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Abstract:
Nowadays systems must adapt to rapidly changing environments and must show behaviour that
evolve with time. On the other hand they are intensively monitored so that huge amounts of
data are generally collected and available for further analysis. Data-driven diagnosis systems
must hence face new challenges, in particular be supported by efficient classification algorithms
that adapt the targeted model âĂŞ or classifier âĂŞ to the evolution of the system and be
able to scale to big data. In this paper, a proposal which couples a dynamic clustering method
with an on-line trend extraction algorithm that works incrementally on the incoming data is
presented. The dynamic clustering method is based on micro-clusters that may drift, merge
and split, hence following the evolution of the system. The trend extraction method applies to
individual signals and generates a compact abstraction in the form of episodes. The episodes of
all signals are then put together to feed the dynamic clustering method. This approach allows
data reduction and makes it suitable for on-line data analysis and diagnosis in real-time and
low-memory requirements. The proposed algorithm is tested successfully on a continuous stirred
tank heater benchmark suffering faults with varying magnitude.

Keywords: Classification, Dynamic systems, Pattern recognition, Data processing, Trajectories

1. INTRODUCTION

Technological advances of past decades have resulted in
production and service infrastructures highly adaptive to
a constantly changing environment. In addition, they have
changed the way enterprises get information about the
state of their systems. Huge amounts of data, arising
from various sources, are generally collected and they
are available for further analysis. These two facts have
promoted the success of machine learning approaches for
diagnosis tasks, although they must face new challenges, in
particular building efficient classification algorithms that
adapt the targeted model – or classifier – to the evolution
of the system and that scale to big data.

In classical approaches the classifier is designed using
a training set of examples and remains unchanged over
time (its structure and sometimes even its parameters). If
the performance of the classifier decreases below a given
threshold the classifier may be re-learned, but it does not
adapt dynamically. In this context, the new objects sub-
mitted to the classifier during the recognition stage do not
imply a change of the classifier. This type of classification

is called static classification ([Joentgen et al., 1999]). The
interested reader is referred to [Venkatasubramanian et al.,
2003] for a detailed review of classic static classification
and clustering approaches. If the classifier changes in time
(dynamically), the classification task becomes a dynamic
classification problem.

Dynamism in the classifier is achieved when not only the
parameters but the classifier structure changes according
to input data in an automatic way. Abrupt changes in the
data can be captured by cluster creation or elimination.
Smooth changes are usually reflected as cluster drifts and
less frequently as cluster merging and splitting, see figures
1a, 1b and 1c. Among the techniques that have been
used for dynamic classification, we can mention: evolving
clustering ([Angelov and Zhou, 2008, Angelov, 2011]), Self-
Adaptive feed-forward neural network (SAFN) ([Li et al.,
2011]), LAMDA (Learning Algorithm for Multivariable
Data Analysis) ([Kempowsky et al., 2006]) and Grow-
ing Gaussian Mixture Models (2G2M) ([Bouchachia and
Vanaret, 2011]). All these works consider adaptation to
abrupt changes through cluster creation but LAMDA and
2G2M do not consider elimination. Only SAFN considers
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cluster drift, merge and split. Evolving clustering consid-
ers cluster replacement to handle cluster drift. Cluster
replacement involves cluster creation around the new focal
point followed by the old cluster elimination. Some of these
alternatives are really complex and hence not suited to
handle online large amounts of data, such as data arriv-
ing in a stream. Their requirements in terms of memory
and processor power are too high. Two-stages clustering
(online/offline) has emerged as an alternative to deal with
large amounts of data arriving at fast rates. Some authors
have used the two-stage clustering in order to achieve on-
line classification. For instance, [Aggarwal et al., 2003a]
proposed the CluStream algorithm, [Kranen et al., 2011]
introduced ClusTree and [Cao et al., 2006] included density
as a pruning factor creating the DenStream technique.
In these two-stage algorithms, data are collected, pre-
processed, and compressed in the first stage forming what
is called micro-clusters (µ-clusters). In the second stage,
the µ-clusters are grouped into macro-clusters or actual
clusters. CluStream uses a pyramidal time framework
(as called by the authors) to analyse cluster time evolu-
tion by means of stored pictures of the µ-clusters, called
“snapshots". These snapshots provide an effective trade-
off between storage requirements and the ability to recall
summary statistics from different time horizons. ClusTree
[Kranen et al., 2011] proposes a hierarchical tree shaped
index structure for the µ-clusters which provides efficient
µ-cluster location for object insertion at different levels
of granularity achieving data-cluster assignation even at
fast rates. ClusTree improves the limitation of CluStream
about the fix number of micro-clusters. DenStream uses
density based final clustering handling outliers and cluster
evolution with the use of low, medium and high density
µ-clusters.

The algorithms referred above handle the evolution of the
system in the sense of behaviour changing in time. The
system is then qualified as time-varying. In this case, the
intrinsic dynamism of the system must also be taken into
account. A system is dynamic if its output behaviour in
response to a request to the input, involves a memory of
past states. This suggest that dynamic behaviour could be
characterized by trajectories and their temporal patterns.
In this work, we are concerned with dynamic classification
for solving on-line diagnosis problems for time-varying
dynamic systems or processes. Whereas the time-varying
property can be handled with dynamic classification meth-
ods, dynamic behaviour requires to build specific features
that characterize variable trajectories rather than instant
snapshot behaviour [Zimmermann, 2000]. For example in
figure 1d, if classification is performed using only the
current value of the variable (triangle points) instead of the
associated trajectories, the three completely different be-
haviours could be diagnosed as the same. Figure 1e shows
two temporal patterns representing dynamical behaviour.

In this paper, a proposal which couples a dynamic cluster-
ing method with an on-line trend extraction algorithm that
works incrementally on the incoming data is presented. It
is used to achieve on-line diagnosis and has been tested on
a continuous stirred tank heater (CSTH) model developed
by [Thornhill et al., 2008]. Section 2 explains the dynamic
classifier structure and section 3 presents the application
to process data represented by time series for which a

(a) Cluster drift

Feature 1

Feature 2

(b) Clusters Merging

Feature 1

Feature 2

(c) Cluster splitting

Feature 2

Feature 1

(d) Objects trajectories

Feature 1

Feature 2

(e) Trajectory dynamic change

Fig. 1. Time-varying dynamic system’s data representation

specific mathematical characterization is performed. Sec-
tion 4 is concerned with the diagnosis case study on the
CSTH benchmark and section 5 provides conclusions and
discusses future work.

2. DYNAMIC CLUSTERING ALGORITHM

This paper uses an offline-online clustering approach pop-
ularized by [Ester et al., 1996, Aggarwal et al., 2003a,
Cao et al., 2006, Kranen et al., 2011] among others. In
this approach the online stage creates µ-clusters that are
summarized representations of a data set made by using
some statistical and temporal information. The principle
is that some data groups are close enough to make it
possible to consider that they belong to the same final
cluster. The offline stage analyses the distribution of those
µ-clusters whose density is considered as medium or high
and creates the final clusters by a density based approach,
that is, dense µ-clusters that are close enough (connected)
are said to belong to the same cluster. Moreover, simi-
larly to [Chen and Tu, 2007], a cluster is defined as the
group of connected µ-clusters where every inside µ-cluster
presents high density and every outside µ-cluster exhibits
either medium or low density. Interestingly, this dense µ-
cluster structure has proved outlier detection capabilities
in evolving environments [Cao et al., 2006]. The online
and offline stages are further explained in 2.1 and 2.2.
The contributions of the presented technique over those
reviewed in section 1 are: a. The technique presented in
this paper achieves full on-line dynamic clustering of time-
series. b. The joint use of a distance-based and density-
based clustering stages(sec. 2.1, sec. 2.2). c. The automatic
characterization of signals temporal behaviour (sec. 3.1).
d. Large amounts of data can be processed on-line without
information loss due to the episode representation (sec. 3)

2.1 On-line clustering

Considering a d-dimensional object e, a µ-cluster is the
representation of a group of data points close in all
dimensions and whose information is summarized in
a characteristic feature vector (CF). This CF has the
following form:

CFk = (nk, LSk, SSk, tlk, tsk, Dk, Classk) (1)

where nk ∈ ℜ is the number of objects in the µ-cluster
k, LSk ∈ ℜd is the vector containing the linear sum
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of each feature over the nk objects, SSk ∈ ℜd is the
square sum of feature over the nk objects, tlk ∈ ℜ is the
time when the last object was assigned to that µ-cluster,
tsk ∈ ℜ is the time when the µ-cluster was created, Dk is
the µ-cluster density and Classk is the µ-cluster label if
known. Using LSk, SSk and nk the variance of the group
of objects assigned to µ-cluster k can be calculated. In
order to maintain an up-to-date structure, µ-clusters are
weighted with an exponential decay function dependent
on the current time ti and the last assignation time tlk.
This function β−λ(ti−tlk) emulates an ageing process over
a damped window. If β is chosen as 2ψ, then the half life
of data in the window is 1

ψλ
, λ > 0.

When a new object ei is assigned to a cluster, tlk = ti.
If the object belong to a known class (semi-supervised
approach), Classk = Classi. The other features are
actualized as follows:

n
(t)
k = n(t−1)β−λ(t−tlk) + 1 (2)

LS
(t)
k = LS(t−1)β−λ(t−tlk) + ei (3)

SS
(t)
k = SS

(t−1)
k β−λ(t−tlk) + e2i (4)

In general, if no object is added to a µ-cluster during
the time interval (t, t+∆t), its CF at t + ∆t can be
calculated from CF (t) using the decay function for the
weighted parameters as follows:

CF (t+∆t) = β(−λ∆t)CF (t) (5)

In order to find clusters with arbitrary shape, density
based clustering is executed over the µ-clusters. A µ-
cluster may be of three different types: dense µ-cluster
(Dµ-cluster), semi-dense µ-cluster (Sµ-cluster) and low
density or outlier µ-cluster (Oµ-cluster). The difference
between each type is established based on a threshold.
Sµ-clusters could be the product of an increment in the
number of outliers or part of a cluster creation, so they
have to be updated more frequently than other µ-clusters.
To speed up the analysis three lists were used. The first
one includes the active µ-clusters, i.e. Dµ-clusters and Sµ-
clusters. The second one contains the current Oµ-clusters.
The third list includes those µ-clusters that were once
dense but, because of a lack of new elements, have lost
density, and became non active µ-clusters.

The µ-cluster is shaped as a d-dimensional box since the
absolute value of the difference between the feature and the
cluster descriptor is used as distance measure. The size of
the boxes are set as a fraction of the feature range. This
fraction can be established according to the data context;
if no context is available in advance, it may be established
on-line. The box size per feature is found according to
(6), where φ is a constant establishing the fraction. The
algorithm can work over a known context, given by the
user, or can build the context along the way. The context
is based on the minimum and maximum values of each
feature and is used for normalization purposes.

Sdk = φ (maxd −mind) ∀d (6)

µ-cluster density is calculated using the current number of
objects nk and the current hypervolume of the bounding
box, as shown in (7).

Dk =
nk

V
(7)

A µ-cluster µCz is said to be dense at time t if it satisfies
the inequality (8), where Vk is the volume of the cluster box
k, α is a proportion parameter used to set the threshold
and K is the total number of µ-clusters. For the case where
all µ-clusters have the same size, the condition can be
simplified as seen in (9).

Dz ≥ α

∑K

k=1 nk
∑K

k=1 Vk
(8)

Dz ≥ α

∑K

k=1 nk

KV
(9)

At time t, a µ-cluster µCz is said to be semi-dense if its
density fulfils the following inequalities:

α

∑K
k=1 nk

KV
≥

dz
∑K

k=1 dk
≥

α

2

∑K
k=1 nk

KV
(10)

A µ-cluster µCz is considered Oµ-cluster if its density is
lower than the lower limit in (10).

2.2 Off-line density clustering

To find the final clusters, the dense character of a µ-cluster
and its neighbours is analysed with a certain periodicity.
Let µCx and µCy be µ-clusters, then µCx and µCy are
said to be directly connected if their hyperboxes overlap
in all but ϕ dimensions. The parameter ϕ establishes the
feature selectivity of the classifier.

An µ-cluster µC1 is said to be connected to µCn if there is
a chain of µ-clusters {µC1, µC2, · · · , µCn} such that µCi is
directly connected to µCi+1 for i = 1, 2, · · · , n− 1. A set
of µ-clusters connected is said to be a group. Finally, a µ-
cluster group is said to be a cluster if every inside µ-cluster
of the group is a Dµ-cluster and every border µ-cluster is
either a Dµ-cluster, a Sµ-cluster or a Oµ-cluster.

Oµ-clusters do not contribute to the final clusters. We
assume that µ-clusters with low density are either outliers
or possible new clusters in an emerging state. The later
case reveals itself with an increment in the cluster density
and consequently, this µ-cluster grows into a Sµ-cluster
in the following time windows. Once a classification is
found off-line the results are stored as a snapshot that
might be examined in the future in order to extract
more information about the system evolution. Snapshots
are stored following a pyramidal time scheme as the one
proposed in ([Aggarwal et al., 2003b]). Section 2.3 explains
the operation of the algorithm in detail.

2.3 Algorithm operation

When a new identified object arrives, the algorithm verifies
the existence of µ-clusters (if an offline learning stage
was previously used). If no µ-cluster exists, it creates a
µ-cluster using the data of the current object. If there
is already one or more µ-clusters created, the algorithm
finds out which Dµ-cluster or Sµ-cluster is the closest.
The distance between an object x and a µ-cluster µCk
is calculated as the sum of the distances between the
µ-cluster representation cik and the value of each object
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feature xi. The distance is calculated using the absolute
value as shown in (11).

disi =
∣

∣xi − cik
∣

∣ (11)

Once the closest µ-cluster is found, the maximum distance
condition is verified, that is, the object must fit inside the
maximum possible bounding box MAXBB centred in the
µ-cluster. If there is a fit, the point is absorbed by the µ-
cluster; otherwise, the algorithm tries to merge the object
with the closest Oµ-cluster. If the distance condition and
the qualitative features condition are fulfilled, the object
is merged and after that, the density of the Oµ-cluster
is verified to decide if the µcluster has grown into a Sµ-
cluster. When an Oµ-cluster becomes denser it is removed
from the outlier list and with its statistics a new Sµ-cluster
is created and inserted into the active µ-cluster list. In the
case where no µ-cluster is at size match of the object, a new
Oµ-cluster is created with the object and the current time
is used as ts for the new Oµ-cluster. Each window period
Sµ-cluster has to be updated and its density evaluated
in order to establish if it has fallen below the semi-dense
threshold and must be turned into a new Oµ-cluster that
inherits its statistics. Oµ-clusters are also evaluated in each
window period to find out if their density is below the
low-density threshold. If that is the case, the Oµ-cluster is
eliminated and no longer considered.

The offline classification of the µ-clusters takes place each
toff seconds, been toff an user defined time period. In
this classification all dense or semi-dense µ-clusters are
used as possible geometric centers of the final clusters.
Starting from any dense µ-cluster with unknown class,
all its neighbours are found and tag as belonging to the
same class. In a second stage the neighbours are used as
seeds and all their neighbours are also found and added
to the seeds list until all connected µ-clusters are found.
Finally all those connected µ-clusters, directly or not,
are referred as to a single cluster. If more dense clusters
remain unclassified the process continues taking one of
these as first seed of a new cluster and finding all the
µ-clusters who are connected to it. The process stops
were no unclassified Dµ-clusters prevail. The results of the
classification process are then store as a snapshot of the
state of the system in that exact moment. Following a
pyramidal time framework snapshots from different times
are stored given several time scales that can be used for
cluster evolution analysis. An example of this framework
for t = 55 seconds, assuming a snapshot is taken each
second, can be seen in table 1. In this work instead
of using time directly, the number of the classification
is used as base for the pyramidal framework, like this:
Once a classification snapshot is ready, it is stored on the
highest pyramidal level determined as logρ (classn). To
maintain a reasonable amount of snapshots the amount
of elements in each level is limited to ρζ . Therefore, if
a level contains more than ρζ snapshots, the oldest one
is removed. Parameters ρ and ζ are set according to the
amount of memory available for storage.

3. APPLICATION TO PROCESS DATA

Industrial processes are likely to have hundreds to thou-
sands of signals coming from sensors located all over the

Order of snapshots Clock Time (last snapshots)

0 55✚✚54 53✚✚52 51
1 54✚✚52 50✚✚48 46
2 52✚✚48 44✚✚40 36
3 ✚✚48 40✚✚32 24✚✚16
4 48✚✚32 16
5 32

Table 1. Pyramidal framework for t = 55. Based on
[Aggarwal et al., 2003b]

Fig. 2. Interval halving polynomial approximation

plant. These signals usually report the behaviour of the
process in a normal established operating region, which is
characterized by zero valued first and second derivatives
(in practice, due to the presence of noise, |ẋ| < ǫ1 and
|ẍ| < ǫ2). It is expected that in the proximity of a process
situation change (due to faulty behaviour or to change of
the operating point), sensors show a deviation from their
normal value range (|ẋ| > ǫ1 and\or |ẍ| > ǫ2) following
transitional dynamics that can be characterized by means
of trends. A trend is a representation of the variation of a
process variable within a time window. Process situation
assessment can be achieved by extracting trends from
the measured signals and evaluating their similarity with
known behaviour.

Process data takes the form of time series corresponding
to each sampled time signal. In order to extract trend
information, this work proposes to process those time
series into episodes ([Dash et al., 2004]). Episodes are
representations defined by three elements: a trend context
TC, a set of auxiliary variables AV and a time interval Ti
leading to (12).

e(xi) = {TC,AV, Ti} (12)

In this work, trend context is given by polynomial fitting
coefficients, therefore, for a polynomial fit of order n, TC is
the vector TC = [c0, c1, . . . , cn]. Auxiliary variables can be
information related to measurements like: average value,
standard deviation, etc. The abstraction of a time series
into a sequence of episodes is presented in details in section
3.1. When the episodes corresponding to all signals are
considered together, they abstract the whole behaviour of
the system.

3.1 Episode characterization

The simplest approach to extract a trend is to fit a
polynomial to the data. According to the Weierstrass ap-
proximation theorem [Stone, 1948], a continuous function,
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Fig. 3. Fit with polynomials of order 0 to 2. a. Order n = 0
b. Order n = 1 c. Order n = 2.

defined in a closed interval, can be approximated as closely
as desired using polynomials of sufficiently high order.
There are two ways to approximate a time function using
polynomials: increase the polynomial order until there is
a fit or reduce the interval size into one in which the
function can be approximated by a low order polynomial.
Between the two ways, the later is generally preferred since
polynomial-fitting complexity increases with polynomial
order. One example can be seen in [Dash et al., 2004],
where the authors propose an interval-halving algorithm
for trend extraction which automatically identifies qualita-
tive trends using polynomial fitting. The algorithm, known
as an interval halving algorithm tries to fit a polynomial
of order O < nmax to the data within a time window. If
the fitting error is bigger than some threshold established
before, the window is split at the midpoint and polynomial
fitting is performed on the new half size window. The
split process finishes when the fitting error is below the
threshold. The leftover data is analysed following the same
method until all the data within the initial window is
fitted. A graphical representation of the interval halving
algorithm is shown in figure 2. An online implementation
of the interval halving algorithm has been developed by
[Maurya et al., 2010], where the online trend extraction
is achieved using a time window that moves as more data
become available.

Based on the same interval halving principle, we develop
an algorithm that fits polynomials of maximal order 2 to
the data. The time window is built with the incoming data
and as soon as the window length is completed, data is
analysed and the current trend is extracted. Once a win-
dow is established, the fitting process is performed and the
coefficients of the best fit (minimum fitting error) are saved
if the fitting is acceptable. An example of polynomial fit is
shown in figure 3, where the coefficients found for polyno-
mial approximation of order n = 0 are c = [0, 0,−10.0496],
of order n = 1 are c = [0, 31.008, 5.4544] and of order
n = 2 are c = [−20.808,−10.2, 2]. The fitting is said to be
acceptable if the variance of the fitting residues is less or
equal to the variance of noise in the signal. An estimation
of the noise standard deviation in the measured signal can
be achieved using wavelet decomposition. As described by
[Bakshi, 1999], in the wavelet multiscale decomposition,
coefficients corresponding to the true signal are larger in
magnitude than those corresponding to noise; nevertheless,
if the noise is known to be white or uncorrelated, the ma-
jority of coefficients will relate to noise and show a constant
power spectrum at all frequencies. The above principles
guided us to the use of the robust median absolute de-
viation (MAD) as a method for finding an estimation of
the noise variance from wavelet decomposition coefficients.
Noise standard deviation is calculated by (13), where dm
denotes the wavelet coefficients at the selected scale:
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Fig. 4. Illustrative classification task of noisy time series

Variable OP 1 OP 2

Level(mA) 12.00 12.00
Level(cm) 20.48 20.48
CWflow(mA) 11.89 7.330
CWflow(m3s−1) 9.038× 10−5 3.823 × 10−5

CWvalve(mA) 12.96 7.704
Temperature(mA) 10.50 10.50
Temperature(◦C) 42.52 42.52
Steamvalve(mA) 12.57 6.053
HWvalve(mA) 0 5.500
HWflow(m3s−1) 0 5.215 × 10−5

Table 2. Suggested operational points for the CSTH

σm =
1

0.6745
median (|dm|) (13)

For illustrative purposes, a set of twelve synthetic signals
distributed in four groups between linear and exponential
are tested. Signals have been contaminated with random
white noise as seen in figure 4a. These signals where pro-
cessed with our algorithm and the resulting classification
is shown in figure 4b in which all the found hyperboxes
can be seen. Figure 4b axes correspond to the normal-
ized values of TC (c2, c1, c0). In this figure, one of the
advantages of the presented method is clearly identified:
In this particular case if only current value of the signals
is considered, signals of groups two and three, plotted in
blue and red colours in fig 4a, appears to be the closest
ones. Nevertheless, using episode representation these two
groups of signals can be easily separated in this feature
space (red and blue boxes in fig. 4b).

4. DIAGNOSIS CASE STUDY

4.1 The CSTH

The CSTH is a benchmark developed by [Thornhill et al.,
2008] of a stirred tank in which hot (50◦C) and cold
(24◦C) water are mixed and further heated using steam;
the final mix is then drained using a long pipe. The CSTH
configuration is shown in figure 5. It is assumed that the
tank is well mixed so the temperature of the outflow is
the same as that in the tank. System inputs are set-
points for the cold water, hot water and steam valves.
System outputs are hot and cold water flow, tank level
and temperature. System inputs and outputs represent
electronic signals in the range 4âĂŞ-20 mA.

4.2 Dynamic classification on the CSTH

Thornhill et al. [2008] suggests two operation points de-
scribed in table 2. Simulink models for OP1 and OP2 are
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Fig. 5. The continuous stirred tank heater

Parameter Value Parameter Value

β 2.0 λ 0.2
φ 0.05 α 0.2

winlength 128 min winlength 64
ϕ 1 toff 300 sec
ρ 2.0 ζ 1.6

Table 3. Parameters used in the experiment

available at [Thornhill] website, with and without distur-
bances. The provided disturbances are real data sequences
experimentally measured from the pilot plant at the Uni-
versity of Alberta. Several states were simulated using the
suggested operational points OP1 and OP2. Undisturbed
operation, disturbed operation and tank leakage scenarios
were simulated in Simulink and the resulting data were
fed to the dynamic classification algorithm. The following
experiments will use (unless otherwise stated) the user
defined parameters and values shown in table 3. Window
length and minimal length were selected according to
process dynamics. Parameters β and λ (from ageing func-
tion) were chosen with respect to the process dynamics,
so that the data that weight more on the clustering are
in a time window consistent with the process evolution.
Parameter φ (micro-cluster size) was tuned to obtain the
clustering that best tracks process dynamics (Note that
bigger micro-cluster means less precision in the represen-
tation of dynamics). Parameter α (threshold for a micro-
cluster to be considered dense) was tuned to discard at
best outliers resulting from noise. As mentioned in section
2.3 parameters ρ, ζ and also toff are set according to
the amount of memory available for snapshot storage and
display.

Since the features dimension space is high (12 − d space)
and therefore not directly plottable, the three features
with larger variance were selected as axes for a 3D plot.
Features variance were calculated for each of k µ-clusters
in an incremented fashion using equation 14. 3D plot axes
show the normalized features.

V ar
(t)
k =

1

n
(t)
k

SS
(t)
k −

(

LS
(t)
k

n
(t)
k

)2

(14)

In pursuance of testing robustness against disturbances,
the algorithm was fed with non disturbed data of OP1
for 2000 seconds. In t = 2001 the provided disturbances
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Fig. 6. Deviation in output measures (provided by [Thorn-
hill]): CWflow disturbance, level disturbance due bub-
bles and temperature measurement noise.
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t=2689
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t=3649
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t=1537

t=3009

Unclassed OMC : class 1: 

Fig. 7. Dynamic Classification of the CSTH in op1. Change
from a non disturbed environment to a disturbed one.

in the tank level and CW flow were added as well as the
temperature measurement noise. These disturbances can
be seen in figure 6. The resulting classification is shown in
figure 7.

Snapshots in figure 7 with t < 2000 show one class with
one box only. This behaviour is in conformity with uniform
data. After disturbances are introduced, an Oµ-cluster is
detected in snapshot t = 2305 showing the detection of a
different behaviour. As soon as the amount of disturbed
data increases, the algorithm is able to detect that this
apparently new behaviour in no more than an evolution
of the known normal OP1 behaviour, as can be shown in
snapshots with t > 2305 where all the clusters are labelled
as belonging to class 1.

In order to simulate fault dynamical behaviour, an increas-
ing size leak was simulated. Starting from the plant OP1
a leak was introduced in t = 2200 seconds. The starting
radius of the hole is r = 1mm. The experiment emulate
the case were the size of the hole leaking the mix increases
as time passes. The final radius of the hole at t = 3400
seconds is r = 3.75mm. The measured output signals
with disturbances can be seen in figure 8. These signals
were take as input for the proposed dynamic classification
algorithm and some of the clusters snapshots can be seen in
figure 9. Class distribution shows how class one, associated
with normal behaviour, is detected and its evolution is
followed until t = 2881 where some new behaviour is
found. This behaviour is not yet classified as a new class
since the amount of data following that pattern is low.
Appearing in the snapshot t = 3649 the µ-clusters have
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Fig. 8. Leak evolution simulation with the CSTH in op1
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Fig. 9. Dynamic Classification of the CSTH in op1
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Fig. 10. Leak evolution simulation with the CSTH in op2

evolved into dense µ-clusters and the new class can be
formally established.

The same experiment were performed for the OP2 and
the measured signals are shown in figure 10. The classifi-
cation snapshots can be seen in figure 11. An interesting
behaviour can be appreciated by looking in detail the
change between snapshots t = 705 and t = 1537. The
former show µ-clusters belonging to classes one and two
as well as some low density Oµ-clusters. The later shows
how class 1 and class 2 µ-clusters were merged into class
1, when some new µ-clusters emerged between them. Here
the data evolution is reflected in the clusters structure with
the merge of classes. Snapshots with t < 2241 exhibit
the expected behaviour when all data is in OP − 2. In
snapshot t = 2625 some Oµ-clusters are present showing
the detection of new, evolving behaviour. The same trend
was observed in snapshots t = 3009 and t = 3329 proving a
continuing, and rapid, evolution. Once this new behaviour
is established, it is identified as such and a class 2 label is
assign to the elements exhibiting the same trend.

t=3329

Fig. 11. Dynamic Classification of the CSTH in op2

Functionality TBDC TBDC-A TBDC-AD TBDC-T

Computation
Time

average 1.00 1.16 0.99 1.26

max 1.00 1.11 0.96 1.20

min 1.00 1.16 1.00 1.30

No. of classes 2 2 1 2

No. µ-clusters 1.00 1.20 1.20 1.34

outlier detection yes yes no yes

Table 4. Algorithm performance with and without
some functionalities

4.3 Performance analysis

An empirical study was performed to find the improve-
ments achieved by this algorithm with the described func-
tionalities. 300 evolving leak scenarios were run with and
without some of our Trend Based Dynamic Clusterer
(TBDC) functionalities. Computation time, clustering pre-
cision and outlier detection were compared removing age-
ing functionality (eq. 2-5) (TBDC-A), removing density
analysis (clusters are formed only upon micro-clusters
proximity) at the second stage of the algorithm (TBDC-
D), removing both ageing and density and finally, re-
moving episode characterization (classifying directly time
series data, no trending TBDC-T). Normalized perfor-
mances measures can be seen in table 4 (normalized w.r.t.
the performance of TBDC).

Test have shown that no ageing implies more µ-clusters
to be processed (20% more) and bad evolution of the
clustering. Clusters appears to extend but not to drift.
Removing the density-based analysis implies the creation
of more clusters, but some of them are almost empty.
Potentially this could be caused by the fact that outliers
are not discarded. Arguably, the clustering algorithm
without both ageing and density functionalities seems to
have a slightly better computation time. Nevertheless, it
fails to detect the faulty behaviour. Finally, test without
trending have proved the computation time reduction
achieved with the episode characterization. No trending
implies much higher computation time (26.5% average)
and worse real-time processing, this seems to be related
to the increasing number of µ-clusters to be treated (34%
more).

5. CONCLUSIONS

In this paper, we have presented a proposal which couples
a dynamic clustering method based on micro-clusters with
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an on-line trend extraction algorithm that works incremen-
tally on the incoming data. The proposed algorithm is used
for on-line data analysis and diagnosis and has been tested
on a continuous stirred tank heater benchmark affected by
varying magnitude faults. The algorithm show good per-
formance in presence of disturbances and the results follow
the evolution of the system. For instance, in the case of a
leakage which increases with time, the classifier recognizes
the drift and creates a new class representing the fault,
and then gradually transfers data into this class as the
leak increases. Test have shown performance improvement
when distance-based and density-based clustering tech-
niques are used together. Furthermore, by using episode
representation and ageing capabilities the amount of data
to be processed is reduced, hence improving computation
time and reducing memory requirements. However, more
tests are required to assess the efficiency of the algorithm
in real-time conditions.

From a technical point of view, it would be interesting
to compare the proposed algorithm, which is density-
based in the second stage, with a distance-based algorithm.
Future work also includes to provide a feature selection
algorithm targeting the dynamic classifier and able to rank
the available features according to their discriminability
power.
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