation
of the disordered potential.

the CBS peak after the kick, except for a revival at time
t = 2T [18]. In general terms, this revival can be traced
back to the brief re-establishment of the time reversal
symmetry around the time 2T .

Let us note that the discussion above, valid for a small
momentum change as considered in [18], can be general-
ized to the case of a strong momentum change, where the
modifications of the atomic trajectories at the dephasing
kick have to be taken into account (see Fig. 2). A CBS
revival, at kf = −ki and time t = 2T , is then expected
whatever the kick’s strength.

The experimental set-up, sketched in Fig. 3, has been
described in [20]. A salient feature is the ability to launch
into the disorder a “quasi-monochromatic” cloud of non-
interacting neutral atoms, i.e., an ensemble of atoms with
a narrow velocity spread. The cloud, containing 105

87Rb atoms is prepared in the paramagnetic hyperfine
Zeeman sub-level |F = 2,mF = −2〉, allowing us to ex-
actly compensate gravity [24]. The atoms are launched
along z with a mean velocity of vi = 3.09 ± 0.04 mm/s
(ki = 4.24 µm−1, where k = mv/~ and m is the atom
mass), and a velocity spread of 0.18 ± 0.02 mm/s. At
t = 0, we switch on an anisotropic speckle field, elon-
gated along the x axis, created by a far off resonance laser
(wavelength 532 nm) [25, 26]. The resulting disordered
potential has correlation lengths much shorter in the y-
z plane than in the x direction (σy = σz = 0.27 µm and
σx = 1.40 µm HWHM), so that the situation can be con-
sidered 2D for atoms launched in the y-z plane [20]. At
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FIG. 4. Observation of the CBS revival. The images represent the 2D k-vector distribution in the y − z plane, n(k, t).
Each image results from an average over 30 experimental runs and the color scale is kept unchanged, except for the first two
images in (a). (a) Initial evolution of n(k, t) for atoms launched at t = 0 in the disorder with momentum ~ki. The initial peak
at ki decays while the atoms’ k-vectors are redistributed on a ring of radius |ki|, and the CBS peak grows at −ki. (b) and
(c): Evolution for t > T , without and with the dephasing kick at T = 1 ms. The dashed circles are centered on the origin, and
have a radius |ki|. The amplitude of the kick ∆k is measured from the first image in (c). The rectangular boxes below each
image show the extracted coherent fraction Ccoh(k, t) around −ki (see text). (d) and (e) Coherent fractions around −ki, as in
(b) and (c), but renormalized by the reference CBS peak at the same time (see text).

time t, the disorder is switched off and the 2D atomic ve-
locity distribution [or equivalently the k-vector distribu-
tion n(k, t) with k in the y-z plane] is recorded by fluores-
cence imaging, along the x axis, after a long free expan-
sion time of 150 ms permitted by the gravity compensa-
tion. Taking into account the initial size of the cloud, the
overall resolution is estimated to be ∆kres = 0.3 µm−1.

The dephasing kick described above is created by
a pulsed magnetic gradient B′kick(t) along the z axis
(Fig. 3), for a typical duration ∆t ∼ 35 µs. It imposes
an inhomogeneous potential V (z) = −µBB

′
kickz where

B′kick ∼ −100 G/cm. The precise amplitude ∆k of the
kick is directly measured in the experiment (see below).

Figure 4 shows the evolution of the k-vector distribu-
tion when atoms are subjected to the disordered poten-
tial, with or without the dephasing kick applied. The
average disorder amplitude is set to VR/h = 660 Hz [27].
Panels (a) and (b) correspond to the reference case, i.e.,
when no kick is applied (∆k = 0). In the beginning, the
initial peak centered at ki decays, while the momenta
are redistributed on a ring of mean radius |ki| (elastic
scattering). Monitoring that decay and the isotropiza-
tion of the momentum distribution, we infer the mean
scattering time τs = 0.22 ms and the transport time
τ? = 0.6 ms [28]. After a few scattering events the CBS
peak develops around kf = −ki and becomes clearly vis-
ible at t = 1 ms. As explained in [20], we observe a de-
crease of the contrast of the CBS peak for longer times,
which can be attributed to two reasons. Firstly, the CBS
peak width becomes smaller than the experimental reso-
lution. Secondly, after a few scattering events the proba-
bility for an atom to scatter out of the y-z plane becomes
significant. As a consequence, the observation time of the
CBS peak dynamics is limited to about 6 τ? (3.5 ms) in

our experiment.

Panel (c) of Fig. 4 shows the evolution of the mo-
mentum distribution after the dephasing kick, with the
connected momentum change ~∆k along z, is applied.
The whole k-vector distribution, including the CBS peak,
is suddenly shifted downwards (first image) by ∆k =
−3.44 ± 0.3 µm−1 (∆k ∼ −0.8 ki). Then the mo-
menta are redistributed by elastic scattering, and, after
a large enough number of scattering events, the momen-
tum distribution tends towards a broad, isotropic distri-
bution. During that process, the CBS peak is rapidly
suppressed [29].

As discussed above, a revival of the CBS peak is ex-
pected to appear at t = 2T = 2 ms around kf = −ki, on
top of an incoherent background. In order to reveal it,
we first estimate the incoherent background nincoh(k, t)
by performing a quadratic fit of the distribution outside
a rectangular box centered on −ki and further extrapo-
lating it into that box. The coherent fraction, defined
as Ccoh(k, t) = [n(k, t)− nincoh(k, t)]/nincoh(k, t), is then
extracted. Panel (e) shows that coherent fraction after
application of the kick, hereafter referred to as Ckick(k, t)
[for comparison, the coherent fraction in the absence of
the kick, Cref(k, t), is shown in (d), and in both panels the
coherent fractions are normalized by Cref(−ki, t)]. A clear
revival of the CBS peak is observed around t = 2 ms, a
striking evidence of the predicted phenomenon.

Figure 5 shows the temporal evolution of the
revival, whose amplitude is defined as γrev(t) =
Ckick(−ki, t)/Cref(−ki, t), for several values of the kick
time T and the same kick strength ∆k. In all cases,
a revival is observed around the expected 2T time, with
a contrast of about 60%. We suspect that spurious mag-
netic fields, due to eddy currents that are excited by the



4

FIG. 5. Amplitude of the CBS revivals γrev(t) for var-
ious choices of the dephasing times T . The data points

nagp correspond to T = 0.7, 1.0, 1.3, and 1.6 ms respec-
tively, the kick’s strength ∆k being fixed (same as in Fig. 4).
The dotted vertical lines indicate the times 2T when the re-
vivals are expected. Solid lines are Gaussian fits with zero
offset. The observed revival times, determined by the fits,
are respectively (in ms): 1.3 ± 0.08, 1.99 ± 0.08, 2.65± 0.05
and 3.18± 0.09, in good agreement with the predicted values.
Uncertainties correspond to the 95% confidence intervals.

magnetic pulse used to kick the atoms, are responsible for
the reduced contrast of the revival. The revival shape is
well fitted by a Gaussian with almost the same rms width
for all cases, about ∆τrev = 0.28± 0.04 ms.

We render an account of the shape and the width of the
revival peak by considering the phase difference ∆φkick

between the counter-propagating scatterings paths given
by Eq. (1). The amplitude of the revival at kf = −ki is
expected to vary as γ(t) = 〈exp[i∆φkick(R)]〉, where the
brackets indicate a statistical average over the separation
R(t) = r1 − r2, for T fixed. This separation is null at
t = 2T , so that γ(t) = 1, i.e. the revival peak is maximal.
For t 6= 2T , R(t) is the distance corresponding to the
propagation of the atoms in the disorder for a duration
|t− 2T |.

If this propagation was a fully developed random walk,
the distance R(t) would have a Gaussian distribution,
with variance 〈R2〉 = 2D|t − 2T |, where D = v2

i τ
?/2

is the diffusion constant. The amplitude of the revival
would then be

γdif(t) = e−∆k2〈R(t)2〉/2 = e−∆k2D|t−2T |. (2)

This formula is identical to the one derived by Micklitz et
al. [18]. It predicts a profile with a symmetric exponen-
tial shape, of half-width (at 1/e) ∆τdif = [D∆k2]−1 ∼
0.03 ms for our parameters. It does not correspond to
our observation of a Gaussian shape (see Fig. 5), with a
width one order of magnitude larger.

Actually, in our experiment, the hypothesis of a fully
developed random walk is not fulfilled at the short time
scale characterizing the revival width, which is on the
order of a few scattering time τs. A similar failure of
the diffusive hypothesis was already observed in [20] and
we had rendered an excellent account of the observation
at short times by using an effective ballistic dynamics,

derived from [30], in which 〈R2〉 = (vi|t−2T |/3)2. Using
the same ansatz here, we obtain a Gaussian expression
for the CBS revival profile:

γbal(t) = e−(t−2T )2/2∆τ2
bal , where ∆τbal =

3

|∆k|vi
. (3)

For our parameters, one has ∆τbal = 0.28 ms, in striking
agreement with the observations. In a series of supple-
mentary measurements, we have varied the strength of
the kick ∆k, and the revival widths were found in good
agreement with expression (3) [31].

In conclusion, we have demonstrated experimentally a
new method to break and restore time reversal symme-
try in a disordered medium, resulting in the suppression
and revival of the CBS peak. This observation provides
an indisputable signature of weak localization and could
be observed with any kind of waves. For cold atoms, it
could for instance serve to differentiate CBS from clas-
sical echoes as reported in [21]. It could also be imple-
mented differently, for instance by kicking the disordered
potential itself, or with any kind of inhomogeneous ex-
ternal potential. It would be interesting to compare it to
schemes using time dependent potentials [32], or artificial
gauge fields developed for neutral atoms [33]. Finally,
extending the scheme to multiple kick sequences opens
new prospects to study Anderson (strong) localization in
a renewed perspective [18]. Depending on the chosen se-
quence, suppression and revival of both the CBS and of
the expected coherent forward scattering peak [34] could
be observed and used to investigate higher-order mech-
anisms at the heart of Anderson localization. Such ob-
servations would ideally complement previous studies of
Anderson localization with ultracold atoms [35, 36].

We thank T. Micklitz, C. Müller and A. Alt-
land for their private communication of their proposal
of [18]. Our research was supported by ERC (Advanced
Grant “Quantatop”), ANR (DisorderTransitions), DGA,
Région Ile de France (IFRAF) and Institut Universitaire
de France.
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and C. Miniatura, Phys. Rev. A 85, 011604 (2012).
[20] F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plis-

son, P. Bouyer, A. Aspect, and V. Josse, Phys. Rev. Lett.
109, 195302 (2012).

[21] G. Labeyrie, T. Karpiuk, J.-F. Schaff, B. Grémaud,
C. Miniatura, and D. Delande, Europhys. Lett. 100,
66001 (2012).

[22] We use a WKB-like approximation to calculate the phase
of the scattering amplitude along a scattering path.

[23] We consider in Eq. (1) the case of a potential gradient
uniform at the scale of the atomic cloud, as it is the case
in the experiment.

[24] We use the magnetic dipole force, created by a vertical
magnetic field gradient, to compensate gravity.

[25] D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-
Palencia, A. Aspect, and P. Bouyer, New J. Phys. 8,
165 (2006).

[26] J. W. Goodman, Speckle phenomena in optics: theory

and applications (Roberts and Co, Englewood, 2007) p.
610.

[27] For laser speckles the average value of the disorder coin-
cides with its standard deviation [26].

[28] T. Plisson, T. Bourdel, and C. A. Müller, Eur. Phys. J.
Special Topics 217, 79 (2013).

[29] A large value of the kick amplitude ∆k is chosen to en-
sure a rapid dephasing. After one scattering time τs, the
dephasing can be as large as ∆φkick ∼ ∆k vτs = 2.3 > 1
[see Eq. (1)]. During that dephasing, the position of the
coherent peak has a dynamic in momentum space [18].
This dynamic, visible on Fig. 4, will be analyzed in a
future work.

[30] E. E. Gorodnichev and D. B. Rogozkin, Waves in Ran-
dom Media 4, 51 (1994).

[31] To be published elsewhere.

[32] C. D’Errico, M. Moratti, E. Lucioni, L. Tanzi,
B. Deissler, M. Inguscio, G. Modugno, M. B. Plenio, and
F. Caruso, New J. Phys. 15, 045007 (2013).

[33] J. Towers, S. C. Cormack, and D. A. W. Hutchinson,
Phys. Rev. A 88, 043625 (2013).

[34] T. Karpiuk, N. Cherroret, K. L. Lee, B. Grémaud, C. A.
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