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Functional continuity of unital B_0-algebras with orthogonal bases

A topological algebra is a complex associative algebra which is also a Hausdorff topological vector space such that the multiplication is separately continuous. A locally convex algebra is a topological algebra whose topology is determined by a family of seminorms. A complete metrizable locally convex algebra is called a B 0 -algebra. The topology of a B 0 -algebra A may be given by a countable family ( . i ) i≥1 of seminorms such that x i ≤ x i+1 and xy i ≤ x i+1 y i+1 for all i ≥ 1 and x, y ∈ A. A multiplicative linear functional on a complex algebra A is an algebra homomorphism from A to the complex field. Let A be a topological algebra. M * (A) denotes the set of all nonzero multiplicative linear functionals on A. M (A) denotes the set of all nonzero continuous multiplicative linear functionals on A. A seminorm p on A is lower semicontinuous if the set {x ∈ A : p(x) ≤ 1} is closed in A.

Let A be a topological algebra. A sequence (e n ) n≥1 in A is a basis if for each x ∈ A there is a unique sequence (α n ) n≥1 of complex numbers such that x = Σ ∞ n=1 α n e n . Each linear functional e * n :

A → C, e * n (x) = α n , is called a coefficient functional. If each e *
n is continuous, the basis (e n ) n≥1 is called a Schauder basis. A basis (e n ) n≥1 is orthogonal if e i e j = δ ij e i where δ ij is the Kronecker symbol. If (e n ) n≥1 is an orthogonal basis, then each e * n is a multiplicative linear functional on A. Let A be a topological algebra with an orthogonal basis (e n ) n≥1 . If A has a unity e, then e = Σ ∞ n=1 e n . Let (x k ) k be a net in A converging to 0, since the multiplication is separately continuous, e n x k = e * n (x k )e n → k 0 and so e * n (x k ) → k 0. Then each orthogonal basis in a topological algebra is a Schauder basis. Let f be a multiplicative linear functional on A. If f (e n0 ) = 0 for some

n 0 ≥ 1, then f (x)f (e n0 ) = f (xe n0 ) = f (e * n0 (x)e n0 ) = e * n0 (x)f (e n0
) for all x ∈ A and therefore f = e * n0 ∈ M (A). This shows that M (A) = {e * n : n ≥ 1}. Here we consider unital B 0 -algebras with orthogonal bases. These algebras were investigated in [START_REF] Sawon | Fréchet algebras with orthogonal basis[END_REF] where we can find examples of such algebras.

II. Results

Proposition II.1. Let (A, ( . i ) i≥1 ) be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 . Then there exists x ∈ A such that the sequence (e * n (x)) n≥1 is not bounded.

Proof. Suppose that sup n≥1 |e * n (x)| < ∞ for all x ∈ A. For each x ∈ A, let x = sup n≥1 |e * n (x)|, . is a lower semicontinuous norm on A since (e n ) n≥1 is a Schauder basis. Let τ A be the topology on A determined by the family ( . i ) i≥1 of seminorms. We define a new topology τ on A described by the norm . and the family ( . i ) i≥1 of seminorms. The topology τ is stronger than the topology τ A . By Garling's completeness theorem [1, Theorem 1], (A, τ ) is complete. The topologies τ A and τ are homeomorphic by the open mapping theorem. Then there exist i 0 ≥ and M > 0 such that x ≤ M x i0 for all x ∈ A, hence 1 = |e * n (e n )| ≤ e n ≤ M e n i0 for all n ≥ 1. This contradicts the fact that e n → n 0.

Proposition II.2. Let A be a unital B 0 -algebra with an orthogonal basis

(e n ) n≥1 . If x = Σ ∞ n=1 t n e n ∈ A such that t n ∈ R, t n ≤ t n+1 for n ≥ 1 and t n → ∞, then f (x) ∈ R for all f ∈ M * (A). Proof. If f ∈ M (A), f = e * n for some n ≥ 1, then f (x) = t n ∈ R. If f ∈ M * (A) M (A), then f (e n ) = 0 for all n ≥ 1. Suppose that f (x) / ∈ R, f (x) = α + iβ with β = 0. Since t n → ∞, there exists n 0 ≥ 1 such that t n ≥ α + |β| for all n ≥ n 0 . We define the sequence (s n ) n≥1 by s n = t n0 for 1 ≤ n ≤ n 0 and s n = t n for n ≥ n 0 + 1. It is clear that y = Σ ∞ n=1 s n e n ∈ A such that s n ≥ α + |β|, s n ≤ s n+1 for n ≥ 1 and s n → ∞. Since f (e n ) = 0 for all n ≥ 1, f (y) = f (x) = α + iβ. We have f (|β| -1 y) = |β| -1 α + i|β| -1 β, then f (|β| -1 y -|β| -1 αe) = i|β| -1 β. Set z = |β| -1 y -|β| -1 αe = Σ ∞ n=1 sn-α |β| e n . The real sequence ( sn-α |β| ) n≥1 is positive increasing and sn-α |β| → ∞, then z -1 = Σ ∞ n=1 |β| sn-α e n ∈ A by [3, Theorem 0.1] and f (z -1 ) = -i|β|β -1 , so f (z+z -1 ) = 0. Set v = z + z -1 = Σ ∞ n=1 ( sn-α |β| + |β| sn-α )e n and v n = sn-α |β| + |β| sn-α for all n ≥ 1. Since the map g : [1, ∞) → R, g(x) = x + 1
x , is increasing and the sequence

( sn-α |β| ) n≥1 ⊂ [1, ∞) is increasing, it follows that (v n ) n≥1 is a positive increasing sequence and v n → ∞. By [3, Theorem 0.1], v -1 = Σ ∞ n=1 1 vn e n ∈ A and therefore f (e) = f (v)f (v -1 ) = 0. This contradicts the fact that f is nonzero.
The following two results are due to Sawon and Wronski [START_REF] Sawon | Fréchet algebras with orthogonal basis[END_REF], the proofs are given for completeness.

Theorem II.3([3, Theorem 2.1]). Let A be a unital B 0 -algebra with an orthog- onal basis (e n ) n≥1 . If x = Σ ∞ n=1 t n e n ∈ A such that t n ∈ R, t n ≤ t n+1
for n ≥ 1 and t n → ∞, then every multiplicative linear functional on A is continuous.

Proof. Suppose that M * (A) M (A) is nonempty. Let f ∈ M * (A) M (A), then f (e n ) = 0 for all n ≥ 1. Put f (x) = α, then α ∈ R by Proposition II.2. Since t n → ∞, there exists n 0 ≥ 1 such that t n > α for n ≥ n 0 . Consider y = Σ ∞ n=1 λ n e n ∈ A such that λ n = t n0 for 1 ≤ n ≤ n 0 and λ n = t n for n ≥ n 0 + 1. Since f (e n ) = 0 for all n ≥ 1, it follows that f (x) = f (y) = α. We have y -αe = Σ ∞ n=1 v n e n ∈ A where v n = λ n -α for all n ≥ 1. It is clear that v n > 0, v n ≤ v n+1 for n ≥ 1 and v n → ∞. By [3, Theorem 0.1], (y -αe) -1 = Σ ∞ n=1
1 vn e n ∈ A, so y -αe is invertible and f (y -αe) = 0, a contradiction.

Proposition II.4([3, p.109]). Let (A, ( . i ) i≥1 ) be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 . Then the set N of all positive integers can be split into two disjoint subsets N 1 and N 2 such that by putting A 1 = span(e n ) n∈N1 and A 2 = span(e n ) n∈N2 , we have (1)

A = A 1 ⊕ A 2 ; (2) if f is a multiplicative linear functional on A such that f / ∈ M (A), then f /A1 = 0.
Proof. By Proposition II.1, there is x = Σ ∞ n=1 t n e n ∈ A such that the sequence (t n ) n≥1 is not bounded. Then there exists a subsequence (t kn ) n≥1 of (t n ) n≥1 such that |t kn | ≥ n 2 for all n ≥ 1. For each i ≥ 1, there is M i > 0 such that t n e n i ≤ M i for all n ≥ 1. Let i ≥ 1 and n ≥ 1, n 2 e kn i ≤ |t kn | e kn i = t kn e kn i ≤ M i , then e kn i ≤ n -2 M i . This implies that Σ ∞ n=1 e kn is absolutely convergent. Let A 1 = span{e kn : n ≥ 1}, A 1 is a unital B 0 -algebra with an orthogonal basis (e kn ) n≥1 and Σ ∞ n=1 n

1 2 e kn ∈ A 1 since n 1 2 e kn i ≤ n -3 2 M i for all i ≥ 1 and n ≥ 1. Set N 1 = {k n : n ≥ 1}, N 2 = N N 1 and A 2 = span{e n : n ∈ N 2 }.
A 2 is a B 0 -algebra with an orthogonal basis (e n ) n∈N2 and the unity u 2 = e -u 1 where u 1 = Σ ∞ n=1 e kn is the unity of

A 1 . Let x ∈ A, x = xe = x(u 1 +u 2 ) = xu 1 +xu 2 ∈ A 1 +A 2 , then A = A 1 ⊕A 2 . If f is a multiplicative linear functional on A such that f / ∈ M (A), f /A1
is a multiplicative linear functional on A 1 such that f /A1 (e kn ) = 0 for all n ≥ 1. Since Σ ∞ n=1 n

1 2 e kn ∈ A 1 , f /A1 is continuous on A 1 by Theorem II.3 and therefore f /A1 = 0.

Sawon and Wronski [3, p.109] posed the following problem:

Problem. Let A be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 . Does there exist a maximal subalgebra 1) and ( 2) hold?

A 1 = span{e n : n ∈ N 1 }(N 1 ⊂ N ) of A for which (
Proposition II.5. Let A be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 . Then the following assertions are equivalent: (i) A = span{e n : n ∈ N } is a maximal subalgebra of itself for which (1) and (2) hold; (ii) every multiplicative linear functional on A is continuous.

Proof. (i) ⇒ (ii) : Let f be a multiplicative linear functional on A such that f / ∈ M (A), f is zero on A by (i). Then every multiplicative linear functional on A is continuous. (ii) ⇒ (i) : It is clear that A satisfies [START_REF] Garling | On topological sequence[END_REF]. Let f be a multiplicative linear functional on A such that f / ∈ M (A), then f is zero on A since f is continuous, hence A satisfies (2).

Proposition II.6. Let (t n ) n≥n0 be a complex sequence, the following assertions are equivalent:

(i) Σ ∞ n=n0 |t n -t n+1 | < ∞; (ii) there exists M > 0 such that |t q | + Σ q-1 n=p |t n -t n+1 | ≤ M for all q > p ≥ n 0 . Proof. (i) ⇒ (ii) : Let > 0, there exists n 1 ≥ n 0 such that Σ ∞ k=n |t k -t k+1 | ≤ for every n ≥ n 1 . let m > n ≥ n 1 , |t n -t m | ≤ |t n -t n+1 | + ... + |t m-1 -t m | ≤ . Then the sequence (t n ) n≥n0 converges, so there is M 0 > 0 such that |t n | ≤ M 0 for all n ≥ n 0 . Let q > p ≥ n 0 , |t q | + Σ q-1 n=p |t n -t n+1 | ≤ M 0 + Σ ∞ n=n0 |t n -t n+1 |. (ii) ⇒ (i) : Let p ≥ n 0 and q = p+1, Σ p n=n0 |t n -t n+1 | ≤ |t q |+Σ q-1 n=n0 |t n -t n+1 | ≤ M. Then the sequence (Σ p n=n0 |t n -t n+1 |) p≥n0 is positive increasing and bounded, so it is convergent i.e. Σ ∞ n=n0 |t n -t n+1 | < ∞.
Proposition II.7. Let (A, ( . i ) i≥1 ) be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 .

If (t n ) n≥n0 is a complex sequence such that Σ ∞ n=n0 |t n -t n+1 | < ∞, then Σ ∞ n=n0 t n e n ∈ A.
Proof. Let q > p ≥ n 0 , by using the equality t n = t q +Σ q-1 k=n (t k -t k+1 ) for every p ≤ n < q, we obtain that Σ q-1 n=p t n e n = t q (e p + ... + e q-1 ) + Σ q-1 k=p (t k -t k+1 )(e p + ...+e k ). Let i ≥ 1, Σ q-1 n=p t n e n i ≤ |t q | e p +...+e q-1 i +Σ q-1 k=p |t k -t k+1 | e p +...+ e k i ≤ (|t q | + Σ q-1 k=p |t k -t k+1 |) sup p≤k≤q e p + ... + e k i ≤ M sup p≤k≤q e p + ... + e k i by Proposition II.6. Let > 0, since e = Σ ∞ n=1 e n ∈ A, there is n 1 ≥ n 0 such that e p + ... + e k i ≤ M -1 for n 1 ≤ p ≤ k, hence sup p≤k≤q e p + ... + e k i ≤ M -1 for n 1 ≤ p < q. Then Σ q-1 n=p t n e n i ≤ for n 1 ≤ p < q. This shows that Σ ∞ n=n0 t n e n is convergent in A.

Theorem II.8. Let (A, ( . i ) i≥1 ) be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 . Then every multiplicative linear functional on A is continuous. Remark. Proposition II.5 and Theorem II.8 give an answer to Sawon and Wronski's problem.

Proof. By Proposition II.7, x = Σ ∞ n=1 1 n e n ∈ A. Let f ∈ M * (A) and α = f (x), then f (αe -x) = 0. We have αe -x = Σ ∞ n=1 (α -1 n )e n = Σ ∞ n=1 αn-1 n e n . Let N be the set of all positive integers. Put I α = {n ∈ N : n = α -1 }, I α = N if α -1 / ∈ N and I α = N {α -1 } if α -1 ∈ N. Let m α = inf{n ∈ N : |α|n - 1 > 0} and consider the complex sequence ( n αn-1 ) n≥mα . Let n ≥ m α , n αn-1 - n+1 α(n+1)-1 = 1 (αn-1)(α(n+1)-1) . We have |αn -1| ≥ |α|n -1 and |α(n + 1) -1| ≥ |α|(n + 1) -1 = |α|n + |α| -1 ≥ |α|n -1. Let n ≥ m α , |α|n -1 > 0, hence 1 |αn-1| ≤ 1 |α|n-1 and 1 |α(n+1)-1| ≤ 1 |α|n-1 . Consequently | n αn-1 -n+1 α(n+1)-1 | = 1 |αn-1||α(n+1)-1| ≤ 1 (|α|n-1) 2 . Then Σ ∞ n=mα n αn-1 e n ∈ A
Note. Let A be a unital B 0 -algebra with an orthogonal basis (e n ) n≥1 and let δ be a translation invariant metric defining the topology of A. For each n ≥ 1, define b (n) = Σ ∞ k=n e k , this sequence converges to zero in A. For each n ≥ 1, there exists p n ≥ 2 such that δ(b (k) , 0) ≤ 1 n 2 for all k ≥ p n . We can assume that (p n ) n≥1 is a strictly increasing sequence in N. Then x = Σ ∞ n=1 b (pn) converges in A since δ(b (pn) , 0) ≤ 1 n 2 for all n ≥ 1. Let k ≥ 1, we have e * k (x) = 0 for 1 ≤ k < p 1 and e * k (x) = n for p n ≤ k < p n+1 . Therefore (e * k (x)) k≥1 is an increasing sequence of natural integers such that e * k (x) → ∞. This shows that the condition in [3, Theorem 2.1] is always satisfied and so Theorem II.8 can be deduced from Theorem II.3.

  by Proposition II.7 and therefore Σ n∈Iα n αn-1 e n ∈ A. If α -1 / ∈ N i.e. I α = N, (αe -x)Σ ∞ n=1 n αn-1 e n = e, then αe -x is invertible, a contradiction. If α -1 ∈ N, put n α = α -1 , then (αe -x)Σ n∈Iα n αn-1 e n = Σ n∈Iα e n , hence Σ n∈Iα e n ∈ Ker(f ) since αe -x ∈ Ker(f ). If e nα ∈ Ker(f ), then e = e nα + Σ n∈Iα e n ∈ Ker(f ), a contradiction. Finally f (e nα ) = 0 and therefore f = e * nα .