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Abstract. In this paper, we prove that ergodic point processes with moments
of all orders, driven by particular infinite measure preserving transformations,
have to be a superposition of shifted Poisson processes. This rigidity result has
a lot of implications in terms of joining and disjointness for the corresponding
Poisson suspension. In particular, we prove that its ergodic self-joinings are
Poisson joinings, which provides an analog, in the Poissonian context, of the
GAG property for Gaussian dynamical systems.

Suspensions de Poisson et SuShis

Résumé. Dans cet article, nous démontrons qu’un processus ponctuel er-
godique avec des moments de tous ordres, dirigé par une transformation pré-
servant une mesure infinie qui vérifie certaines propriétés, est nécessairement
une superposition de processus de Poisson décalés. Ce résultat de rigidité
a de nombreuses implications en termes de couplages et de disjonction pour
la suspension de Poisson associée. En particulier, nous démontrons que ses
autocouplages ergodiques sont des couplages poissoniens, obtenant ainsi un
analogue, dans le contexte poissonien, de la propriété GAG des systèmes dy-
namiques gaussiens.

1. Introduction

Central to probability theory are Gaussian and Poisson distributions. In ergodic
theory, they both play a particular role through canonical constructions we briefly
recall:

• Starting from a positive and finite symmetric Borel measure σ on T, there
exists a unique centered stationary real-valued Gaussian process {Xn}n∈Z

whose coordinates admit σ as spectral measure, that is

E [X0Xn] = σ̂ (n) .

• Starting from a σ-finite dynamical system (X,A, µ, T ), we can build the
Poisson suspension (X∗,A∗, µ∗, T∗), which is the canonical space (X∗,A∗, µ∗)
of the Poisson point process of intensity µ, enriched by the transformation

T∗ (ξ) := ξ ◦ T−1

(see below for a precise definition).

A striking theorem due to Foiaş and Strătilă (see [9]) states that some measures
σ on T, if appearing as spectral measure of some ergodic stationary process, force
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the process to be Gaussian. This was considerably developed later (see [17] in
particular) and lead to some remarkable results.

In this paper, we obtain a Poisson counterpart of Foiaş-Strătilă theorem. We
prove that some ergodic infinite measure preserving transformation, taken as base
system of an ergodic invariant point process with moments of all orders, force the
latter to be a superposition of shifted Poisson point processes.

Notations. For any set J , we denote by #J the cardinality of J . If ϕ is any
measurable map from (X,A) to (Y,B), and if m is a measure on (X,A), we denote
by ϕ∗(m) the pushforward measure of m by ϕ.

1.1. Random measures and point processes. Let X be a complete separable

metric space and A be its Borel σ-algebra. Define X̃ to be the space of boundedly
finite measures on (X,A), that is to say measures giving finite mass to any bounded

Borel subset of X . We refer to [4] for the topological properties of X̃. In particular,

X̃ can be turned into a complete separable metric space, and its Borel σ-algebra Ã
is generated by the maps X̃ ∋ ξ 7→ ξ(A) ∈ R+ ∪ {+∞} for bounded A ∈ A.

Let X∗ ⊂ X̃ be the subspace of simple counting measures, i.e. whose elements
are of the form

ξ =
∑

i∈I

δxi
,

where I is at most countable, and xi 6= xj whenever i 6= j. Because we restrict
ourselves to boundedly finite measures, any bounded subset A ⊂ X contains finitely
many points of the family {xi}i. Conversely, any countable family of points satis-
fying this property defines a measure ξ ∈ X∗ by the above formula. We define A∗

as the restriction to X∗ of Ã.
In the paper, we consider a boundedly finite measure µ on X and an invert-

ible transformation T on X preserving µ. We assume that µ(X) = ∞ and that
(X,A, µ, T ) is conservative and ergodic. This implies in particular that µ is con-
tinuous.

Given the map T , for any σ-finite measure ξ, we define T∗(ξ) as the pushforward
measure of ξ by T . In particular, if ξ =

∑
i∈I δxi

,

T∗ (ξ) =
∑

i∈I

δT (xi).

Observe that, even if ξ ∈ X∗, T∗(ξ) is not necessarily in X∗ (the property of
bounded finiteness may be lost by the action of T ). Nevertheless, one can consider
the smaller space

⋂
n∈Z

T−n
∗ X∗, on which T∗ is a bijective transformation. If m is

a probability measure on X∗ which is concentrated on this smaller space, then it
makes sense to say that m is invariant by T∗. If m is such a T∗-invariant probability
measure, then T∗(ξ) ∈ X∗ for m-almost all ξ ∈ X∗, and (X∗,A∗,m, T∗) is an
invertible, probability preserving dynamical system. (The same remark holds if we

replace X∗ by X̃.)
We call point process on X any random variable N defined on some probability

space (Ω,F ,P) taking values in (X∗,A∗). In this case, for ω ∈ Ω, N(ω) can be
viewed as a (random) set of points in X , and “x ∈ N(ω)” means N(ω)({x}) = 1.
As usual in probability theory, we will often omit ω in the formulas.
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Definition 1.1. Let (Ω,F ,P) be a probability space, endowed with a measure
preserving invertible transformation S. A T -point process defined on (Ω,F ,P, S)
is a point process N : Ω → X∗, such that

• for any set A ∈ A, N(ω) (A) = 0 for P-almost all ω whenever µ (A) = 0;
• for P-almost all ω, for any set A ∈ A, N(Sω) (A) = N(ω)

(
T−1A

)
.

Thus, a T -point process N implements a factor relationship between the dynam-
ical systems (Ω,F ,P, S) and (X∗,A∗,m, T∗) where m is the pushforward measure
of P by N .

Observe that the formula A ∈ A 7→ E [N (A)] defines a T -invariant measure
which is absolutely continuous with respect to µ. It is called the intensity of N and
as soon as it is σ-finite, by ergodicity of (X,A, µ, T ), it is a multiple of µ:

E [N (·)] = αµ (·)

for some α > 0. In this case, we will say that N is integrable. More generally,
setting

Af := {A ∈ A, 0 < µ (A) < +∞} ,

we have:

Definition 1.2. A T -point process N on (Ω,F ,P, S) is said to have moments of
order n ≥ 1 if, for all A ∈ Af , E [(N (A))

n
] < +∞. In this case, for k ≤ n, the

formula

MN
k (A1 × · · · ×Ak) := E [N (A1)× · · · ×N (Ak)]

defines a boundedly finite T × · · · × T -invariant measure MN
k on

(
Xk,A⊗k

)
called

the k-order moment measure.
A T -point process with moments of order 2 is said to be square integrable.

1.2. Poisson point process and SuShis. The most important T -point processes
are Poisson point processes, let us recall their definition.

Definition 1.3. A random variable N with values in (X∗,A∗) is a Poisson point
process of intensity µ if for any k ≥ 1, for any mutually disjoint sets A1, . . . , Ak ∈
Af , the random variables N (A1) , . . . , N (Ak) are independent and Poisson dis-
tributed with respective parameters µ (A1) , . . . , µ (Ak).

Such a process always exists, and its distribution µ∗ on X∗ is uniquely deter-
mined by the preceding conditions. Since T preserves µ, one easily checks that T∗

preserves µ∗.

Definition 1.4. The probability-preserving dynamical system (X∗,A∗, µ∗, T∗) is
called the Poisson suspension over the base (X,A, µ, T ).

The basic result (see e.g. [24]) about Poisson suspensions states that (X∗,A∗, µ∗, T∗)
is ergodic (and then weakly mixing) if and only if there is no T -invariant set in Af .
In particular this is the case if (X,A, µ, T ) is ergodic and µ infinite.

Defining N on the probability space (X∗,A∗, µ∗) as the identity map provides
an example of a T -point process, the underlying measure-preserving transformation
being S = T∗ in this case.

More generally, we can define a class of T -point processes which are constructed
from independent Poisson point processes.
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Definition 1.5. Let (Ni)i∈I be a countable family of independent Poisson T -
point processes of respective intensities αiµ, defined on the same probability space
(Ω,F ,P). For each i ∈ I, consider a finite subset Ji ⊂ Z, with

∑

i∈I

αi#Ji < ∞.

Then, the process N defined by

N(ω) :=
∑

i∈I

∑

j∈Ji

T j
∗ (Ni(ω))

is a particular integrable T -point process called Superposition of Shifted Poisson
Processes, which we abbreviate in SuShi.

Note that the aperiodicity of T ensures that the realizations N(ω) of the SuShi

are indeed in X∗ (the supports of the T j
∗ (Ni(ω)) are pairwise disjoint).

It is easy to see that a SuShi always admits a canonical decomposition, in which
the subsets Ji are distinct, contained in Z+, and 0 ∈ Ji for all i: indeed, consider
mi := min Ji, and if mi 6= 0, replace Ni by Tmi

∗ Ni and Ji by Ji −mi. Then join
together all Poisson point processes Ni sharing the same finite set Ji.

In general, a SuShi does not have moments of all orders (with arguments similar
to those used at the end of the proof of Proposition 2.1, one can show that, if∑

i∈I αi(#Ji)
2 = ∞, then there exists A ∈ Af whith E

[
N(A)2

]
= ∞). However,

if the numbers #Ji, i ∈ I are uniformly bounded, then moments of all orders exist
for the SuShi.

1.3. Roadmap of the paper. The paper is organized as follows. Section 2 is
devoted to general results about T -point processes, and their behaviour regarding
T -orbits. In Section 2.1, we consider the following question: can a T -point process
assign infinite mass to T -orbits? We show in Proposition 2.1 that, if a T -point
process is square-integrable, then it almost surely gives finite mass to any T -orbit.
We also explain how to construct a (non-square-integrable) T -point process which
almost surely assigns mass 0 or ∞ to any T -orbit (Proposition 2.2). In Section 2.2,
we describe a canonical decomposition of a T -point process assigning finite mass to
T -orbits (Proposition 2.5), which is naturally related to the form taken by SuShis.
In Section 2.3, we first provide a useful criterion to detect whether several T -point
processes, defined on the same probability space, charge points in the same T -orbits
(Lemma 2.6). Then we prove in Proposition 2.7 that any T -point process whose
2-order moment measure coincides with the one of a Poisson process is T -free, that
is to say it almost surely charges at most one point in any T -orbit.

Section 3 presents the key rigidity results of the paper. At the beginning of this
section, we introduce two additional properties of the infinite measure preserving
dynamical system (X,A, µ, T ), denoted by (P1) and (P2). The former simply
says that any direct product of a finite number of copies of this system remains
ergodic, and the latter is a strong restriction on the set of T×n-invariant measures
on Xn. As proved in [13], there exists an infinite measure preserving version of
the Chacon transformation satisfying these properties. Then we show that, under
assumptions (P1) and (P2), T -point processes with moments of all orders are SuShis
(Theorem 3.4). An important step for the proof of this result is the particular case
where the T -point process is T -free: in this situation we prove that it has to be a
Poisson process (Theorem 3.2). We also need a result ensuring the independence
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of Poisson T -point processes which do not charge the same T -orbits, provided by
Proposition 3.3.

Section 4 deals with the consequences of the preceding results regarding self-
joinings and factors of the Poisson suspension. We begin by recalling classical
results on the L2 structure of a Poisson suspension (Section 4.1), and presenting
the central notions of Poisson factors and Poisson joinings (Section 4.2). Then we
prove that, if T satisfies (P1) and (P2), any ergodic infinite self-joining of the asso-
ciated Poisson suspension is realized as a factor of a universal Poisson suspension
(Theorem 4.7). In fact, the result even holds for an ergodic joining of a countable

family of Poisson suspensions which are all of the form T
(α)
∗ , where for each α > 0,

T
(α)
∗ denotes the Poisson suspension (X∗,A∗, (αµ)∗, T∗). As a corollary, we get in

Theorem 4.18 that such a Poisson suspension satisfies the PaP property, which
means that any ergodic self-joining of this system is Poisson. This PaP property
turns out to be, in the Poissonian context, the analog of the so-called GAG property
for Gaussian stationary processes (see [17]). We also present in Section 4.4 some
general properties of PaP Poisson suspensions.

In Section 5.1, we see how the suspensions T
(α)
∗ can be used to obtain a new kind

of counterexample to the famous question of Furstenberg: if two ergodic dynamical
systems are not disjoint, do they share a common factor ? All counterexamples
known so far have the property that one of the two non-disjoint systems shares a
common factor with a distal extension of the other one. In Proposition 5.1, we

show that, if α 6= β, T
(α)
∗ and T

(β)
∗ are two non-disjoint systems which are prime,

but neither of them is a factor of a distal extension of the other one, answering
negatively a question asked by Lemańczyk.

In Section 5, we also present disjointness results for the Poisson suspension,
still assuming (P1) and (P2), and a further technical assumption on T which is
the existence of a measurable law of large number. (It is not clear whether, in
general, (P1) and (P2) imply this existence, however these three properties are
satisfied for the infinite Chacon transformation.) Under these assumptions, we
prove in particular the following key result: if a dynamical system S is not disjoint

from the Poisson suspension (X∗,A∗, µ∗, T∗), then there exists α > 0 such that T
(α)
∗

appears as a factor of S (Proposition 5.7). Applications of this result are developed
in Section 5.3, where we prove that, under the same assumptions, the Poisson
suspension is disjoint from any locally rank one dynamical system (Theorem 5.10),
and from any standard Gaussian dynamical system (Theorem 5.14).

2. General results about T -point processes and T -orbits

2.1. Number of points in orbits.

Proposition 2.1. Let N be a square-integrable T -point process with intensity µ.
Then N almost surely gives finite measure to any T -orbit.

Proof. LetN be an integrable T -point process with intensity µ defined on (Ω,F ,P, S).
We prove the proposition in the following form: assume that, with positive proba-
bility, there exists some x ∈ N(ω) with

N(ω)
(
{T kx : k ∈ Z}

)
= ∞.

Then, we can find A ∈ Af such that

E
[
N2(A)

]
= ∞.
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The first step is to prove that

(1) ∀m,M > 0, there exists A ⊂ X with µ(A) = m and E
[
N2(A)

]
≥ Mµ(A).

The main tool for this proof will be the family of Palm probability measures
(Px)x∈X associated with the point process N . For a detailed presentation of Palm
measures, we refer the reader to [5], Chapter 13. Recall that for µ-almost each x ∈
X , Px is a probability measure onX∗ which can be interpreted as the distribution of
N conditioned on x ∈ N . For each measurable U ⊂ X∗, x 7→ Px(U) is measurable,
and we have for each measurable A ⊂ X

E [1U (N)N(A)] =

∫

A

Px(U)dµ(x).

More generally, if g is a positive measurable function on X ×X∗, and if we denote
by Ex[ · ] the expectation with respect to Px, we have

(2) E
[∫

X

g(x,N)dN(x)

]
=

∫

X

Ex[g(x, ξ)] dµ(x).

We claim that, for µ-almost all x,

(3) PTx = (T∗)∗Px.

Indeed, as P is S-invariant, for each measurable U ⊂ X∗ and each measurable
A ⊂ X , we can write

∫

A

Px(U) dµ(x) = E [1U (N)N(A)]

= E [(1U (N)N(A)) ◦ S]

= E
[
1T

−1
∗ U (N)N(T−1A)

]

=

∫

T−1A

Px(T
−1
∗ U) dµ(x).

But on the other hand, using T -invariance of µ, we also have
∫

A

Px(U) dµ(x) =

∫

T−1A

PTx(U) dµ(x).

This yields, for each measurable U ⊂ X∗, PTx(U) = Px(T
−1
∗ U), and (3) follows.

Now, for each x ∈ X , let us introduce the map ϕx : X∗ → {0, 1}Z defined by

∀k ∈ Z, (ϕx(ξ))k := ξ
(
T kx

)
.

Observe that

(4) ϕTx ◦ T∗ = ϕx.

Define also the probability measure νx on {0, 1}Z as the pushforward measure of
Px by ϕx. By (3) and (4), we get, for µ-almost all x ∈ X

νTx = (ϕTx)∗(PTx) = (ϕTx ◦ T∗)∗(Px) = (ϕx)∗(Px) = νx.

By ergodicity of T , it follows that there exists a probability measure ν on {0, 1}Z

such that νx = ν for µ-almost all x ∈ X .
Let us consider the following measurable function g defined on X ×X∗:

g(x, ξ) :=

{
1 if

∑
k∈Z

ξ(T kx) = ∞

0 otherwise.
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The hypothesis made on the point process N yields

E
[∫

X

g(x,N)dN(x)

]
> 0.

By (2), we get that for x in a subset of positive measure in X ,

0 < Ex[g(x, ξ)]

= Px

(
∑

k

ξ(T kx) = ∞

)

= Px

(
∑

k

(
ϕx(ξ)

)
k
= ∞

)

= ν

({
ζ ∈ {0, 1}Z :

∑

k∈Z

ζk = ∞

})
.

It follows that ∫

{0,1}Z

∑

k∈Z

ζk dν(ζ) = ∞,

and we have ∫

{0,1}Z

∑

k∈Z+

ζk dν(ζ) = ∞, or

∫

{0,1}Z

∑

k∈Z−

ζk dν(ζ) = ∞.

Assume without loss of generality that the former case occurs. Then, for a given
M > 0, there exists a large integer kM such that

∫

{0,1}Z

∑

0≤k≤kM

ζk dν(ζ) ≥ 2M.

By Rokhlin’s tower theorem ([1], Theorem 1.5.9), for any m > 0, there exists B ⊂
X , µ(B) = m

2kM+1 , such that the sets T kB, −kM ≤ k ≤ kM are pairwise disjoint.

Now set A := ⊔−kM≤k≤kM
T kB, so that µ(A) = m, and A− := ⊔−kM≤k≤0T

kB.
Applying (2) with g(x, ξ) = 1A(x)ξ(A), we get

E
[
N2(A)

]
=

∫

A

Ex[ξ(A)] dµ(x) ≥

∫

A−

Ex[ξ(A)] dµ(x).

But, for x ∈ A−, T
k(x) ∈ A for each 0 ≤ k ≤ kM , therefore

Ex[ξ(A)] ≥ Ex


 ∑

0≤k≤kM

ξ(T kx)


 =

∫

{0,1}Z

∑

0≤k≤kM

ζk dν(ζ) ≥ 2M.

Since µ(A−) ≥ µ(A)/2, we get (1).
To conclude the proof of the proposition, for each ℓ ≥ 1, applying (1), we find

Aℓ ⊂ X satisfying µ(Aℓ) = 1/ℓ2 and E[N2(Aℓ)] ≥ ℓ3µ(Aℓ). Set A :=
⋃

ℓ≥1 Aℓ.

Then A ∈ Af , but for each ℓ, E[N2(A)] ≥ E[N2(Aℓ)] ≥ ℓ. �

Without the finiteness of the second moment, we cannot conclude that the T -
point process assigns finite mass to any T -orbit. Indeed, we have the following
proposition.
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Proposition 2.2. For any ergodic conservative dynamical system (X,A, µ, T ) with
µ(X) = ∞, there exists a T -point process N with intensity µ such that, with
probability 1, for any x ∈ N(ω),

N(ω)
(
{T kx : k ∈ Z}

)
= ∞.

Proof. According to Corollary 5.3.4 in [1], there exists a conservative ergodic dy-
namical system (Y,B, ν, R) such that the direct product (X×Y,A⊗B, µ⊗ν, T×R) is
totally dissipative. Therefore, there exists a wandering setM ⊂ X×Y such that the
sets (T×R)iM , i ∈ Z, are pairwise disjoint, and such that X×Y =

⊔
i∈Z

(T×R)iM .
Let η0 be a Poisson process on M with intensity µ⊗ ν|M , and consider, for any

i ∈ Z, ηi := (T × R)i∗η0: this is a Poisson process on (T × R)iM with intensity
µ ⊗ ν|(T×R)iM . Then, set η :=

∑
i∈Z

ηi, which is a point process on X × Y with
intensity µ⊗ ν. We claim now that

(5) η and (T × Id)∗η have the same law.

Indeed, set M̃ := (T × Id)M , and partition this set into subsets M̃i := M̃ ∩ (T ×
R)iM . Then, for all i ∈ Z, consider Mi := (T × R)−iM̃i = (T × R)−iM̃ ∩ M .

But T × Id commutes with T × R, therefore the subsets (T × R)−iM̃ also form a
partition of X×Y . It follows that the subsets Mi form a partition of M . Moreover,
by definition of η,

η|M̃i
= (T ×R)i∗η|Mi

,

and since the point processes η|Mi
are independent Poisson processes, η̃0 := η|M̃

is itself a Poisson process of intensity µ⊗ ν|M̃ . Starting from this Poisson process

defined on M̃ , we can in the same way construct the point process

η̃ :=
∑

i∈Z

(T ×R)i∗η̃0,

which has the same distribution as (T × Id)∗η. But on the other hand, we have

η̃ = η, because these two point processes coincide on M̃ and both charge full orbits
of T ×R. This proves (5).

Finally, let us fix a measurable subset B ⊂ Y with ν(B) = 1. Replacing if
necessary B by B ∩{y ∈ Y : Rny ∈ B for infinitely many integers n}, which is still
of measure 1, we can assume that any y ∈ B returns infinitely often in B. Consider
the point process on X defined by

ξ := (πX)∗ (η|X×B) ,

where πX : X × Y → X stands for the projection on the X coordinate. Then, the
intensity of ξ is µ, and by (5), ξ and T∗ξ have the same law. Now, for any x ∈ ξ,
there exists y ∈ B such that (x, y) ∈ η ∩X × B. Then there exist infinitely many
integers n such that Rny ∈ B, hence such that (T nx,Rny) ∈ η ∩X ×B, and then
T nx ∈ ξ. We get the announced T -point process N by considering N := Id on
Ω := X∗, equipped with the probability measure P defined as the law of ξ, which
is invariant by S := T∗. �

2.2. Separating orbits. The next definition deals with the interactions between
T -point processes.

Definition 2.3. Two T -point processes N1 and N2 defined on (Ω,F ,P, S) are said
to be (T -)dissociated if, for P-almost all ω, for all k ∈ Z, N1(ω) ∩N2

(
Skω

)
= ∅.
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Of course, a T -point process is never dissociated with itself, however we have the
following situation:

Definition 2.4. A T -point process N is called (T -)free if for P-almost all ω, for all
k ∈ Z∗, N(ω) ∩N

(
Skω

)
= ∅.

Proposition 2.5. Let N be a T -point process on (Ω,F ,P, S), which almost-surely
assigns finite mass to any T -orbit. Then there exist a finite or countable set I,
a family {Fi}i∈I of finite subsets of Z+, and a family (NFi

)i∈I of free T -point
processes, measurable with respect to N and mutually dissociated, such that

N =
∑

i∈I

(
∑

k∈Fi

NFi
◦ Sk

)
, P-a.s.

Proof. For each non-empty subset F ⊂ Z+ that contains 0, we can form from
N a T -point process NF by keeping, for all ω ∈ Ω, points x ∈ N (ω) such that
T kx ∈ N (ω) for all k ∈ F and T kx /∈ N (ω) for all k ∈ Z \ F . By construction,
NF is a free T -point process, and NF and NF ′ are dissociated whenever F 6= F ′.
Moreover, by hypothesis,

N =
∑

F⊂Z+, 0<#F<∞, 0∈F

NF , P-a.s.

Removing all sets F such that NF vanishes P-a.s., we obtain the announced de-
composition. �

2.3. Detecting interactions within T -point processes. We have already in-
troduced the moment measures of a point process N by considering the quantities

E [N (A1) · · ·N (An)]

for sets A1, . . . , An in A.
We also obtain a T×n-invariant measure on Xn by considering possibly different

T -point processes N1, . . . , Nn defined on the same probability space, and setting,
for A1, . . . , An in A

MN1,...,Nn(A1 × · · · ×An) := E [N1 (A1) · · ·Nn (An)] .

If the point processes have moments of all orders, this measure is boundedly fi-
nite and captures some valuable information about the interactions between those
processes. To illustrate this, the next lemma roughly says that if this measure con-
tains a non trivial “diagonal” part, then it reflects the presence of points on some
common orbit for some of the point processes involved.

Lemma 2.6. Let N1, . . . , Nn be n T -point processes defined on the ergodic system
(Ω,F ,P, S), having moments of all orders. Assume there exist a real number c > 0,
integers 2 ≤ j ≤ n, k2, . . . , kj , and a T×(n−j)-invariant, σ-finite measure ν 6= 0 such
that, for any sets A1, . . . , An in Af ,

E [N1 (A1) · · ·Nn (An)] ≥ cµ
(
A1 ∩ T−k2A2 ∩ · · · ∩ T−kjAj

)
ν
(
Aj+1

× · · · ×An

)
.

Then, for any A ∈ Af ,

P
(
A ∩N1 ∩ T−k2N2 ∩ · · · ∩ T−kjNj 6= ∅

)
> 0.
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Proof. We can apply the ergodic theorem:

1

N

N∑

k=1

E
[
N1 (A1) · · ·Nj (Aj)

(
Nj+1 (Aj+1) · · ·Nn (An)

)
◦ Sk

]

−−−−→
N→∞

E [N1 (A1) · · ·Nj (Aj)] E [Nj+1 (Aj+1) · · ·Nn (An)] .

But

E
[
N1 (A1) · · ·Nj (Aj)

(
Nj+1 (Aj+1) · · ·Nn (An)

)
◦ Sk

]

= E
[
N1 (A1) · · ·Nj (Aj)Nj+1

(
T−kAj+1

)
· · ·Nn

(
T−kAn

)]
,

therefore, as ν is T×(n−j)-invariant,

E [N1 (A1) · · ·Nj (Aj)]E [Nj+1 (Aj+1) · · ·Nn (An)]

≥ cµ
(
A1 ∩ T−k2A2 ∩ · · · ∩ T−kjAj

)
ν
(
Aj+1

× · · · ×An

)
.

We claim that there exists some set B ∈ Af so that E [Nj+1 (B) · · ·Nn (B)] > 0
and ν (B × · · · ×B) > 0. Indeed, we first observe that, by ergodicity, we have
Nk(X) = ∞ a.s. for all k. Thus, Nj+1 (X) · · ·Nn (X) = ∞ a.s. Take some
increasing sequence (Bℓ)ℓ≥1 in Af such that X =

⋃
ℓ≥1 Bℓ. Then

E [Nj+1 (Bℓ) · · ·Nn (Bℓ)] −−−→
ℓ→∞

∞,

thus E [Nj+1 (Bℓ) · · ·Nn (Bℓ)] > 0 for all large enough ℓ. By the same argument,
we also have ν(Bℓ × · · ·Bℓ) > 0 for all large enough ℓ, and we can take B = Bℓ for
some large ℓ.

We now set

α :=
ν (B × · · · ×B)

E [Nj+1 (B) · · ·Nn (B)]
> 0.

Then, we have for any A1, . . . , Aj in Af ,

(6) E [N1 (A1) · · ·Nj (Aj)] ≥ cαµ
(
A1 ∩ T−k2A2 ∩ · · · ∩ T−jAj

)
.

Let us consider now a generating sequence
((

An
i

)
1≤i≤pn

)
n≥1

of partitions of A:

this means that this sequence of partitions of A is increasing, and that for any
x 6= y in A, there exists n(x, y) such that, for any n ≥ n(x, y), x and y do not
belong to the same atom of the partition

(
An

i

)
1≤i≤pn

. Observe that

pn∑

i=1

N1

(
An

i

)
N2

(
T k2An

i

)
· · ·Nj

(
T kjAn

i

)

−−−−→
n→∞

#
{
x ∈ N1 ∩A : T k2x ∈ N2, . . . , T

kjx ∈ Nj

}
.

Moreover,
pn∑

i=1

N1

(
An

i

)
N2

(
T k2An

i

)
· · ·Nj

(
T kjAn

i

)

≤ N1 (A)N2

(
T k2A

)
· · ·Nj−1

(
T kj−1A

) pn∑

i=1

Nj

(
T kjAn

i

)

= N1 (A)N2

(
T k2A

)
· · ·Nj−1

(
T kj−1A

)
Nj

(
T kjA

)
,
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which is integrable. So we can apply the dominated convergence theorem to get

E

[
pn∑

i=1

N1

(
An

i

)
N2

(
T k2An

i

)
· · ·Nj

(
T kjAn

i

)
]

−−−−→
n→∞

E
[
#
{
x ∈ N1 ∩ A, T k2x ∈ N2, . . . , T

kjx ∈ Nj

}]
.

On the other hand, we have

E

[
pn∑

i=1

N1

(
An

i

)
N2

(
T k2An

i

)
· · ·Nj

(
T kjAn

i

)
]

=

pn∑

i=1

E
[
N1

(
An

i

)
N2

(
T k2An

i

)
· · ·Nj

(
T kjAn

i

)]

≥

pn∑

i=1

cαµ
(
An

i
∩ An

i
∩ · · · ∩ An

i

)
by (6)

= cα

pn∑

i=1

µ
(
An

i

)

= cαµ (A)

Letting n go to ∞, we get

E
[
#
{
x ∈ N1 ∩ A, T k2x ∈ N2, . . . , T

kjx ∈ Nj

}]
≥ cαµ (A) ,

which concludes the proof. �

In the case where N1 = N2 = N , the following proposition shows that some
particular form for MN

2 forces the T -point process to be free.

Proposition 2.7. Let N be a square integrable T -point process, whose second
order moment measure satisfies

MN
2 (A1 ×A2) = µ (A1 ∩ A2) + µ (A1)µ (A2) .

Then N is a free T -point process. In particular the Poisson process associated to
the Poisson suspension (X∗,A∗, µ∗, T∗) is a free T -point process.

Proof. Fix k 6= 0. Take a set A ∈ Af such that A ∩ T kA = ∅ (such a set always

exists) and
((

An
i

)
1≤i≤pn

)
n≥1

a generating sequence of partitions of A, satisfying

µ (An
i ) =

µ(A)
pn

for all 1 ≤ i ≤ pn. Then

E

[
pn∑

i=1

N
(
An

i

)
N
(
T kAn

i

)
]
−−−−→
n→∞

E
[
#
{
x ∈ N ∩A : T kx ∈ N

}]
.

But, as A ∩ T kA = ∅,

E

[
pn∑

i=1

N
(
An

i

)
N
(
T kAn

i

)
]
=

pn∑

i=1

MN
2 (An

i × T kAn
i )

=

pn∑

i=1

µ(An
i )

2 =
µ (A)

2

pn
−−−−→
n→∞

0.
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Therefore #
{
x ∈ N ∩ A : T kx ∈ N

}
= 0 a.s. But this is also true if we replace

A by T nA for any n ∈ Z. As T is conservative ergodic, the set A is a sweep out
set, which means that ∪n∈ZT

nA = X a.e. and we get #
{
x ∈ N, T kx ∈ N

}
= 0

a.s. �

3. Getting SuShis

For each n ≥ 1, let us denote by Pn the set of all partitions of {1, . . . , n}. Given
π ∈ Pn, and a family κ = (ki)1≤i≤n of integers, we can define a measure mκ

π on
Xn, by setting

mκ
π(A1 × · · · ×An) :=

∏

P∈π

µ

(
⋂

i∈P

T−kiAi

)
.

When κ = (0, . . . , 0), we simply note mπ instead of m
(0,...,0)
π . When π is the parti-

tion into points, mκ
π is the product measure µ⊗n. When π is the trivial partition

with a single atom, mπ corresponds to the n-diagonal measure, concentrated on
∆n := {(x, . . . , x) ∈ Xn : x ∈ X}.

Since µ is T -invariant, the measure mκ
π is T×n-invariant. Moreover, we can

always, without changing the measure mκ
π, shift the subfamilies (ki)i∈P so that

ki = 0 whenever i is the smallest element of the atom P of π: we say in this case
that κ is π-compatible.

The action of T×n on the measure mκ
π is isomorphic to

(
X#π,A⊗#π, µ⊗#π, T×#π

)
].

From now on, we assume that T satisfies the following properties:

(P1) For each n ≥ 1, the product system (Xn,A⊗n, µ⊗n, T×n) is ergodic;

(P2) For each n ≥ 1, if σ is a boundedly finite, T×n-invariant measure on
Xn, whose marginals are absolutely continuous with respect to µ, then
σ is conservative, and its ergodic components are all of the form mκ

π for
some π ∈ Pn and some π-compatible family κ.

An example of a transformation T satisfying both properties is given by the so-
called nearly finite Chacon transformation [13].

3.1. Free implies Poisson. It is well known that a Poisson distribution is com-
pletely determined by its moments, which follows from the fact that its moment
generating function is analytic in a neighborhood of 0 (see e.g. [6, p. 86]). The fol-
lowing lemma is a kind of generalization of this result to the distribution of Poisson
point processes, which are completely determined by their moment measures.

Lemma 3.1. Let N be a Poisson point process on X of intensity µ, and assume
that N is a point process on X with the same moment measures as N . Then N is
also a Poisson point process of intensity µ.

Proof. For any A ∈ Af , N (A) is a Poisson random variable of intensity µ (A)
and as such, its distribution is completely determined by its moments. Since, by
hypothesis, N (A) has the same moments, it is also a Poisson random variable of
parameter µ (A). We conclude by applying Rényi’s characterization theorem [22]
which, in particular, identifies as a Poisson process on X of intensity µ, any point
process such that, for any A ∈ Af , the random measure of A is Poisson distributed
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with parameter µ (A). (Rényi’s orginal statement was restricted to Poisson pro-
cesses on the real line with a non atomic Radon measure but it can of course be
translated on any metric space with a continuous Borel measure.)

�

Theorem 3.2. Assume that properties (P1) and (P2) hold for T . If N is a free T -
point process with moments of all orders defined on an ergodic system (Ω,F ,P, S),
then it is Poisson.

Proof. Let N be a free T -point process with moments of all orders. We can assume
that µ is the intensity of N . In the first step of the proof, we want to show that
the moment measures of any order of N coincide with those of a Poisson process of
intensity µ (we recall that this latter point process is itself a free, ergodic, T -point
process).

The n-order moment measure MN
n satisfies the hypothesis of Property (P2),

hence it has at most countably many ergodic components, of the form mκ
π for some

π ∈ Pn and some π-compatible family κ. By lemma 2.6 applied with N1 = · · · =
Nn = N , which is a free T -point process, we see that the contribution of any mκ

π,
where κ 6= (0, . . . , 0), vanishes. Therefore, the ergodic decomposition of MN

n writes

MN
n =

∑

π∈Pn

cπmπ.

We first point out that for each n ≥ 1, the weight of the n-diagonal measure is 1
(this is valid for any point process of intensity µ). Indeed, using once again a set

A ∈ Af , and
((

Aℓ
i

)
1≤i≤pℓ

)
ℓ≥1

a generating sequence of partitions of A, we get

pℓ∑

i=1

MN
n

(
Aℓ

i × · · · ×Aℓ
i

)
= E

[
pℓ∑

i=1

N
(
Aℓ

i

)
· · ·N

(
Aℓ

i

)
]

−−−→
ℓ→∞

E [N (A)] = µ (A) = µ (A ∩ · · · ∩ A) .

On the other hand,

pℓ∑

i=1

MN
n

(
Aℓ

i × · · · ×Aℓ
i

)
= MN

n

(
pℓ⊔

i=1

Aℓ
i × · · · ×Aℓ

i

)

−−−→
ℓ→∞

MN
n (∆n ∩ A× · · · ×A) .

Therefore MN
n (∆n ∩ A× · · · ×A) = µ (A ∩ · · · ∩ A), which implies, as claimed,

that the weight of the n-diagonal measure is 1.
We now want to prove by induction that, for all n ≥ 1,MN

n is the n-order moment
measure of a Poisson process of intensity µ. The property is of course satisfied for
n = 1. Let us assume it is satisfied up to some n ≥ 1, and let A1, . . . , An+1 be sets
in Af . Pick a nonempty subset K ( {1, . . . , n+ 1}. By the ergodic theorem, we
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get

(7)
1

ℓ

ℓ∑

k=1

E

[
∏

i∈K

N (Ai)

(
∏

i∈Kc

N (Ai) ◦ S
k

)]

−−−→
ℓ→∞

E

[
∏

i∈K

N (Ai)

]
E

[
∏

i∈Kc

N (Ai)

]

= MN
#K

(
∏

i∈K

Ai

)
MN

(n+1−#K)

(
∏

i∈Kc

Ai

)
.

On the other hand,

1

ℓ

ℓ∑

k=1

E

[
∏

i∈K

N (Ai)

(
∏

i∈Kc

N (Ai) ◦ S
k

)]
(8)

=
1

ℓ

ℓ∑

k=1

MN
n+1

(
T−ǫk(1)A1 × · · · × T−ǫk(n)An

)

=
∑

π∈Pn+1

cπ
1

ℓ

ℓ∑

k=1

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)

where ǫk (i) := k if i ∈ K, and ǫk (i) := 0 otherwise. Coming back to the definition
of mπ, we write

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
=
∏

P∈π

µ

(
⋂

i∈P

T−ǫk(i)Ai

)
.

Observe that, if K is a union of atoms of π, we have for any 1 ≤ k ≤ ℓ

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
= mπ (A1 × · · · ×An+1) .

Otherwise, there exists an atom P ∈ π containing indices i ∈ K and j /∈ K, hence
with ǫk (i) = k and ǫk(j) = 0. We get that for some constant C,

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
≤ Cµ(Aj ∩ T−kAi).

But, since T is an ergodic infinite-measure-preserving map,

1

ℓ

ℓ∑

k=1

µ
(
Aj ∩ T−kAi

)
−−−→
ℓ→∞

0.

Defining PK
n+1 as the set of partitions π ∈ Pn+1 where K is a union of atoms of π,

the above proves that the contribution of all partitions π ∈ Pn+1 \PK
n+1 vanishes,

and we get, using (7) and (8),

MN
#K

(
∏

i∈K

Ai

)
MN

(n+1−#K)

(
∏

i∈Kc

Ai

)
=

∑

π∈PK
n+1

cπmπ (A1 × · · · ×An+1) .

Since ∅ 6= K ( {1, . . . , n+ 1}, the ergodic decompositions of MN
#K and MN

(n+1−#K)

only involve the coefficients cπ, π ∈ P1 ∪ · · · ∪Pn. Identifying the ergodic decom-
positions on both sides of the above equality, we see that all the coefficients cπ,
π ∈ PK

n+1 are completely determined by coefficients corresponding to partitions in
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P1 ∪ · · · ∪Pn. Moreover, the above argument is valid in particular when N is the
Poisson process of intensity µ (which is free by Proposition 2.7). By letting K run
through all strict subsets of {1, . . . , n+ 1}, and using the induction hypothesis, we
identify all but one coefficients of the ergodic decomposition ofMN

n+1 as those of the
Poisson point process of intensity µ. The only coefficient that cannot be determined
by this method is the one associated to the trivial partition of {1, . . . , n+1} into a
single atom. But this corresponds to the (n+1)-diagonal measure, and we already
know that this coefficient is 1. Thus we have proved the moment measures of any
order of N are those of a Poisson point process of intensity µ, and we conclude by
Lemma 3.1. �

3.2. Dissociation implies independence.

Proposition 3.3. Assume that properties (P1) and (P2) hold for T . LetN1, . . . , Nk

be Poisson T -point processes, of respective intensity α1µ, . . . , αkµ, defined on the
same ergodic system (Ω,F ,P, S). If these processes are mutually dissociated, then
they are independent.

Proof. Let n1, . . . , nk be positive numbers, n := n1+ · · ·+nk, and let {Q1, . . . , Qk}
be the partition of {1, . . . , n} in subsets of consecutive integers of respective size
n1, . . . , nk. For any {Ai}1≤i≤n in Af , set

(9) σ(A1 × · · · ×An) := E




k∏

j=1

∏

i∈Qj

Nj(Ai)


 .

This defines a T×n-invariant measure σ on (Xn,A⊗n), which satisfies the hypothe-
ses of Property (P2). Hence σ has at most countably many ergodic components,
of the form mκ

π for some π ∈ Pn and some π-compatible family κ. By lemma 2.6,
as the processes N1, . . . , Nk are mutually dissociated, only partitions π refining the
partition {Q1, . . . , Qk} may appear in the ergodic decomposition of σ. Therefore,
any ergodic component mκ

π of σ has the form

mκ
π(A1 × · · · ×An) =

k∏

j=1

νj


∏

i∈Qj

Ai


 ,

where each νj is a T×nj -invariant measure. In particular, any ergodic component
of σ is invariant by the transformation (x1, . . . , xn) 7→ (y1, . . . , yn), where yi :=
Txi if i ∈ Qk, and yi := xi otherwise. It follows that σ itself is invariant by
this transformation, hence the expression defining σ(A1 × · · · × An) on the right-
hand side of (9) is unchanged if we replace Nk(Ai) by Nk(T

−1Ai) for all i ∈ Qk

simultaneously. Therefore, we can write for any {Ai}1≤i≤n in Af and any L ≥ 1

E




k∏

j=1

∏

i∈Qj

Nj(Ai)


 =

1

L

∑

1≤ℓ≤L

E






k−1∏

j=1

∏

i∈Qj

Nj(Ai)


 ∏

i∈Qk

Nk(T
−ℓAi)




= E






k−1∏

j=1

∏

i∈Qj

Nj(Ai)




 1

L

∑

1≤ℓ≤L

∏

i∈Qk

Nk ◦ S
ℓ(Ai)




 .
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By the ergodic theorem, this converges as L → ∞ to

E



k−1∏

j=1

∏

i∈Qj

Nj(Ai)


E


 ∏

i∈Qk

Nk(Ai)


 .

A straightforward induction on k then yields the equality

E




k∏

j=1

∏

i∈Qj

Nj(Ai)


 =

k∏

j=1

E


∏

i∈Qj

Nj(Ai)


 ,

and this is sufficient to obtain the independence between the Poisson processes. �

Compiling the previous results, we now get the following structure theorem.

Theorem 3.4. Assume that properties (P1) and (P2) hold for T . Let N be a T -
point process with moments of all orders defined on an ergodic system (Ω,F ,P, S).
Then N is a SuShi.

Proof. Since N is square integrable, Proposition 2.1 ensures that N almost surely
gives a finite measure to any T -orbit. We can therefore apply Proposition 2.5 to
write N as

N =
∑

i∈I

(
∑

k∈Fi

NFi
◦ Sk

)
, P-a.s.

where I is countable, each Fi is a finite subset of Z, and the T -point processes NFi

are free and mutually dissociated. Then Theorem 3.2 proves that each NFi
is a

Poisson process, and Proposition 3.3 shows that they are independent. �

4. Application to the structure of Poisson joinings

4.1. Notions on the L2 structure of a Poisson suspension. There is a strong
relationship between the L2-spaces of the suspension and the underlying space.
Namely, L2 (µ∗) can be seen as the Fock space of L2 (µ) (see [19]), that is

L2 (µ∗) ≃ Fock
(
L2 (µ)

)
:= C⊕ L2 (µ)⊕ L2 (µ)⊙2 ⊕ · · · ⊕ L2 (µ)⊙n ⊕ · · · ,

where L2 (µ)
⊙n

stands for the n-order symmetric tensor power of L2 (µ), and the

inner product given on L2 (µ)⊙n is given by

〈
f⊗n, g⊗n

〉
Fock(L2(µ))

:=
1

n!
〈f, g〉n .

This means there is a sequence {Hn}n≥0 of so-called (Poissonian) chaos which

are orthogonal subspaces inside L2 (µ∗), such that L2 (µ∗) =
⊕

n≥0 H
n, and where,

for each n ≥ 1, Hn is identified to L2 (µ)⊙n through multiple integrals (H0 corre-
sponds to constant functions, identified to C). In this paper we only need to know
what happens in the first chaos: H1 is linearly spanned by functions N (A)−µ (A),
for A ∈ Af , and N (A) − µ (A) ∈ H1 corresponds to 1A ∈ L2 (µ). We have the
isometry relation

〈
N (A)− µ (A) , N (B)− µ (B)

〉
L2(µ∗)

= 〈1A, 1B〉 L2(µ) .
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If ϕ is a linear operator from L2 (µ1) to L2 (µ2), of norm less than or equal to
1, then ϕ extends naturally to an operator ϕ̃, called the exponential of ϕ, from
Fock

(
L2 (µ1)

)
to Fock

(
L2 (µ2)

)
, by

ϕ̃
(
f⊗n

)
:= ϕ (f)⊗ · · · ⊗ ϕ (f) .

In particular, if UT and UT∗
denote the unitary operators associated to T and T∗

on their respective spaces, then, through the identification, we have

UT∗
= ŨT .

4.2. Poisson factors and Poisson joinings. There is a distinguished collection
of factors within a Poisson suspension (X∗,A∗, µ∗, T∗) that are also Poisson sus-
pensions:

Definition 4.1 (Poisson factor). Let Y ⊂ X be a T -invariant measurable set, and
let C ⊂ A|Y be a σ-finite sub-σ-algebra of A restricted to Y . Then the Poisson
suspension (Y ∗, C∗, µ∗, T∗) is a natural factor of (X∗,A∗, µ∗, T∗) via the factor map

ξ ∈ X∗ 7−→ ξ|C ∈ Y ∗.

Such a factor is called a Poisson factor of the suspension (X∗,A∗, µ∗, T∗).

Let (Yi,Yi, ρi, Ri), i ∈ I, be a finite or countable family of dynamical systems.
We recall that a joining of these dynamical systems is a measure on

∏
i Yi, invariant

by the product transformation
∏

iRi : (yi)i∈I 7→ (Riyi)i∈I , and whose marginal on
each coordinate i is ρi.

Observe that this definition is not restricted to probability measure preserving
systems, but extends to the case where measures are σ-finite. However it is worth
to note that the product measure is not a joining in the infinite measure case (its
marginals are not σ-finite).

To a joining m of two systems (Yi,Yi, ρi, Ri), i = 1, 2, corresponds a Markov
operator ϕ : L2(ρ1) → L2(ρ2), defined by

∀A ∈ Y1, B ∈ Y2 with finite measure, m(A×B) :=

∫

B

ϕ(1A) dρ2.

A self-joining of order n is a joining of n identical copies of the same system.

The structure of Poisson suspensions allows one to define a natural family of
joinings which plays a central role in this work.

Definition 4.2 (Poisson joining). Let (X∗
i ,A

∗
i , µ

∗
i , (Ti)∗), i ∈ I be a finite or count-

able family of Poisson suspensions. Assume that (Z∗,Z∗,m∗, R∗) is some other
Poisson suspension, that (Zi)i∈I is a family of R-invariant subsets of Z, and that
for each i ∈ I we are given a measurable map πi : Zi → Xi such that

• (πi)∗(m|Zi
) = µi,

• πi ◦R = Ti ◦ πi.

Let N be a Poisson R-point process of distribution m∗. Then the distribution of(
(πi)∗(N |Zi

)
)
i∈I

is a joining of the Poisson suspensions (X∗
i ,A

∗
i , µ

∗
i , (Ti)∗), which

we call a Poisson joining.

Let us recall the probabilistic notion of infinite divisibility, which is useful for the
study of Poisson joinings. The addition of σ-finite measures on (X,A) is measurable
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and well defined and so is the convolution of distributions on
(
X̃, Ã

)
: m1 ∗m2 is

the pushforward measure of m1 ⊗m2 by the application
(
X̃ × X̃, Ã ⊗ Ã

)
→

(
X̃, Ã

)

(ν1, ν2) 7→ ν1 + ν2

Definition 4.3 (Infinite divisibility). A probability measure m on
(
X̃, Ã

)
is said

to be infinitely divisible if, for every k ≥ 2, there exists a probability measure mk

such that

m = (mk)
∗k := mk ∗ · · · ∗mk.

The distribution of a Poisson point process is easily seen to be infinitely divisible,
as we have

µ∗ =

((
1

k
µ

)∗)∗k

,

which is the formula capturing the fact that the independent superposition of k
Poisson point processes of intensities 1

k
µ is a Poisson point process of intensity µ.

Observe that a pair of measures (ξ1, ξ2) ∈ X̃1 × X̃2 is naturally identified with

a measure on the disjoint union X1 ⊔ X2. Therefore, a distribution on X̃1 × X̃2

is itself identified to a distribution on ˜(X1 ⊔X2), and we use this identification to
define infinite divisibility of a joining of Poisson suspensions.

Poisson joinings of two Poisson suspensions were defined independently using
Markov operators in [8], and infinite divisibility in [23], where both definitions were
proved to be equivalent. Combining the results of these two papers, we get the
following proposition.

Proposition 4.4. Let γ be a joining of two Poisson suspensions. The following
properties are equivalent:

(1) γ is a Poisson joining.
(2) γ is infinitely divisible.
(3) The Markov operator associated to γ is the exponential of a sub-Markov

operator defined between the L2 spaces of the bases.

In [8] and [23], Poisson joinings of two Poisson suspensions (X∗
i ,A

∗
i , µ

∗
i , (Ti)∗),

i = 1, 2, are in fact characterized by the following structure, which is easily seen to
fit our definition 4.2. Let us first fix two measures γ1 ≤ µ1 and γ2 ≤ µ2, respectively
invariant by T1 and T2. Then consider a joining (X1 ×X2,A1 ⊗A2,m, T1 × T2) of
(X1,A1, γ1, T1) and (X2,A2, γ2, T2), and form the Poisson suspension

(
(X1 ×X2)

∗ , (A1 ⊗A2)
∗ ,m∗, (T1 × T2)∗

)
.

Now we project the points of the Poisson process on X1 × X2 of intensity m on
both axes X1 and X2, getting two Poisson processes with intensities γ1 and γ2.
This defines a factor map

ν ∈ (X1 ×X2)
∗ 7→

(
ν (· ×X2) , ν (X1 × ·)

)
∈ X∗

1 ×X∗
2 ,

and the factor we obtain is a joining (X∗
1 ×X∗

2 ,A
∗
1 ⊗A∗

2, m̃, (T1)∗ × (T2)∗) of the
two Poisson suspensions (X∗

1 ,A
∗
1, γ

∗
1 , (T1)∗) and (X∗

2 ,A
∗
2, γ

∗
2 , (T2)∗). In order to ad-

just intensities when γi < µi, we superpose on each side an independent Poisson
process of intensity µi−γi, i = 1, 2. Formally, we consider the direct product of the
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three systems
(
X∗

1 ,A
∗
1, (µ1 − γ1)

∗
, (T1)∗

)
, (X∗

1 ×X∗
2 ,A

∗
1 ⊗A∗

2, m̃, (T1)∗ × (T2)∗) and(
X∗

2 ,A
∗
2, (µ2 − γ2)

∗
, (T2)∗

)
, and form

(X∗
1 ×X∗

2 ,A
∗
1 ⊗A∗

2, m̂, (T1)∗ × (T2)∗)

through the factor map from
(
X∗

1 × (X∗
1 ×X∗

2 )×X∗
2

)
to (X∗

1 ×X∗
2 ) defined by

(ν̃1, (ν1, ν2) , ν̃2) 7→ (ν̃1 + ν1, ν2 + ν̃2) .

Then m̂ is a Poisson joining of the two Poisson suspensions (X∗
i ,A

∗
i , µ

∗
i , (Ti)∗),

i = 1, 2.
The sub-Markov operator mentioned in Proposition 4.4 corresponds to the join-

ingm in the above description, which can also be seen as a sub-joining of (X1,A1, µ1, T1)
and (X2,A2, µ2, T2).

Example 4.5. The main situation that occurs in this paper is a Poisson self-joining
of order 2 of (X∗,A∗, µ∗, T∗) where

m :=
∑

k∈Z

ak∆Tk

with ak ≥ 0 and
∑

k∈Z
ak ≤ 1. If ak = 1 for some k, the corresponding Poisson

joining m̂ is the graph joining ∆(T∗)k . If
∑

k∈Z
ak = 0, then m̂ is the product

joining. In the other cases, we get a combination of both.

4.3. Embedding joinings in a universal suspension.

Lemma 4.6. Assume that properties (P1) and (P2) hold for T . Let {Ni}i∈I and N
be Poisson T -point processes defined on the ergodic dynamical system (Ω,F ,P, S),
where I is at most countable and the {Ni}i∈I are independent.

Then there exists a collection of (eventually vanishing) independent Poisson T -

point processes
(
N∞, {Ni,k}i∈I, k∈Z∪∞

)
, also defined on (Ω,F ,P), measurable with

respect to σ
(
N, {Ni}i∈I

)
, such that

Ni = Ni,∞ +
∑

k∈Z

Ni,k,

and

N = N∞ +
∑

i∈I

∑

k∈Z

Ni,k ◦ S
k.

Proof. For each i, we consider the pair (N,Ni). For every k ∈ Z, the points
x ∈ Ni (ω) such that T kx ∈ N (ω) define a point process Ni,k. By Proposition 2.7,
N and the Ni are free. Hence, we obtain

∑

k∈Z

Ni,k ≤ Ni

and ∑

i∈I

∑

k∈Z

Ni,k ◦ S
k ≤ N.

We define also Ni,∞ := Ni−
∑

k∈Z
Ni,k and N∞ := N−

∑
i∈I

∑
k∈Z

Ni,k ◦Sk. Then
the processes {Ni,k}i∈I, k∈Z∪∞ and N∞ are free and mutually dissociated T -point

processes defined on the ergodic dynamical system (Ω,F ,P, S). They are therefore
independent Poisson T -point processes by Theorem 3.2 and Proposition 3.3. �
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Theorem 4.7. Assume that properties (P1) and (P2) hold for T . Let (α1, α2, . . .)
be a finite or countable family of positive real numbers. Then any ergodic joining
of the family of Poisson suspensions (X∗,A∗, (αiµ)

∗, T∗) is a Poisson joining, which
can be obtained as a factor of the ergodic Poisson suspension

(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)
,

where B and λ denote the Borel σ-algebra and the Lebesgue measure on R+ re-
spectively.

Proof. We only consider the case of a joining of a countably infinite family, the
case of a finite family being covered by the same proof up to obvious changes in

notations. Let (Ω,F ,P, S) :=
(
X∗N, (A∗)⊗N ,m, (T∗)

⊗N
)
be an ergodic joining of

the countable family of Poisson suspensions (X∗,A∗, (αiµ)
∗, T∗), i ∈ N. For each

j ≥ 1, we define on this space the Poisson T -point processes of intensity αjµ

Nj (ν1, ν2, . . .) := νj .

Let N be the Poisson point process with intensity µ⊗λ on X×R+. Observe first
that, if J ⊂ R+ is an interval of length β, the random measureN (· × J) is a Poisson
T -point process of intensity βµ (here the underlying transformation is (T × Id)∗).
Moreover, if we take disjoint subintervals of R+, the corresponding Poisson T -point

processes obtained in this way are independent. In particular, Ñ1 := N (· × [0, α1))

has the same distribution as N1. Observe also that Ñ1 can be written as π∗(N|Z1
),

where Z1 := X × [0, α1) and π is the projection on X .

Set M1 := N1, and M̃1 := Ñ1. Now assume that, for some n ≥ 1, we have
found a finite or countable family (Mi)i∈I of independent Poisson T -point processes,
measurable with respect to (N1, . . . , Nn), such that for 1 ≤ j ≤ n,

(10) Nj =
∑

i∈Ij

Mi ◦ S
k(i,j),

where Ij ⊂ I and k(i, j) ∈ Z. Let βi ≥ 0 be such that Mi has intensity βiµ. Assume
also that we have a family (Ji)i∈I of disjoint subintervals of R+ of respective length

βi. Then, the family of T -point processes M̃i := N (· × Ji) has the same distribution
as (Mi)i∈I , and the formula

Ñj :=
∑

i∈Ij

M̃i ◦ ((T × Id)∗)
k(i,j)

yields a family (Ñ1, . . . , Ñn) of T -point processes defined on
(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)
,

which has the same distribution as (N1, . . . , Nn). Moreover, each Ñj, 1 ≤ j ≤ n

can be written as (πj)∗(N|Zj
), where Zj := X ×

(⋃
i∈Ij

Ji

)
, and πj is T k(i,j) ◦ π

on X × Ji.
By Lemma 4.6 applied to the collection (Mi) and Nn+1, we obtain a countable

family of independent Poisson T -point processes {Mi,k}i∈I,k∈Z∪{∞} and Nn+1,∞,

such that for each i ∈ I,

Mi =
∑

k∈Z∪{∞}

Mi,k,
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and

Nn+1 = Nn+1,∞ +
∑

i∈I

∑

k∈Z

Mi,k ◦ S
k.

In particular, any Nj , 1 ≤ j ≤ n + 1 can be reconstructed from the family Mi,k

and Nn+1,∞ with a formula similar to (10). Each Mi,k has intensity βi,kµ for some
βi,k ≥ 0, and

βi =
∑

k∈Z∪{∞}

βi,k.

We can therefore partition Ji into disjoint subintervals Ji,k of respective length
βi,k. Let β ≥ 0 be such that Nn+1,∞ has intensity βµ. We can then find an
extra subinterval of R+, disjoint from

⋃
i∈I Ji, of length β. From this family of

disjoint subintervals of R+ we can construct a family of independent Poisson T -

point processes
(
M̃i,k

)
and Ñn+1,∞. Then, setting

Ñn+1 := Ñn+1,∞ +
∑

i∈I

∑

k∈Z

M̃i,k ◦ ((T × Id)∗)
k,

we get a family (Ñ1, . . . , Ñn, Ñn+1) of T -point processes which has the same distri-
bution as (N1, . . . , Nn, Nn+1).

By induction we get a family (Ñ1, Ñ2, . . .), defined on
(
(X × R+)

∗ , (A⊗ B)∗ , (µ⊗ λ)∗ , (T × Id)∗
)
,

which has the same distribution as (N1, N2 . . .). Moreover, each Ñj can be written
as (πj)∗(N|Zj

), where Zj is a T × Id-invariant subset of X ×R+, and πj : Zj → X
satisfies the requirements of Definition 4.2. This ends the proof of the theorem. �

4.4. The PaP property. In [21], the natural question of the existence of Poisson
suspensions with Poisson joinings as only ergodic self-joinings was addressed. This
lead to the following definition:

Definition 4.8. A Poisson suspension whose all ergodic self-joinings of order n
(resp. countable ergodic self-joinings) are Poisson is said to be PaP(n) (resp.
PaP(∞) (from the French “Poisson à autocouplages Poissons”). PaP(2) will be
shortened as PaP .

This notion is inspired by, and therefore closely related to, the so-called GAG
property for Gaussian stationary processes (see [17]). Indeed GAG Gaussian sta-
tionary processes are the processes whose ergodic self-joinings remain Gaussian.

We first present some consequences of the PaP property.

Proposition 4.9. A Poisson suspension with the PaP(∞) property has the so-
called PID property (i.e. for any n, any self-joining of order n with pairwise inde-
pendent coordinates is the product measure).

Proof. Consider an n-order self-joining of a PaP(∞) suspension with pairwise inde-
pendence. With the notation of Definition 4.2, we obtain that any two coordinates
of the self-joining are associated to pairwise disjoint sets Zi ⊂ Z. But by ele-
mentary properties of Poisson point processes recalled in Definition 1.3, we obtain
global independence. �
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Recall that the centralizer of an invertible measure preserving transformation S
is the set, denoted by C(S), of all invertible measure preserving transformations on
the same space which commute with S.

Proposition 4.10. Let (X∗,A∗, µ∗, T∗) be a PaP suspension and let R ∈ C (T∗).
Then there exists S ∈ C (T ) such that R = S∗. In particular C (T∗) ≃ C (T ).

Proof. R induces an ergodic self-joining of the suspension which is Poisson thanks
to the PaP property. Therefore the associated Markov operator has the form ϕ̃
for some sub-Markov operator ϕ on L2 (µ) that commutes with T . But as ϕ̃ is an
isometry, ϕ is also an isometry and is therefore induced by a measure preserving map
S of (X,A, µ) that commutes with T , i.e. an element of C (T ). By identification,
R = S∗. �

The next proposition is very similar to Theorem 2 in [20].

Proposition 4.11. Let (X∗,A∗, µ∗, T∗) be a PaP suspension and K ⊂ A∗ a non-
trivial factor. Then there exists a non-trivial Poisson factor contained in K, that is,
there exists a T -invariant set of positive measure Y ⊂ X and a T -invariant σ-finite
σ-algebra C ⊂ A|Y such that C∗ ⊂ K.

Proof. Let Φ be the conditional expectation corresponding to K, which is the
Markov operator associated to the relatively independent self-joining over K. The
ergodic decomposition of this joining allows one to write Φ as an integral of inde-
composable operators corresponding to ergodic self-joinings. By the PaP property,
these operators are of exponential form, i.e. we have:

Φ =

∫

W

Ψ̃w ρ (dw)

for some probability space (W ,B, ρ). As each Ψ̃w preserves the first chaos, so does

Φ. Moreover, if Φ vanishes on the first chaos, so does Ψ̃w for ρ-almost every w ∈ W .
But the only Markov operator of exponential form that vanishes on the first chaos
is the projection on the constants. This means that Φ is also this projection,
which corresponds to the conditional expectation on the trivial factor, yielding
a contradiction. Thus Φ does not vanish on the first chaos and we can apply
Proposition 1 in [20]: Φ induces on L2(µ) a sub-Markov operator ϕ, and there
exists a T -invariant set Y ⊂ X such that ϕ restricted to L2(µ|Y ) is a conditional
expectation on a σ-finite factor C ⊂ A|Y , and ϕ vanishes on L2(µ|Y c). Coming
back to L2(µ∗), Φ coincides with the exponential operator ϕ̃ on the first chaos.
Therefore its image contains all the vectors of the form N(A)− µ(A), A ∈ C ∩Af .
These vectors are therefore K-measurable, thus C∗ ⊂ K. �

Corollary 4.12. Let (X∗,A∗, µ∗, T∗) be a PaP suspension. If T is ergodic and
has no non-trivial factor, then T∗ is prime.

Proposition 4.13. Let (X∗,A∗, µ∗, T∗) be a PaP suspension and K ⊂ A∗ a factor,
then T∗ is relatively weakly mixing over K if and only if K is a Poisson factor.

Proof. The fact that T∗ is relatively weakly mixing over K if it is a Poisson factor
was remarked in [23]. To prove the converse, assume T∗ is relatively weakly mixing
over K, this means that the relatively independent joining over K is ergodic and
therefore a Poisson joining thanks to the PaP property. Then K is Poisson thanks
to Proposition 4.7 in [23]. �
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The notion of semi-simplicity was introduced in [7]:

Definition 4.14. The probability preserving dynamical system (Ω,F ,P, S) is semi-
simple if any ergodic self-joining (Ω× Ω,F ⊗ F ,m, S × S), is a relatively weakly
mixing extension over (Ω,F ,P, S) through the projection map.

As an easy consequence of the preceding result, we get:

Corollary 4.15. A PaP suspension is semi-simple.

Proposition 4.16. Let (X∗,A∗, µ∗, T∗) be a PaP suspension and a factor K gen-
erated by random variables of the form N (Ai), Ai ∈ Af , i ∈ I. Then K is a Poisson
factor.

Proof. If Φ is the conditional expectation corresponding to K, then as in the proof
of Proposition 4.11, it coincides on the first chaos with ϕ̃ for some conditional
expectation on a σ-finite factor C ⊂ A |Y , where Y is a T -invariant subset of X and
C∗ ⊂ K . Therefore, the random variables N (Ai)− µ (Ai) are in the image of both
Φ and ϕ̃, and as such are C∗-measurable. This implies that K ⊂ C∗ and therefore
K = C∗. �

Proposition 4.17. A Poisson factor of a PaP suspension is also PaP .

Proof. Let (Y ∗,B∗, ν∗, S∗) be a Poisson factor of a PaP suspension (X∗,A∗, µ∗, T∗).
An ergodic self-joining of the former can be embedded into an ergodic self-joining
of the latter, which is Poisson by hypothesis. Therefore, by definition of Poisson
joinings, we get another suspension (Z∗,Z∗, ρ∗, R∗) in which the two copies of X∗

are seen as Poisson factors. Since Poisson factors of Poisson factors are still Poisson
factors, the two copies of Y ∗ are Poisson factors of Z∗, and we get the result. �

Theorem 4.18. Assume that properties (P1) and (P2) hold for T . Then the Pois-
son suspension (X∗,A∗, µ∗, T∗) is PaP(∞), prime, mildly mixing and its centralizer
is reduced to the powers of T∗.

Proof. By Theorem 4.7, the suspension is PaP(∞). Primeness comes from Corol-
lary 4.12, and the fact that properties (P1) and (P2) imply that T has no non-trivial
factor (see [12], Section 4). The triviality of the centralizer of T follows also from
properties (P1) and (P2) (see again [12], Section 4), then applying Proposition
4.10, we get that T∗ commutes only with its powers. At last, a transformation is
mildly mixing if it has no non-trivial rigid factor, which in the situation of a prime
transformation reduces to the property that T∗ is not rigid. This is the case, since
a rigid transformation has an uncountable centralizer (see e.g. [14]). �

We know that properties (P1) and (P2) imply the triviality of the centralizer
of T . Hence, for n ≥ 2, T n never satisfies (P1) and (P2), even if T does. We
can nevertheless obtain the PaP property for T n

∗ when T satisfies properties (P1)
and (P2). This is a direct application of a lemma we borrow from [17].

Lemma 4.19. Let R and S be two commuting ergodic automorphisms of the prob-
ability space (Ω,F ,P). Let Je

2 (R) (resp. Je
2 (S)) be the set of ergodic self-joinings

of R (resp. S) and let F = 〈R〉 (resp. G = 〈R,S〉) be the closure of the group
generated by R (resp. R and S) inside Aut (Ω,F ,P). If G/F is compact and
Je
2 (S) ⊂ Je

2 (R), then Je
2 (S) = Je

2 (R).
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Corollary 4.20. If (X,A, µ, T ) satisfies properties (P1) and (P2) then for any
n ≥ 2, T n

∗ has the same ergodic self-joinings as T∗. In particular, T n
∗ is PaP .

Proof. First observe that T n
∗ is an ergodic Poisson suspension. Indeed, T n is a

conservative infinite measure preserving automorphism of (X,A, µ) without T n-
invariant set of finite measure: otherwise, if A satisfied T nA = A with µ (A) < +∞,
then

⋃n
k=1 T

kA would be a T -invariant set of finite measure, which is impossible.

As C (T∗) is reduced to the powers of T∗, 〈T n
∗ 〉 =

{
T kn
∗ , k ∈ Z

}
and 〈T∗, T n

∗ 〉 ={
T k
∗ , k ∈ Z

}
, hence the quotient is finite.

To apply Lemma 4.19, it only remains to check that Je
2 (T∗) ⊂ Je

2 (T
n
∗ ). Of course,

an ergodic self-joining of T∗ is a self-joining of T n
∗ , but we have to prove it is ergodic.

By the PaP property for T∗, an ergodic self-joining of T∗ is Poisson, and thus it is
a Poisson self-joining of T n

∗ . But a Poisson self-joining of an ergodic suspension is
itself ergodic, and therefore we have the desired inclusion Je

2 (T∗) ⊂ Je
2 (T

n
∗ ). �

Proposition 4.21. Assume that properties (P1) and (P2) hold for T . Then the
Poisson suspension

(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)

is PaP .

Proof. We denote by N the Poisson process of intensity µ ⊗ λ on X × R+. We
approach this process by a sequence of Poisson processes discretized on the second
coordinate. For each n ≥ 1, we consider the application πn defined on X × R+ by

πn(x, t) :=
(
x, ⌊2nt⌋2−n

)
.

Then, we set Nn := (πn)∗(N ), which is a Poisson process on X×R+, with intensity

µ⊗
(∑

j≥0 2
−nδj2−n

)
. It is therefore concentrated on a countable union of disjoint

copies of X , which are the sets X × {j2−n}, j ≥ 0.
Now observe that the following convergence holds everywhere on (X×R+)∗: for

any continuous function f : X × R+ → R, vanishing outside a bounded set,
∫

f dNn −−−−→
n→∞

∫
f dN .

By the dominated convergence theorem,

E
[
exp

(
−

∫
f dNn

)]
−−−−→
n→∞

E
[
exp

(
−

∫
f dN

)]
.

This is enough to prove the weak convergence of the distribution of Nn to the
distribution of N (see [5], Proposition 11.1.VIII).

Now consider an ergodic self-joining γ of
(
(X × R+)

∗ , (A⊗ B)∗ , (µ⊗ λ)∗ , (T × Id)∗
)
,

and denote by N and N the corresponding Poisson processes, with joint distri-
bution γ. We set Nn as above, and Nn := (πn)∗(N ). By the same arguments
as above, we prove that the joint distribution γn of (Nn,N n) converges weakly to
γ. Note that γn is a self-joining of order 2 of the Poisson suspension of intensity

µ ⊗
(∑

j≥0 2
−nδj2−n

)
, but it can also be interpreted as an infinite ergodic self-

joining of the Poisson suspension (X∗,A∗, (2−nµ)∗, T∗). As such, by Theorem 4.7,
it is a Poisson joining. Then by Proposition 4.4, γn is infinitely divisible. By
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Proposition 11.2.II in [5], infinite divisibility is closed under weak convergence of
distributions, hence γ is also infinitely divisible. We conclude by Proposition 4.4
that γ is a Poisson joining. �

Remark 4.22. In fact it is possible to strengthen the above proposition by proving
that the considered Poisson suspension is PaP(∞), and moreover that all its finite
or countable ergodic self-joinings are factors of itself.

Applying Propositions 4.16 and 4.17, we get the following result.

Corollary 4.23. The factors corresponding to countable self-joinings in Theorem
4.7 are actually PaP Poisson factors.

5. Disjointness results

5.1. Non-disjointness, factors and distal extension. Furstenberg, when in-
troducing joinings and disjointness in [10], asked whether two non-disjoint systems
always possess a non-trivial common factor. In [25], this was shown to be false
by Rudolph. However, all counterexamples to Furstenberg’s question known so
far have the property that one of the two non-disjoint system is a factor of a dis-
tal extension of the other one. (For definition and properties of distal extensions,
we refer e.g. to [11], Chapter 10.) This led Lemańczyk to ask whether the lat-
ter property always holds for two non-disjoint systems [16]. Actually, our Poisson
suspensions provide a new counterexample to Furstenberg’s question, which also
answer Lemańczyk’s question negatively. Recall that, for any α > 0, we denote by

T
(α)
∗ the Poisson suspension

(
X∗,A∗, (αµ)

∗
, T∗

)
.

Proposition 5.1. Assume that properties (P1) and (P2) hold for T . Then for any

α 6= β, T
(α)
∗ and T

(β)
∗ are prime and not disjoint. However, T

(α)
∗ is never a factor

of a distal extension of T
(β)
∗ .

Lemma 5.2. If α 6= β, T
(α)
∗ and T

(β)
∗ are not isomorphic.

Proof. Assume that T
(α)
∗ and T

(β)
∗ are isomorphic. Then there exists an ergodic

joining of these systems which is supported on the graph of an isomorphism. In
this joining, we can find two Poisson T -point processes Nα and Nβ, of respective
intensity αµ and βµ, each of them generating the whole σ-algebra. Then, by
Lemma 4.6, there exist independent Poisson T -point processes N∞

α , N∞
β and Nk

α,

k ∈ Z, which are all measurable with respect to Nβ (and also with respect to Nα),
such that

Nα = N∞
α +

∑

k∈Z

Nk
α,

and

Nβ = N∞
β +

∑

k∈Z

T k
∗

(
Nk

α

)
.

Then N∞
α is both measurable with respect to Nβ, and independent of it because it

is independent of the family (N∞
β , Nk

α, k ∈ Z). It follows that N∞
α = 0 a.s. For the

same reason, N∞
β = 0 a.s., and we get that the intensities of Nα and Nβ coincide,

i.e. α = β. �
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Proof of Proposition 5.1. We already know from Theorem 4.18 that the Poisson

suspensions T
(α)
∗ and T

(β)
∗ are prime. Let us see why they are not disjoint. Assume

without loss of generality that 0 < α < β. In the direct product of T
(α)
∗ and

T
(β−α)
∗ , we have two independent Poisson T -point processes Nα and Nβ−α, of

respective intensities αµ and (β − α)µ. Then Nα + Nβ−α is a Poisson T -point
process of intensity βµ, which is not independent of Nα. Hence the distribution of

(Nα, Nα +Nβ−α) is a joining of T
(α)
∗ and T

(β)
∗ which is not the product measure.

Now, we release the assumption α < β, and we assume there exists an ergodic

map S such that S → T
(β)
∗ is a distal extension and T

(α)
∗ is a factor of S. Then

T
(β)
∗ ∨T

(α)
∗ appears as an ergodic joining and a factor of S. By Proposition 4.23, the

joining is also a PaP suspension. Then T
(β)
∗ is a Poisson factor of T

(β)
∗ ∨ T

(α)
∗ and

as such the extension T
(β)
∗ ∨T

(α)
∗ → T

(β)
∗ is relatively weakly mixing by Proposition

4.13. Therefore we have the following sequence of extensions

S → T
(β)
∗ ∨ T

(α)
∗ → T

(β)
∗

But, as the extension S → T
(β)
∗ is distal, T

(β)
∗ ∨T

(α)
∗ → T

(β)
∗ cannot be relatively

weakly mixing unless it is an isomorphism (see Proposition 10.14 in [11]). Then

this implies that T
(α)
∗ is a factor of T

(β)
∗ . Since the latter is prime by Theorem 4.18,

T
(α)
∗ and T

(β)
∗ are isomorphic. But by Lemma 5.2, this happens only if α = β. �

5.2. General results.

Definition 5.3. A measurable law of large numbers for a conservative, ergodic,
measure preserving dynamical system (X,A, µ, T ) is a measurable function L :
{0, 1}N → [0,∞] such that for all B ∈ A, for µ-almost every x ∈ X ,

L (1B(x), 1B(Tx), . . .) = µ(B).

Lemma 5.4. Let (X,A, µ, T ) be a conservative, ergodic, measure preserving dy-
namical system, and assume that it admits a measurable law of large numbers. Let
L be a σ-finite factor of the product dynamical system

(X × R+,A⊗ B, µ⊗ λ, T × Id).

Then there exists C ⊂ R+ with 0 < λ(C) < ∞, such that X × C ∈ L.

Proof. Since L is σ-finite, there exists B ∈ L such that 0 < µ ⊗ λ(B) < ∞. For
each t ∈ R+, let us consider

Bt := {x ∈ X : (x, t) ∈ B}.

Denote by L a measurable law of large numbers for (X,A, µ, T ). Then, for µ⊗ λ-
almost every (x, t) ∈ X × R+, we have

L
((

1B(T
kx, t)

)
k≥0

)
= µ(Bt).

This ensures that the map (x, t) 7→ µ(Bt) is L-measurable. In particular, for any
ε > 0, the set {(x, t) : µ(Bt) ≥ ε} is L-measurable. This set is of the form X × C
for C ⊂ R+. We have

∞ > µ⊗ λ(B) =

∫

R+

µ(Bt) dλ(t) ≥ ελ(C),

and choosing ε small enough, we have λ(C) > 0. �
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Definition 5.5. A conservative, ergodic, measure preserving dynamical system
(X,A, µ, T ) is rationally ergodic if there exists a set B ∈ A, 0 < µ(B) < ∞, and a
constant M > 0 such that, for any n ≥ 1,

∫

B


 ∑

0≤j≤n−1

1B(T
kx)




2

dµ(x) ≤ M



∫

B

∑

0≤j≤n−1

1B(T
jx) dµ(x)




2

.

According to Theorem 3.3.1 in [1], a measurable law of large numbers exists for T
as soon as T is rationally ergodic, which is the case of Chacon infinite transformation
(see [3]). Observe however that properties (P1) and (P2) alone imply the existence
of a law of large numbers, but it happens that the question of its measurability
remains open without rational ergodicity.

The following proposition applies therefore to the case of the Poisson suspension
over Chacon infinite transformation.

Proposition 5.6. Assume that properties (P1) and (P2) hold for T , and that
T admits a measurable law of large numbers. If a system (Y,B, ν, S) is not dis-
joint from some n-order ergodic self-joining of (X∗,A∗, µ∗, T∗), then it possesses(
X∗,A∗, (αµ)

∗
, T∗

)
as a factor, for some α > 0.

Proof. From a result of [17], if (Y,Y, ν, S) is not disjoint from an ergodic n-order
self-joining of (X∗,A∗, µ∗, T∗), then it possesses a common non trivial factor with
a countably infinite self-joining of it. However, an ergodic countably infinite self-
joining of this n-order self-joining is nothing else than an ergodic countably infi-
nite self-joining of (X∗,A∗, µ∗, T∗). This common factor is therefore a factor of(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)
by Theorem 4.7. Since the latter sus-

pension is PaP by Proposition 4.21, this factor itself contains a Poisson factor of
(A⊗ B)∗ by Proposition 4.11. Therefore there exists a (T × Id)-invariant subset
L ⊂ X ×R+ and a σ-finite factor L of the restricted system such that we have the
following factor relationship:

(Y,Y, ν, S)
↓(

L∗,L∗, (µ⊗ λ)
∗
|L , (T × Id)∗

)
.

Using Lemma 5.4, we get the existence of C ⊂ R+, with 0 < λ(C) < ∞, such that
X ×C ∈ L. Passing if necessary to another factor, we can therefore assume that L
is of the form X × C, with 0 < λ(C) < ∞.

Observe now that the dynamical system (L,A ⊗ B|C , µ ⊗ λ|C , T × Id) admits
both systems (L,L, µ ⊗ λ|C , T × Id) and (X,A, λ(C)µ, T ) as factors. It therefore
defines a joining of these systems, and by Proposition 4.5 in [12], (X,A, λ(C)µ, T )
is a factor of (L,L, µ⊗ λ|C , T × Id).

Passing to Poisson suspensions and going up the chain of factors up to (Y,Y, ν, S),
we obtain our result.

�

Proposition 5.7. Assume that properties (P1) and (P2) hold for T , and that T
admits a measurable law of large numbers. If a system (Y,Y, ν, S) is disjoint from
(X∗,A∗, µ∗, T∗), then it is disjoint from

(
X∗,A∗, (αµ)

∗
, T∗

)
for any α > 0.
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Proof. Assume (Y,Y, ν, S) is disjoint from (X∗,A∗, µ∗, T∗), but that there exists
α > 0 such that it is not disjoint from

(
X∗,A∗, (αµ)

∗
, T∗

)
. Thanks to Proposi-

tion 5.6, there exists β > 0 such that
(
X∗,A∗, (βµ)

∗
, T∗

)
is a factor of (Y,Y, ν, S)

(and β 6= 1 by assumption). This means that there exists a Poisson T -point process
N1 of intensity βµ defined on (Y,Y, ν, S).

If β < 1, let us consider the direct product
(
Y ×X∗,Y ⊗A∗, ν ⊗ ((1− β)µ)∗ , S × T∗

)
.

In this product, there exists a Poisson T -point process N2 of intensity (1− β)µ
independent of the whole system (Y,Y, ν, S). In particular, N1 and N2 are inde-
pendent, thus N1 + N2 defines a Poisson T -point process of intensity µ, which is
independent of (Y,Y, ν, S) by disjointness. This is absurd, as this would imply that
N1 and N1 +N2 are independent. This is obviously false, since N1 ≤ N1 +N2.

If β > 1, observe that
(
X∗,A∗, (βµ)∗ , T∗

)
is both a factor of (Y,Y, ν, S) and of

the direct product
(
X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ ((β − 1)µ)

∗
, T∗ × T∗

)
.

In this product, we have two Poisson T -point processes N3 and N4 of respec-
tive intensities µ and (β − 1)µ, such that N3 + N4 is a Poisson T -point process
of intensity βµ that corresponds to the factor

(
X∗,A∗, (βµ)

∗
, T∗

)
. We can then

form the relatively independent joining of (Y,Y, ν, S) and this direct product over(
X∗,A∗, (βµ)

∗
, T∗

)
. In this scheme, we have N1 = N3 + N4 almost surely, hence

N3 + N4 is measurable with respect to the σ-algebra Y. But N3 is independent
of Y by disjointness, leading to the same contradiction that N3 is independent of
N3 +N4. �

Proposition 5.8. Assume that properties (P1) and (P2) hold for T , and that
T admits a measurable law of large numbers. If a system (Y,Y, ν, S) is disjoint
from (X∗,A∗, µ∗, T∗), then it is disjoint from any self-joining (of any order) of this
Poisson suspension.

Proof. If there exists a self-joining of (X∗,A∗, µ∗, T∗) not disjoint from (Y,Y, ν, S),
then, by Proposition 5.6, (Y,Y, ν, S) possesses

(
X∗,A∗, (αµ)

∗
, T∗

)
as a factor, for

some α > 0. However, by Proposition 5.7, this implies that (Y,Y, ν, S) is not
disjoint from (X∗,A∗, µ∗, T∗). �

Corollary 5.9. Assume that properties (P1) and (P2) hold for T , and that T
admits a measurable law of large numbers. A system (Y,Y, ν, S) is disjoint from
(X∗,A∗, µ∗, T∗) if and only if it is disjoint from

(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)
.

Proof. First observe that we can view
(
(X × R+)

∗ , (A⊗ B)∗ , (µ⊗ λ)∗ , (T × Id)∗
)

as the inverse limit of the direct products

(
(X∗)

22n
, (A∗)

⊗22n
,

((
1

2n
µ

)∗)⊗22n

, (T∗)
×22n

)
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as n tends to infinity. Assume that (Y,Y, ν, S) is disjoint from (X∗,A∗, µ∗, T∗).

Then by Proposition 5.7, it is disjoint from
(
X∗,A∗,

(
1
2nµ

)∗
, T∗

)
, and by Propo-

sition 5.8, it is also disjoint from any self-joining of this system. Then, passing to
the inverse limit, we conclude that it is also disjoint from

(
(X × R+)

∗
, (A⊗ B)∗ , (µ⊗ λ)

∗
, (T × Id)∗

)
.

The converse is obvious since the above system admits (X∗,A∗, µ∗, T∗) as a factor.
�

5.3. Disjointness from classical classes of dynamical systems. There already
exist general disjointness results that concern Poisson suspensions: it is proved
in [18] that Poisson suspensions are disjoint from transformations that enjoy the
joining primeness property, such as distally simple transformations. We can nev-
ertheless obtain stronger disjointness results for the suspensions we are interested
in.

Theorem 5.10. If T satisfies properties (P1) and (P2), and admits a measurable
law of large numbers, then (X∗,A∗, µ∗, T∗) is disjoint from any rank one transfor-
mation.

Proof. If a rank one transformation is not disjoint from (X∗,A∗, µ∗, T∗), then by
Proposition 5.6 it possesses

(
X∗,A∗, (αµ)

∗
, T∗

)
as a factor for some α > 0. But a

factor of a rank one transformation is also of rank one.
On the other hand,

(
X∗,A∗, (αµ)

∗
, T∗

)
is mildly mixing thanks to Theorem 4.18,

and we know from Proposition 11 in [20] that a non-rigid Poisson suspension is not
of rank one. �

Remark 5.11. According to Ryzhikov [26], a non-rigid Poisson suspension is in
fact not even of local rank one. Thus the above theorem extends to local rank one
transformations.

We now turn to disjointness from Gaussian dynamical system, about which we
first recall a few facts. A dynamical system (Ω,F ,P, S) is said to be standard
Gaussian if there exists some measurable function f of zero mean defined on Ω
such that Xn := f ◦Sn defines a Gaussian stationary process that generates F . Up
to measurable isomorphism, such a dynamical system is completely identified by
the spectral measure σ of f on T:

〈X0, Xn〉L2(P) = σ̂ (n) .

As in the Poisson case, L2 (P) admits a Fock space representation

L2 (P) ≃ C⊕ L2 (σ)⊕ L2 (σ)⊙2 ⊕ · · · ⊕ L2 (σ)⊙n ⊕ · · ·

Therefore, L2 (P) admits a decomposition into (Gaussian) chaos {Cn}n≥0 and the

maximal spectral type of US on Cn is σ∗n. (For a detailed presentation of the
spectral analysis of Gaussian dynamical systems, we refer e.g. to [2], Chapter 14.)

A particularly interesting situation for us arises when a Gaussian system (or
a Poisson suspension) has simple spectrum. Indeed, it then enjoys the following
property, presented in the form of a proposition which can be found in a more
general form in [15]:
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Proposition 5.12. If a standard Gaussian dynamical system (resp. a Poisson
suspension) has simple spectrum, then for any pair m1, m2 of continuous measures
on T, the spectral measure σ of the Gaussian process (resp. the maximal spectral
type of the base of the suspension) satisfies σ ⊥ m1 ∗m2.

As an application, we get the following result which will be useful for our pur-
poses:

Proposition 5.13. A Poisson suspension is never a factor of a standard Gaussian
dynamical system with simple spectrum.

Proof. Assume that (Y,B, ν, S) is a standard Gaussian with simple spectrum, and
that it admits the Poisson suspension (Z∗, C∗, ρ∗, R∗) as a factor. Let η be the spec-
tral measure of the generating Gaussian process, and let σ be the maximal spectral
type of (Z, C, ρ, R), which is also the maximal spectral type of the action of UR∗

on the first Poissonian chaos of the suspension. Since R∗ has simple spectrum (as
a factor of the simple spectrum system S) Proposition 5.12 applies to σ. Now,
take f 6= 0 in the first Poissonian chaos of the suspension: its spectral measure
is absolutely continuous with respect to σ, and by Proposition 5.12, it is singular
with respect to η∗n for any n ≥ 2. Identifying L2(ρ∗) with a subspace of L2(ν),
we conclude that f has to be in the first Gaussian chaos of L2(ν). But this is im-
possible, because the first Gaussian chaos contains exclusively (complex) Gaussian
random variables, whereas the first Poissonian chaos of a suspension contains no
such variables, the zero vector aside (see e.g. [23]). �

Now we can state and prove the following result on disjointness between our
Poisson suspensions and standard Gaussian dynamical systems:

Theorem 5.14. If T satisfies properties (P1) and (P2), and admits a measurable
law of large numbers, then (X∗,A∗, µ∗, T∗) is disjoint from any standard Gaussian
system.

Proof. Let (Y,B, ν, S) a standard Gaussian, and assume it is not disjoint from
(X,A∗, µ∗, T∗). Applying Proposition 5.6, we get the existence of a factor sub-σ-
algebra C ⊂ B such that the action of S on C is isomorphic to

(
X∗,A∗, (αµ)∗ , T∗

)

for some α > 0. As in the proof of Proposition 17 in [17], there exists S′ ∈ C (S)
which is a standard Gaussian system with simple spectrum. Set C′ := ∨n∈ZS

′−nC,
then C′ is a factor σ-algebra of S′. Observe that for any n ∈ Z, S′−nC is also
a factor σ-algebra of S, and that the action of S on S′−nC is also isomorphic to(
X∗,A∗, (αµ)

∗
, T∗

)
. It follows that the action of S on ∨n∈ZS

′−nC defines an ergodic

countable self-joining of
(
X∗,A∗, (αµ)

∗
, T∗

)
and, as such, is isomorphic to a PaP

suspension (Z∗,Z∗, ρ∗, T∞
∗ ) by Corollary 4.23. It follows that S′

|C′ can be considered

as an element of C (T∞
∗ ), but since the suspension is PaP , from Proposition 4.10,

S′
|C′ = R∗ for some automorphism R of (Z,Z, ρ) commuting with T∞. Then we get

the Poisson suspension R∗ as a factor of the standard Gaussian dynamical system
S′ which has simple spectrum, and this contradicts Proposition 5.13. �

6. Conclusion

Our work raises several questions, among which a natural one is the following:
is it possible to obtain the same results, assuming only moments of order 2 for the
point process? We can also ask ourselves whether we could obtain similar results
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with the base transformation T having uncountably many ergodic self-joinings (for
example with an uncountable centralizer)? This would require very different tech-
niques, as our proofs strongly rely on the fact that T possesses a countable set of
ergodic self-joinings. More generally, it would be interesting to know if the PaP
property is widespread among Poisson suspensions, or if it is a rare feature.
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