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Functional continuity of unital B0-algebras with orthogonal bases

M. El Azhari

Abstract. Let A be a unital B0-algebra with an orthogonal basis, then every
multiplicative linear functional on A is continuous. This gives an answer to a
problem posed by Z. Sawon and Z. Wronski.
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I. Preliminaries

A topological algebra is a complex associative algebra which is also a Hausdorff
topological vector space such that the multiplication is separately continuous. A
locally convex algebra is a topological algebra whose topology is determined by
a family of seminorms. A complete metrizable locally convex algebra is called a
B0-algebra. The topology of a B0-algebra A may be given by a countable family
(‖.‖i)i≥1 of seminorms such that ‖x‖i ≤ ‖x‖i+1 and ‖xy‖i ≤ ‖x‖i+1‖y‖i+1

for all i ≥ 1 and x, y ∈ A. A multiplicative linear functional on a complex
algebra A is an algebra homomorphism from A to the complex field. Let A be a
topological algebra. M∗(A) denotes the set of all nonzero multiplicative linear
functionals on A. M(A) denotes the set of all nonzero continuous multiplicative
linear functionals on A. A seminorm p on A is lower semicontinuous if the set
{x ∈ A : p(x) ≤ 1} is closed in A.
Let A be a topological algebra. A sequence (en)n≥1 in A is a basis if for each
x ∈ A there is a unique sequence (αn)n≥1 of complex numbers such that x =
Σ∞n=1αnen. Each linear functional e∗n : A→ C, e∗n(x) = αn, is called a coefficient
functional. If each e∗n is continuous, the basis (en)n≥1 is called a Schauder basis.
A basis (en)n≥1 is orthogonal if eiej = δijei where δij is the Kronecker symbol. If
(en)n≥1 is an orthogonal basis, then each e∗n is a multiplicative linear functional
on A. Let A be a topological algebra with an orthogonal basis (en)n≥1. If A
has a unity e, then e = Σ∞n=1en. Let (xk)k be a net in A converging to 0,
since the multiplication is separately continuous, enxk = e∗n(xk)en →k 0 and so
e∗n(xk)→k 0. Then each orthogonal basis in a topological algebra is a Schauder
basis. Let f be a multiplicative linear functional on A. If f(en0

) 6= 0 for some
n0 ≥ 1, then f(x)f(en0

) = f(xen0
) = f(e∗n0

(x)en0
) = e∗n0

(x)f(en0
) for all x ∈ A

and therefore f = e∗n0
∈M(A). This shows that M(A) = {e∗n : n ≥ 1}.

Here we consider unital B0-algebras with orthogonal bases. These algebras
were investigated in [3] where we can find examples of such algebras.
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II. Results

Proposition II.1. Let (A, (‖.‖i)i≥1) be a unital B0-algebra with an orthogonal
basis (en)n≥1. Then there exists x ∈ A such that the sequence (e∗n(x))n≥1 is not
bounded.

Proof. Suppose that supn≥1 |e∗n(x)| < ∞ for all x ∈ A. For each x ∈ A, let
‖x‖ = supn≥1 |e∗n(x)|, ‖.‖ is a lower semicontinuous norm on A since (en)n≥1 is a
Schauder basis. Let τA be the topology on A determined by the family (‖.‖i)i≥1
of seminorms. We define a new topology τ on A described by the norm ‖.‖ and
the family (‖.‖i)i≥1 of seminorms. The topology τ is stronger than the topology
τA. By Garling’s completeness theorem [1, Theorem 1], (A, τ) is complete. The
topologies τA and τ are homeomorphic by the open mapping theorem. Then
there exist i0 ≥ 1 and M > 0 such that ‖x‖ ≤ M‖x‖i0 for all x ∈ A, hence
1 = |e∗n(en)| ≤ ‖en‖ ≤ M‖en‖i0 for all n ≥ 1. This contradicts the fact that
en →n 0.

Proposition II.2. Let A be a unital B0-algebra with an orthogonal basis
(en)n≥1. If x = Σ∞n=1tnen ∈ A such that tn ∈ R, tn ≤ tn+1 for n ≥ 1 and
tn →∞, then f(x) ∈ R for all f ∈M∗(A).

Proof. If f ∈ M(A), f = e∗n for some n ≥ 1, then f(x) = tn ∈ R. If f ∈
M∗(A) rM(A), then f(en) = 0 for all n ≥ 1. Suppose that f(x) /∈ R, f(x) =
α + iβ with β 6= 0. Since tn → ∞, there exists n0 ≥ 1 such that tn ≥ α + |β|
for all n ≥ n0. We define the sequence (sn)n≥1 by sn = tn0

for 1 ≤ n ≤ n0
and sn = tn for n ≥ n0 + 1. It is clear that y = Σ∞n=1snen ∈ A such that
sn ≥ α + |β|, sn ≤ sn+1 for n ≥ 1 and sn → ∞. Since f(en) = 0 for all
n ≥ 1, f(y) = f(x) = α + iβ. We have f(|β|−1y) = |β|−1α + i|β|−1β, then
f(|β|−1y − |β|−1αe) = i|β|−1β. Set z = |β|−1y − |β|−1αe = Σ∞n=1

sn−α
|β| en. The

real sequence ( sn−α|β| )n≥1 is positive increasing and sn−α
|β| → ∞, then z−1 =

Σ∞n=1
|β|
sn−αen ∈ A by [3, Theorem 0.1] and f(z−1) = −i|β|β−1, so f(z+z−1) = 0.

Set v = z + z−1 = Σ∞n=1( sn−α|β| + |β|
sn−α )en and vn = sn−α

|β| + |β|
sn−α for all n ≥ 1.

Since the map g : [1,∞) → R, g(x) = x + 1
x , is increasing and the sequence

( sn−α|β| )n≥1 ⊂ [1,∞) is increasing, it follows that (vn)n≥1 is a positive increasing

sequence and vn →∞. By [3, Theorem 0.1], v−1 = Σ∞n=1
1
vn
en ∈ A and therefore

f(e) = f(v)f(v−1) = 0. This contradicts the fact that f is nonzero.

The following two results are due to Sawon and Wronski [3], the proofs are
given for completeness.

Theorem II.3([3, Theorem 2.1]). Let A be a unital B0-algebra with an orthog-
onal basis (en)n≥1. If x = Σ∞n=1tnen ∈ A such that tn ∈ R, tn ≤ tn+1 for n ≥ 1
and tn →∞, then every multiplicative linear functional on A is continuous.
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Proof. Suppose that M∗(A) rM(A) is nonempty. Let f ∈ M∗(A) rM(A),
then f(en) = 0 for all n ≥ 1. Put f(x) = α, then α ∈ R by Proposition II.2.
Since tn → ∞, there exists n0 ≥ 1 such that tn > α for n ≥ n0. Consider
y = Σ∞n=1λnen ∈ A such that λn = tn0

for 1 ≤ n ≤ n0 and λn = tn for
n ≥ n0 + 1. Since f(en) = 0 for all n ≥ 1, it follows that f(x) = f(y) = α.
We have y − αe = Σ∞n=1vnen ∈ A where vn = λn − α for all n ≥ 1. It is
clear that vn > 0, vn ≤ vn+1 for n ≥ 1 and vn → ∞. By [3, Theorem 0.1],
(y − αe)−1 = Σ∞n=1

1
vn
en ∈ A, so y − αe is invertible and f(y − αe) = 0, a

contradiction.

Proposition II.4([3, p.109]). Let (A, (‖.‖i)i≥1) be a unital B0-algebra with an
orthogonal basis (en)n≥1. Then the set N of all positive integers can be split
into two disjoint subsets N1 and N2 such that by putting A1 = span(en)n∈N1

and A2 = span(en)n∈N2
, we have

(1) A = A1 ⊕A2;
(2) if f is a multiplicative linear functional on A such that f /∈ M(A), then
f/A1

= 0.

Proof. By Proposition II.1, there is x = Σ∞n=1tnen ∈ A such that the sequence
(tn)n≥1 is not bounded. Then there exists a subsequence (tkn)n≥1 of (tn)n≥1
such that |tkn | ≥ n2 for all n ≥ 1. For each i ≥ 1, there is Mi > 0 such that
‖tnen‖i ≤ Mi for all n ≥ 1. Let i ≥ 1 and n ≥ 1, n2‖ekn‖i ≤ |tkn |‖ekn‖i =
‖tknekn‖i ≤Mi, then ‖ekn‖i ≤ n−2Mi. This implies that Σ∞n=1ekn is absolutely
convergent. Let A1 = span{ekn : n ≥ 1}, A1 is a unital B0-algebra with an

orthogonal basis (ekn)n≥1 and Σ∞n=1n
1
2 ekn ∈ A1 since n

1
2 ‖ekn‖i ≤ n−

3
2Mi for

all i ≥ 1 and n ≥ 1. Set N1 = {kn : n ≥ 1}, N2 = N rN1 and A2 = span{en :
n ∈ N2}. A2 is a B0-algebra with an orthogonal basis (en)n∈N2 and the unity
u2 = e − u1 where u1 = Σ∞n=1ekn is the unity of A1. Let x ∈ A, x = xe =
x(u1+u2) = xu1+xu2 ∈ A1+A2, then A = A1⊕A2. If f is a multiplicative linear
functional on A such that f /∈ M(A), f/A1

is a multiplicative linear functional

on A1 such that f/A1
(ekn) = 0 for all n ≥ 1. Since Σ∞n=1n

1
2 ekn ∈ A1, f/A1

is
continuous on A1 by Theorem II.3 and therefore f/A1

= 0.

Sawon and Wronski [3, p.109] posed the following problem:

Problem. Let A be a unital B0-algebra with an orthogonal basis (en)n≥1. Does

there exist a maximal subalgebra A
′

1 = span{en : n ∈ N ′

1}(N
′

1 ⊂ N) of A for
which (1) and (2) hold?

Proposition II.5. Let A be a unital B0-algebra with an orthogonal basis
(en)n≥1. Then the following assertions are equivalent:
(i)A = span{en : n ∈ N} is a maximal subalgebra of itself for which (1) and
(2) hold;
(ii) every multiplicative linear functional on A is continuous.
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Proof. (i) ⇒ (ii) : Let f be a multiplicative linear functional on A such that
f /∈M(A), f is zero on A by (i). Then every multiplicative linear functional on
A is continuous.
(ii) ⇒ (i) : It is clear that A satisfies (1). Let f be a multiplicative linear
functional on A such that f /∈M(A), then f is zero on A since f is continuous,
hence A satisfies (2).

Proposition II.6. Let (tn)n≥n0
be a complex sequence, the following assertions

are equivalent:
(i) Σ∞n=n0

|tn − tn+1| <∞;
(ii) there exists M > 0 such that |tq|+ Σq−1n=p|tn− tn+1| ≤M for all q > p ≥ n0.

Proof. (i)⇒ (ii) : Let ε > 0, there exists n1 ≥ n0 such that Σ∞k=n|tk−tk+1| ≤ ε
for every n ≥ n1. let m > n ≥ n1, |tn− tm| ≤ |tn− tn+1|+ ...+ |tm−1− tm| ≤ ε.
Then the sequence (tn)n≥n0

converges, so there is M0 > 0 such that |tn| ≤ M0

for all n ≥ n0. Let q > p ≥ n0, |tq|+ Σq−1n=p|tn − tn+1| ≤M0 + Σ∞n=n0
|tn − tn+1|.

(ii)⇒ (i) : Let p ≥ n0 and q = p+1, Σpn=n0
|tn−tn+1| ≤ |tq|+Σq−1n=n0

|tn−tn+1| ≤
M. Then the sequence (Σpn=n0

|tn−tn+1|)p≥n0 is positive increasing and bounded,
so it is convergent i.e. Σ∞n=n0

|tn − tn+1| <∞.

Proposition II.7. Let (A, (‖.‖i)i≥1) be a unital B0-algebra with an orthogonal
basis (en)n≥1. If (tn)n≥n0 is a complex sequence such that Σ∞n=n0

|tn−tn+1| <∞,
then Σ∞n=n0

tnen ∈ A.

Proof. Let q > p ≥ n0, by using the equality tn = tq+Σq−1k=n(tk−tk+1) for every

p ≤ n < q, we obtain that Σq−1n=ptnen = tq(ep+ ...+ eq−1) + Σq−1k=p(tk− tk+1)(ep+

...+ek). Let i ≥ 1, ‖Σq−1n=ptnen‖i ≤ |tq|‖ep+...+eq−1‖i+Σq−1k=p|tk−tk+1|‖ep+...+

ek‖i ≤ (|tq|+ Σq−1k=p|tk− tk+1|) supp≤k≤q ‖ep+ ...+ ek‖i ≤M supp≤k≤q ‖ep+ ...+
ek‖i by Proposition II.6. Let ε > 0, since e = Σ∞n=1en ∈ A, there is n1 ≥ n0 such
that ‖ep + ...+ ek‖i ≤ εM−1 for n1 ≤ p ≤ k, hence supp≤k≤q ‖ep + ...+ ek‖i ≤
εM−1 for n1 ≤ p < q. Then ‖Σq−1n=ptnen‖i ≤ ε for n1 ≤ p < q. This shows that
Σ∞n=n0

tnen is convergent in A.

Theorem II.8. Let (A, (‖.‖i)i≥1) be a unital B0-algebra with an orthogonal
basis (en)n≥1. Then every multiplicative linear functional on A is continuous.

Proof. By Proposition II.7, x = Σ∞n=1
1
nen ∈ A. Let f ∈M∗(A) and α = f(x),

then f(αe − x) = 0. We have αe − x = Σ∞n=1(α − 1
n )en = Σ∞n=1

αn−1
n en. Let

N be the set of all positive integers. Put Iα = {n ∈ N : n 6= α−1}, Iα = N
if α−1 /∈ N and Iα = N r {α−1} if α−1 ∈ N. Let mα = inf{n ∈ N : |α|n −
1 > 0} and consider the complex sequence ( n

αn−1 )n≥mα . Let n ≥ mα,
n

αn−1 −
n+1

α(n+1)−1 = 1
(αn−1)(α(n+1)−1) . We have |αn− 1| ≥ |α|n− 1 and |α(n+ 1)− 1| ≥

|α|(n + 1) − 1 = |α|n + |α| − 1 ≥ |α|n − 1. Let n ≥ mα, |α|n − 1 > 0, hence
1

|αn−1| ≤
1

|α|n−1 and 1
|α(n+1)−1| ≤

1
|α|n−1 . Consequently | n

αn−1 −
n+1

α(n+1)−1 | =
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1
|αn−1||α(n+1)−1| ≤

1
(|α|n−1)2 . Then Σ∞n=mα

n
αn−1en ∈ A by Proposition II.7 and

therefore Σn∈Iα
n

αn−1en ∈ A. If α−1 /∈ N i.e. Iα = N, (αe− x)Σ∞n=1
n

αn−1en = e,

then αe − x is invertible, a contradiction. If α−1 ∈ N, put nα = α−1, then
(αe − x)Σn∈Iα

n
αn−1en = Σn∈Iαen, hence Σn∈Iαen ∈ Ker(f) since αe − x ∈

Ker(f). If enα ∈ Ker(f), then e = enα + Σn∈Iαen ∈ Ker(f), a contradiction.
Finally f(enα) 6= 0 and therefore f = e∗nα .

Remark. Proposition II.5 and Theorem II.8 give an answer to Sawon and
Wronski’s problem.
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