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Résumé

In this paper, the minimum time-energy pull-up maneuver problem for airborne launch
vehicles (ALV) is studied with a focus on developing a numerical approach for solving the pro-
blem. Firstly, the six-degree-of-freedom (6DOF) dynamics for the motion of the ALV subject to
the aerodynamic forces, the gravitational force, the propulsive force and the path constraints
are established. Then, �rst-order necessary conditions are derived by applying the Pontryagin
Maximum Principle, and the optimal control problem is transformed into a two-boundary
value problem, which is generally solved numerically thanks to a shooting method. However,
the convergence domain of the shooting method is very small due to high dimension and to
nonlinear coupling of attitude and trajectory motions. To overcome this di�culty, we design
an algorithm combining the multiple shooting method and the Predictor-Corrector continua-
tion (PC continuation) method, where the choice of homotopy parameters relies on a careful
analysis of the nature of the dynamics. Numerical results presented for pull-up maneuvers of
an ALV show that the algorithm is e�cient and robust with respect to terminal conditions.
Our method is also applied to the problem of rapid maneuver of the upper stage of a launch
vehicle (LV).

Keywords : coupled attitude trajectory problem ; optimal control ; Pontryagin maximum prin-
ciple ; multiple shooting ; numerical continuation ; airborne launch vehicle ; path constraint.

Nomenclature

SR = (xR,yR, zR) = launch frame
Sb = (xb,yb, zb) = body frame
Sv = (xv,yv, zv) = velocity frame
r = position vector (from the origin of SR towards the launcher), m
rd = vector from the origin of the Earth towards the launcher, m
v, v = velocity vector, module of the velocity velocity, m/s
E = (θ, ψ, φ) = Euler angles (pitch angle, yaw angle, roll angle), rad
ω = angular velocity vector, rad/s
Ib = inertia matrix
m = mass of the LV, kg
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g = gravity acceleration vector, m/s2

T = thrust force vector, N
L = lift force vector, N
D = drag force vector, N
S = reference surface, m2

Cx,Cx0,Cxα = coe�cients of the drag force
Cz,Cz0,Czα = coe�cients of the lift force
RE = radius of the Earth, m
α = angle of attack, rad
n̄ = load factor
q̄ = dynamic pressure, kPa
ξ, κ = �ight path angle, bank angle, rad
u = (u1, u2) = control variable, u ∈ R2

x = state variable, x ∈ R11

p = adjoint variable, p ∈ R11

K = regularization parameter
Kp = penalty parameter

1 Introduction

Since the �rst successful �ight of Pegasus vehicle in April 1990, the ALVs have always been
a potentially interesting technique for small and medium-sized space transportation systems. The
mobility and deployment of the ALVs provide increased performance and reduced velocity requi-
rements due to non-zero initial velocity and altitude (see, e.g., [24, 25, 27, 44, 46]).

ALVs consist of a carrier aircraft and a rocket-powered LV. ALVs are typically started (several
seconds) after they are dropped almost horizontally from the carrier aircraft for the safety of
the carrier aircraft. In order to bene�t from the airborne launch [45, 46], a pull-up maneuver is
required to rotate the ALVs in order to attain the optimal release �ight path angle (30◦ ± 15◦ for
subsonic release velocities). Consider for example the Pegasus vehicle [3, 11, 38, 43]. It is released
horizontally with an altitude of 12.65 km. Its �rst stage is ignited with an altitude of 12.54 km and
a velocity of 236.8m/s (0.8 Mach). Then it has to ful�ll a pull-up maneuver until having a �ight
path angle of 13.8◦ (for the ignition of the second stage) subject to a maximal load factor of 2.5 g
and a maximal dynamic pressure of 47.6 kPa.

To tackle the pull-up maneuver problem for ALVs, the vehicle cannot be regarded as a single
mass point, since the pull-up maneuver consists of performing an attitude maneuver such that the
�ight path angle increases up to its expected value, while being subject to path constraints. In this
paper, we address the minimum time-energy pull-up maneuver problem for ALVs with a focus on
the numerical resolution of the problem.

The problem consists of minimizing the cost functional

C(tf , u) = tf +K

∫ tf

0

‖u(t)‖2 dt (1)

for the six-degree-of-freedom (6DOF) dynamical system

ṙ = v, v̇ = g +
T + L + D

m
, (2)

Ė = fE(E,ω), Ibω̇ = −ω ∧ Ibω + M, ‖M‖ 6Mmax, (3)
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with initial conditions

r(0) = r0, v(0) = v0, E(0) = E0, ω(0) = ω0,

and �nal conditions
r(tf ) free, v(tf ) // fz(E, tf ), ω(tf ) = 0,

where fE : R3 × R3 7→ R3 is a nonlinear mapping, M is the control torque of which the module
is bounded by a given Mmax > 0, and fz(E, tf ) represents the unit directional vector of the
longitudinal axis of the launcher at time tf . The �rst two equations describe respectively the
trajectory kinematics and dynamics, and the last two equations describe the attitude kinematics
and dynamics, respectively. In addition, path constraints on the load factor n̄ and on the dynamic
pressure q̄ are required to be satis�ed during the maneuver.

By applying the Pontryagin Maximum Principle (PMP ; see, e.g., [41]), this optimal control
problem can be reduced to a two-point boundary value problem. However, due to high dimension
and to nonlinear coupling between aerodynamics, propulsion, vehicle attitude and trajectory, usual
numerical shooting methods for solving this two-point boundary value problem are very hard to
initialize successfully. Therefore, it is required to combine them with other theoretical or numerical
approaches (see the survey [48]). The numerical continuation (also called homotopy method) is a
powerful tool that can be combined with indirect shooting methods. The idea of continuation is to
solve a problem step by step from a simpler problem by parameter deformation (see, e.g., [1]). For
example, in [10, 21, 36], the continuation method is used to solve orbit transfer problems, and in
[4, 9, 20, 29] continuation procedures are used to introduce atmospheric e�ects and path constraint
terms related to the endo-atmospheric LV ascent problem, starting from a nearly analytic vacuum
solution.

Therefore, in view of successfully solving the pull-up maneuver problem, we propose to combine
the multiple shooting method with the PC continuation method. Note that we use here a multiple
(instead of single) shooting method in order to obtain a better numerical stability. The continuation
procedure is designed from on a careful analyis of the speci�c structure of the problem, leading
to an adequate choice of the homotopy parameters. An important property is the coupling of the
attitude motion (which is fast) with the trajectory motion (which is slow). On the one hand, this
property causes di�culties in numerical approaches, especially in indirect methods where Newton-
like algorithms are implemented to address the boundary value problem. On the other hand, this
coupling property suggests that singular perturbation theory (see, e.g., [2, 6, 12, 28, 39]) may be
relevant in our context.

We �rst analytically solve what we call the problem of order zero, which consists of calculating
the time optimal solution of the trajectory velocity reorientation using Euler angles as control
inputs. Then, we use a continuation procedure to re-introduce the desired attitude terminal condi-
tions, the aerodynamic forces and the terms induced by path constraints. Our approach turns
out to be time-e�cient and an advantage is that our method does not need user-supplied initial
guesses. In addition, we show how our study and design methodology apply as well to attitude
reorientation for LVs.

The paper is organized as follows. In Section 2, we establish the 6DOF model of pull-up ma-
neuvers and we apply the PMP to the formulated optimal control problem. In Section 3, we recall
the multiple shooting and PC continuation methods, we de�ne the problem of order zero. Then,
we describe the continuation procedure, and we use a frame transformation and a smoothing of
the vector �elds to enhance the continuation strategy. Finally, in Section 3, numerical results are
given, including an example of ALV minimum time-energy pull-up maneuver, statistical results for
pull-up maneuvers of an ALV, and an example of rapid maneuver for a LV.
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2 Problem statement and application of the PMP

2.1 The model

Throughout the paper, we make the following assumptions : the Earth is a sphere and is �xed
in the inertial space ; the engine cannot be shut o� during the maneuver, and the module of the
thrust force is constant, taking its maximal value ; the mass m is constant.

Coordinate systems. All coordinate systems introduced here are Cartesian.

Figure 1 � Coordinate systems and relations.

The launch (reference) frame SR is �xed around the launch point OR. The axis xR points
radially outwards (normal to the local tangent plane), and the axis zR points to the North.

The body frame Sb is de�ned as follows. The origin of the frame Ob is �xed around the mass
center of the launcher, the axis zb is along the longitudinal axis of the launcher, and the axis xb is
in the cross-section. As shown in Fig. 1 (a), the body frame can be derived by three ordered unit
single-axis rotations from the launch frame,

SR
Ry(θ)−−−−→ ◦ Rx(ψ)−−−−→ ◦ Rz(φ)−−−−→ Sb,

where Rj(k) is a rotation of the frame around the axis j ∈ {x, y, z} with an angle k ∈ R. Therefore,
the transfer matrix from Sb to SR is LRb = L>bR = Ry(θ)>Rx(ψ)>Rz(φ)>.

The velocity frame Sv is �xed around the mass center of the launcher. The axis xv is parallel
to the velocity vector, and the axis zv is normal to the velocity, pointing to the direction of the
lift force L. This frame can be derived by two unit single-axis rotations from the launch frame as
shown in Fig. 1 (b),

SR
Rx(κ)−−−−→ ◦ Ry(ξ)−−−−→ Sv.

We consider the projection of v in the SR frame, (v)R = (vx, vy, vz)
>. Since vx = v cos ξ, vy =

v sin ξ sinκ, vz = −v sin ξ cosκ, we have cos ξ = vx/v, and tanκ = −vy/vz if sin ξ 6= 0.
For convenience, we de�ne θv and ψv as the �pitch" and �yaw" angles of the velocity vector,

and thus we also have vx = v sin θv cosψv, vy = −v sinψv, vz = v cos θv cosψv. Then, we get
tan θv = 1/ tan ξ cosκ and sinψv = − sin ξ sinκ. Moreover, the transfer matrix from Sv to SR is
LRv = L>Rv = Rx(κ)>Ry(ξ)>.

Throughout the paper, for any vector x ∈ R3, (x)w is the projection of this vector in the frame
Sw ∈ {SR, Sb, Sv}, 〈·, ·〉 is the inner product of two vectors, and ‖ · ‖ is the L2-norm.
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Attitude motion equations. Assume that Ib = diag(Ix, Iy, Iz) and Ix = Iy. Set (ω)b =
(ωx, ωy, ωz)

>, and assume that ωz = 0 (due to the fact that the de�ection of the thrust with
respect to the longitudinal axis of the launcher does not provide a rotation torque around the
longitudinal axis). Then, we can write Eqs. (3) in the Sb frame as

θ̇ = (ωx sinφ+ ωy cosφ)/ cosψ, ψ̇ = ωx cosφ− ωy sinφ, φ̇ = (ωx sinφ+ ωy cosφ) tanψ,

ω̇x = −bu2, ω̇y = bu1,
(4)

where b = µmaxTmaxl/(2Ix), Tmax is the maximal thrust module, µmax is the maximal thrust
de�ection between T and zb, and l is length of the LV (see [52] for more details).

Note that, when ψ = π/2 +kπ (k ∈ Z), the system encounters singularities due to the fact that
the Euler angle φ is not well de�ned at such points. We call these points Euler singularities for
convenience. We will see in Section 3 numerical tips to deal with these singularities.

Trajectory motion equations. According to our assumptions, we have

(T)R = Tmax(sin θ cosψ,− sinψ, cos θ cosψ)>.

Setting RE = (RE , 0, 0)>, we have rd = r + RE , and the gravity acceleration vector g is given by

(g(t))R =

(
g0
‖rd(0)‖2

‖rd(t)‖

)
R

= (gx, gy, gz)
>, (5)

where g0 is the gravity acceleration at the origin of the frame SR.
Denoting the air density by ρ, the drag and lift forces are expressed in the frame Sv by (D)v =

(− 1
2ρv

2SCx, 0, 0)> and (L)v = (0, 0, 12ρv
2SCz)

>. We consider an exponential atmospheric density
model. The aerodynamic coe�cients are approximated by Cx = Cx0+Cxαα

2 and Cz = Cz0+Czαα,
where Cx0, Cxα, Cz0 and Czα are constant coe�cients. Then, by using the transfer matrix LRv,
we get

(D)R = (Dx, Dy, Dz)
> =

1

2
ρSCxv

2(− cos ξ,− sin ξ sinκ, sin ξ cosκ)>,

(L)R = (Lx, Ly, Lz)
> =

1

2
ρSCzv

2(sin ξ,− cos ξ sinκ, cos ξ cosκ)>.

Therefore, Eqs. (2) can be written in the SR frame as

ṙx = vx, ṙy = vy, ṙz = vz,

v̇x = a sin θ cosψ + gx +Dx/m+ Lx/m,

v̇y = −a sinψ + gy +Dy/m+ Ly/m,

v̇z = a cos θ cosψ + gz +Dz/m+ Lz/m,

(6)

where a = Tmax/m is constant.

Inequality state constraint. During the atmospheric �ight, the lateral load factor due to
aerodynamic forces must be limited according to

n̄ =
q̄SCN
mg0

=
ρ‖v‖2SCN

2mg0
6 n̄max,

where q̄ is the dynamic pressure and n̄max is the maximal admissible load factor. The coe�cient
CN is approximated by CN = CN0 + CNαα. Note that(

Cz
Cx

)
=

(
cosα − sinα
sinα cosα

)(
CN
CA

)
,
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where the angle of attack α is de�ned by α = (vx sin θ cosψ − vy sinψ + vz cos θ cosψ)/v. We also
require that the dynamic pressure be bounded above by a maximal value q̄max, i.e., q̄ 6 q̄max.

De�ning the state x = (rx, ry, rz, vx, vy, vz, θ, ψ, φ, ωx, ωy), the above constraints can be formu-
lated as inequality state constraints for our optimal control problem, in the form

c(x) = (c1(x), c2(x))> = (n− nmax, q̄ − q̄max)> 6 0. (7)

The system (4)-(6) can be written as the bi-input control-a�ne system ẋ = f(x) + u1g1(x) +
u2g2(x), where the control satis�es the constraint ‖u‖ =

√
u21 + u22 6 1, and f , g1 and g2 are

smooth vector �elds. If b is a function and Z is a vector �eld, then Z acts on b by Lie derivative
Z.b = ∂b

∂x (x)Z(x). Recall that a state constraint c(x) 6 0 (also called path constraint) is of order
m if gi.c = gif.c = · · · = gif

m−2.c = 0 and gif
m.c 6= 0, i = 1, 2. A boundary arc is an arc (not

reduced to a point) solution of the system satisfying c(x(t)) = c(1)(x(t)) = · · · = c(m−1)(x(t)) = 0,
and the control along the boundary arc is a feedback control calculated by solving c(m) = fm.c+
u1 g1f

(m−1).c+u2 g2f
(m−1).c = 0. Here, we �nd that the constraint on the load factor n̄ is of order

2 and the constraint on the dynamic pressure q̄ is of order 3. We will see that such a state constraint
is di�cult to tackle numerically if we consider it as a hard constraint, and we will propose to use
a soft constraint method.

Pull-up maneuver problem. The desired �nal velocity is required to be parallel to the lon-
gitudinal axis zb, that is, (v(tf ))R ∧ (zb(tf ))R = 0. This requirement re�ects the fact that most
launchers are planned to maintain a zero angle of attack along the �ight.

We set x0 = (rx0, ry0, rz0, vx0, vy0, vz0, θ0, ψ0, φ0, ωx0, ωy0) and we de�ne the target set

M1 ={(rx, ry, rz, vx, vy, vz, θ, ψ, φ, ωx, ωy) ∈ R11 | θ = θf , ψ = ψf , φ = φf ,

vz sinψf + vy cos θf cosψf = 0, vz sinψf + vy cos θf cosψf = 0, ωx = ωxf , ωy = ωyf}.

The pull-up maneuver problem consists of steering the system (4)-(6) from x(0) = x0, i.e., from

rx(0) = rx0, ry(0) = ry0, rz(0) = rz0, vx(0) = vx0 , vy(0) = vy0 , vz(0) = vz0 ,

θ(0) = θ0, ψ(0) = ψ0, φ(0) = φ0, ωx(0) = ωx0, ωy(0) = ωy0,
(8)

to some �nal point belonging to the target M1, i.e., such that

vzf sinψf + vyf cos θf cosψf = 0, vzf sin θf − vxf cos θf = 0,

θ(tf ) = θf , ψ(tf ) = ψf , φ(tf ) = φf , ωx(tf ) = ωxf , ωy(tf ) = ωyf .
(9)

while minimizing the cost functional C de�ned by (1), over all possible controls satisfying the
control constraint ‖u‖ =

√
u21 + u22 6 1 and whose corresponding trajectories satisfy the state

inequality constraints (7). We denote this pull-up maneuver problem by (PUP)K in the sequel.

2.2 Application of the Pontryagin maximum principle

Hard constraint formulation. According to the PMP with state constraints (see, e.g., [22]),
there exists a nontrivial triple of Lagrangian multipliers (p, p0, η), with p0 6 0, p ∈ BV (0, tf )11

and η = (η1, η2) ∈ BV (0, tf )2, where BV (0, tf ) is the set of functions of bounded variation over
[0, tf ], such that

ẋ =
∂H(x, p, u, p0, η)

∂p
, dp = −∂H(x, p, u, p0, η)

∂x
dt−

2∑
i=1

∂ci(x)

∂x
dηi,
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almost everywhere on [0, tf ], where the Hamiltonian of the problem is H(x, p, u, p0, η) = 〈p, f(x) +

u1g1(x) + u2g2(x)〉 +
∑2
i=1 ηici(x) + p0(1 + K‖u‖2), and we have the maximization condition

u(t) ∈ argmaxwH(x(t), p(t), w, p0, η(t)) for almost every t. In addition, we have dηi > 0 and∫ tf
0
ci(x) dηi = 0 for i = 1, 2.
Along a boundary arc, we must have hi = 〈p, gi(x)〉 = 0, i = 1, 2. Assume that only the �rst

constraint (which is of order 2) is active along this boundary arc. Then by di�erentiating two
times the switching functions hi, i = 1, 2, we have d2hi = 〈p, ad2f.gi(x)〉dt2 − dη1 · (adf.gi).c1dt.
Moreover, at an entry point, letting t = τ , we have dhi(τ

+) = dhi(τ
−) − dη1 · (adf.gi).c1 = 0.

Hence we can calculate dη1. A similar result is obtained at an exit point.
The main drawback of this hard constraint formulation is that it does not provide a solution

if the state is perturbed in the constrained region [26]. Moreover, the adjoint vector p is no longer
absolutely continuous : a jump dη may occur at the entry or at the exit point of a boundary arc.
Then, in order to design a robust algorithm for solving the problem (PUP)K , we will use another
approach.

An alternative to treat the dynamic pressure state constraint, used in [13, 16, 29], is to design
a feedback law that reduces the commanded throttle based on an error signal. According to [16],
this approach works well when the trajectory does not violate too much the maximal dynamic
pressure constraint. In contrast, if the constraint is violated signi�cantly, this approach may cause
instability in the �ight. Moreover, the derived solutions are suboptimal.

Another alternative is the soft constraint method (also called penalty function method). Accor-
ding to [26], the hard constraints could be problematic when using singular perturbation method if
the trajectory is perturbed in a constrained region, whereas the soft constraint does not have this
problem. The soft constraint is implemented using a penalty function to discard solutions entering
the constrained region [14, 35].

For the problem (PUP)K , we adopt the soft constraint method, because unconstrained so-
lutions for ALV �ights generally violate signi�cantly the state constraint, and the continuation
procedure that we will use is actually starting from a solution lying in the constrained region.

Soft constraint formulation. Following the soft constraint method, the constraint problem
(PUP)K is recast as an unconstrained optimal control problem by adding a penalty function to
the cost functional, i.e.,

C(tf , u,Kp) = tf +K

∫ tf

0

‖u‖2dt+Kp

∫ tf

0

P (x(t))dt, (10)

where the penalty function P (·) for the state inequality constraint (7) is given by

P (x) =

{
0 if n̄ < n̄max,

(n̄− n̄max)2 + (max(0, q̄ − q̄max))2 if n̄ > n̄max,

Tuning the parameter Kp allows one to control the constraint violation. Then, we apply the PMP
to this �unconstrained" problem. We still denote this unconstrained problem by (PUP)K .

Application of the PMP without state constraint. The Hamiltonian is now given by
H(x, p, p0, u) = 〈p, f(x)〉+ u1〈p, g1(x)〉+ u2〈p, g2(x)〉+ p0(1 +K‖u‖2 +KpP (x)). Here we assume
p0 = −1 (normal case, see [52]). The adjoint equation is

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t)), (11)
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where we have set p = (prx , pry , prz , pvx , pvy , pvz , pθ, pψ, pφ, pωx , pωy ). Let h = (h1, h2) be the swit-
ching function and let h1(t) = 〈p(t), g1(x(t))〉 = bpωy (t) and h2(t) = 〈p(t), g2(x(t))〉 = −bpωx(t).
The maximization condition of the PMP gives

u =

{
(h1, h2)/(2K) if ‖h‖ 6 2K,

(h1, h2)/‖h‖ if ‖h‖ > 2K.
(12)

Moreover, the transversality condition p(tf ) ⊥ Tx(tf )M1, where Tx(tf )M1 is the tangent space
to M1 at the point x(tf ), yields the additional conditions pvy(tf ) sinψf = pvx(tf ) sin θf cosψf +
pvz(tf ) cos θf cosψf and prx(tf ) = pry (tf ) = prz (tf ) = 0. The �nal time tf being free and the
system being autonomous, we have in addition that H(x(t), p(t),−1, u(t)) = 0 almost everywhere
on [0, tf ].

We say that the optimal control given by Eq. (12) is regular. When K = 0 and ‖h(t)‖ = 0,
the control is said singular. We refer to [52] for the precise calculation of singular controls in our

problem. Note that the term K
∫ tf
0
‖u(t)‖2dt in the cost functional (10) is used to avoid chattering

[34, 18, 42, 50, 51, 52], and the exact minimum time solution can be approached by decreasing step
by step the value of K > 0.

Remark 1 (Choice of the penalty parameter.). According to the cost functional de�ned by (10),
we see that if Kp is small compared with the other two terms, minimizing C(tf , u,Kp) may not
produce a feasible solution. Therefore, the penalty parameter Kp should be chosen large enough.
However, large values of Kp may create steep valleys at the constraint boundaries, which raise
di�culties for search methods. In order to choose an adequate value for Kp, a simple strategy
[19, 47] is to start with a quite small value of Kp = Kp0 and then to increase Kp while solving
a sequence of problems until reaching a quite large Kp = Kp1. We stop increasing Kp when
‖c(x(t))‖ < εc, for every t ∈ [0, tf ], for some given tolerance εc > 0.

3 Resolution algorithm

In this section, we �rst de�ne what we call the problem of order zero, denoted by (OCP0), the
solution of which can be easily computed. Then we embed this simple, low-dimensional solution
into higher dimension, in order to initialize an indirect method (multiple shooting) for the more
complex problem (PUP)K .

Before providing the details of our approach, we �rst brie�y recall what are the multiple shooting
method and the Predictor-Corrector (PC) continuation method that we will then use to ensure
e�ciency and robustness of our algorithm.

3.1 Multiple shooting and PC continuation methods

3.1.1 Multiple shooting method

Compared with a single shooting method, the multiple shooting has a better numerical stability.
The multiple shooting approach has also been used to solve the optimal multi-burn ascent problem
(see [15, 16, 30, 31, 32, 33, 40]). It consists in dividing the interval [0, tf ] into N subintervals [ti, ti+1]
and in considering as unknowns the values of zi = (x(ti), p(ti)) at the beginning of each subinterval.
The application of the PMP to the optimal control problem yields a multi-point boundary value

8



problem, consisting of �nding Z = (p(0), tf , zi), i = 1, · · · , N−1, such that the di�erential equation

żi(t) = F (z(t)) =

(
∂H(x,p,p0,u(x,p))

∂p

−∂H(x,p,p0,u(x,p))
∂x

)
=


F0(z(t)) if t0 6 t 6 t1,

F1(z(t)) if t1 6 t 6 t2,
...

FN−1(z(t)) if tN−1 6 t 6 tf ,

and the constraints x(0) = x0, x(tf ) ∈ M1, H(tf ) = 0, p(tf ) ⊥ Tx(tf )M1, and z(t−i ) = z(t+i ),
i = 1, · · · , N − 1, are satis�ed. This problem can be solved by iterative methods, for example, a
Newton type method. The nodes of the multiple shooting method may involve the switching times
(at which the switching function changes its sign), and the junction times (entry, contact, or exit
times) with boundary arcs. In this case it is required to have an a priori knowledge of the structure
of the optimal solution. In the absence of any information on the optimal solution, we implement
the multiple shooting method with a regular subdivision, i.e., ti = i

tf
N for i = 1, · · · , N − 1.

3.1.2 Predictor-Corrector continuation method

Let nh be the number of unknowns of the multiple shooting method (dimension of Z). Let
G : Rnh × R 7→ Rnh be a deformation such that G(Z, 0) = G0(Z) and G(Z, 1) = G1(Z), where
G1 : Rnh 7→ Rnh is the smooth map of which one wants to determine the zeros points, and
G0 : Rnh 7→ Rnh is a smooth map for which the determination of its zeros is easy. Denote the
continuation parameter by λ, then by discretizing λ by 0 = λ0 < λ1 < · · · < λnl = 1 and solving
a sequence of problems G(Z, λi) = 0, i = 1, · · · , nl, one will generally be able to �nd the zeros of
G1(Z). The reason is that if the increment 4λ = λi+1 − λi is small enough, then the solution Zi

corresponding to λi is expected to be close to the solution of G(Z, λi+1) = 0.
However, the parameter λ can be ill suited as a parametrization for the zero curve (Z, λ) ∈

{(Z, λ) | G(Z, λ) = 0}, and it is explained in [1] that the arc-length, which is a natural parameter
for the curve, can be a better choice for parametrization. On the model of the di�erential continua-
tion method implemented in [7], which consists of integrating the zero curve, here we implement a
Predictor-Corrector method which is computationally easier for our problem (see details in [1]).

We parameterize the zero curve by arc length s and we denote the zero curve by ch(s) =

(Z(s), λ(s)). Denote ∂G(Z(s),λ(s))
∂(Z,λ) and dch(s)

ds by JG and t(JG), respectively. Di�erentiatingG(Z(s), λ(s)) =

0 with respect to s, we have JG t(JG) = 0, ‖t(JG)‖ = 1, ch(Z(0), 0) = (Z(0), 0). Assume that ch(s)
is not critical and assume that we know a point of this curve (Z(si), λ(si)). Then we predict a zero
point (Z̃(si+1), λ̃(si+1)) by

(Z̃(si+1), λ̃(si+1)) = (Z(si), λ(si)) + hs t(JG), (13)

where hs is a given step size of s. When the step size hs is small enough, the point (Z̃(si+1), λ̃(si+1))
may be very close to the solution point (Z(si+1), λ(si+1)) = G−1(ch(si+1)) = 0, and thus makes
the Newton type iterative method (serving as a corrector) easier to converge. However, calculating
the Jacobian matrix JG might be computationally heavy, and thus we use an approximation.

According to [8], the �rst turning point of λ(s̄) (where dλ
ds (s̄) = 0 and d2λ

ds2 (s̄) 6= 0) corresponds to a
conjugate point (the �rst point where extremals lose local optimality) at time tf . By contraposition,
if we assume the absense of the conjugate point, then there is no turning point in λ(s), and then
λ increases monotonically along the zero path. Assume that we know three zeros (Zi−2, λi−2),
(Zi−1, λi−1) and (Zi, λi), and let s1 = ‖(Zi−1, λi−1)− (Zi−2, λi−2)‖, s2 = ‖(Zi, λi)− (Zi−2, λi−2)‖,
s3 = ‖(Zi, λi)− (Zi−1, λi−1)‖, then we approximate t(JG) by

t(JG) =
(Zi, λi)− (Zi−1, λi−1)

s2 − s1
|s2 − s1|
|s3|

.
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We note that when the when the step length hs is small enough, the predicted point (13) with this
approximation is very close to the true zero.

3.2 Resolution algorithm

The objective is to compute the optimal solution of the problem (PUP)K , starting from the
explicit solution of a simpler problem denoted by (OCP0). For convenience, we de�ne the exo-
atmospheric pull-up maneuver problem (EPUP) as the pull-up maneuver problem without state
inequality constraints and without aerodynamic forces. Moreover, we de�ne the unconstrained
pull-up maneuver problem (UPUP) as the pull-up maneuver problem without state inequality
constraints.

3.2.1 Problem of Order Zero

We de�ne the problem of order zero, as a �subproblem� of the problem (PUP)K , in the sense
that we consider only the trajectory motion and that we assume the attitude (Euler) angles able to
take instantaneously any desired value. In other words, the Euler angles are considered as control
inputs in that simpler problem. Meanwhile, we assume that the aerodynamic forces are zero and
the gravity acceleration is constant. We formulate the problem as

min tf , s.t. ṙ = v, v̇ = azb + g0, r(0) = r0, v(0) = v0, v(tf ) // w, ‖w‖ = 1,

where w is the desired target velocity direction. This problem is easy to solve, and the explicit
solution derived by applying the PMP is given by

z∗b =
1

a

(
kw − v0

tf
− g0

)
, tf =

−a2 +
√
a22 − 4a1a3

2a1
, pr = 0, pv =

−p0

a+ 〈z∗b ,g0〉
z∗b .

with k = 〈v0,w〉+ 〈g0,w〉tf , a1 = a2 − ‖〈g0,w〉w − g0‖2, a2 = 2(〈v0,w〉〈g0,w〉 − 〈v0,g0〉), and
a3 = −‖〈v0,w〉w − v0‖2. Since the solution z∗b projects in the launch frame SR onto

(z∗b)R = (sin θ∗ cosψ∗,− sinψ∗, cos θ∗ cosψ∗)> = (e∗x, e
∗
y, e
∗
z),

the Euler angles θ∗ ∈ (−π, π), ψ∗ ∈ (−π/2, π/2) are

θ∗ = atan2(e∗x, e
∗
z), ψ∗ = arcsin(−e∗y). (14)

Recall that, if ψ = ±π/2 + kπ, k ∈ Z, then the Euler angles are not well de�ned. Then, if ψ0

and ψf are close ±π/2, we perform in Section 3.3 a change of frame SR to a new reference frame
S′R. The Euler singularities are also treated in Section 3.4 by smoothing the vector �eld at such
singular points.

Given a real number φ∗, the optimal solution of (OCP0) actually corresponds to a singular
solution of (PUP)K with terminal conditions given by

v(0) = v0, E(0) = E∗, ω(0) = ω∗, (15)

vz(tf ) sinψf + vy(tf ) cos θf cosψf = 0, vz(tf ) sin θf − vx(tf ) cos θf = 0, (16)

E(tf ) = E∗, ω(tf ) = ω∗,

where E∗ = (θ∗, ψ∗, φ∗), and ω∗ = 0.
It is worth noting that this solution lies on the singular surface of (PUP)K=0, meaning that it

is on the �highway" between two given points/submanifolds in the state space. On this �highway",
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the system state goes the most rapidly towards the target point or manifold. Indeed, we observe
in the numerical results that singular extremals of (PUP)K=0 play a role similar to that of stable
points in the �turnpike" phenomenon described in [49] : optimal trajectories �rst tend to reach the
singular surface (to have a greater speed in state transfer), then stay in the singular surface for a
while until they are su�ciently close to the target submanifold M1, and �nally get o� the singular
surface to reach the target submanifold. Note that a singular arc is not necessary if the state is
su�ciently close to the target.

We note again that the regularization termK
∫ tf
0
‖u‖2dt withK > 0 is necessary. Since the solu-

tion of (OCP0) is contained in the singular surface (�lled by the singular solutions) for (PUP)K=0,
passing directly from the solution of (OCP0) to the one of (PUP)K=0 forces optimal extremals
to contain a singular arc (and thus chattering arcs), and the shooting method is then bound to fail
due to numerical integration of a highly discontinuous Hamiltonian system.

3.2.2 Numerical strategy

We proceed as follows :
� First, we embed the solution of (OCP0) into the higher dimensional problem (PUP)K . For

convenience, we still denote by (OCP0) the problem (OCP0) seen in higher dimension.
� Then, we pass from (OCP0) to (PUP)K by using a numerical continuation procedure,

involving four continuation parameters : two parameters λ1 and λ2 are used to introduce
the terminal conditions (8)-(9) in (EPUP) ; λ3 is used to introduce aerodynamic forces
and variational gravity acceleration in (UPUP) ; λ4 is used to introduce soft constraints in
(PUP)K .

The overall continuation procedure is pictured in Fig. 2. We note that the procedure of decreasing
K is optional, but it is somehow important when dealing with the maneuver problem of the upper
stage of LVs, since in that case a maneuver within smaller time is to be expected.

Figure 2 � Continuation procedure.

The unknowns of the shooting problem are p(0) ∈ R11, tf and zi ∈ R22, i = 1, · · · , N−1, where
zi are the node points of the multiple shooting method. We set Z = (p(0), tf , zi).

In the following, we call λi-continuation the continuation step corresponding to parameter λi,
and we denote the shooting function for the λi-continuation step by Gλi = G(Z, λi).

We set pr = (prx , pry , prz ), pE = (pθ, pψ, pφ), pω = (pωx , pωy ), φ∗ = 0, E0 = (θ0, ψ0, φ0)>,
ω0 = (ωx0, ωy0), and Ef = (θf , ψf , φf )>, ωf = (ωxf , ωyf ).

λ1-continuation. The parameter λ1 is used to act, by continuation, on the initial conditions,
according to E(0) = E∗(1 − λ1) + E0λ1 and ω(0) = ω∗(1 − λ1) + ω0λ1, where E

∗ and ω∗ are
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calculated using (14)-(16). The shooting function Gλ1
for the λ1-continuation is given by

Gλ1 =
(
vz(tf ) sinψf + vy(tf ) cos θf cosψf , vz(tf ) sin θf − vx(tf ) cos θf

pvy(tf ) sinψf − (pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf ),

pr(tf ), pω(tf ), pE(tf ), H(tf ), {zi(t−i ) = zi(ti)
+, i = 1, · · · , N − 1}

)
.

Initializing with the solution of (OCP0), we solve this shooting problem with λ1 = 0, and we
get a solution of the problem (EPUP) with the terminal conditions (15)-(16) (the other states at
tf being free). Then, by continuation, we make λ1 vary from 0 to 1, and in this way we get, for
λ1 = 1, the solution of the problem (EPUP) with the terminal conditions (8) and (16). With this
solution, we integrate the extremal equations (4)-(6) and (11) to get the values of the state variable
at ti, i = 1, · · · , N − 1 and tf . We denote by Ee = (θ(tf ), ψ(tf ), φ(tf )) and ωe = (ωx(tf ), ωy(tf ))
the �natural" conditions obtained at the �nal time.

λ2-continuation. In a second step, we use the continuation parameter λ2 to act on the �nal
conditions, in order to make them pass from the �natural" values Ee and ωe, to the desired target
values Ef , ωf . The shooting function is

Gλ2
=
(
vz(tf ) sinψf + vy(tf ) cos θf cosψf , vz(tf ) sin θf − vx(tf ) cos θf ,

pvy(tf ) sinψf − (pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf ),

E(tf )− (1− λ2)Ee − λ2Ef , ω(tf )− (1− λ2)ωe − λ2ωf ,
pr(tf ), H(tf ), {zi(t−i ) = zi(ti)

+, i = 1, · · · , N − 1}
)
.

(17)

Solving this problem by making vary λ2 from 0 to 1, we obtain the solution of the problem (EPUP)
with the desired terminal conditions (8)-(9).

λ3-continuation. The parameter λ3 is used to introduce aerodynamic forces and gravity acce-
leration in (4) and (6), according to

v̇x = a sin θ cosψ + g0x(1− λ3) + λ3gx + λ3
Dx + Lx

m
,

v̇y = −a sinψ + g0y(1− λ3) + λ3gy + λ3
Dy + Ly

m
,

v̇z = a cos θ cosψ + g0z(1− λ3) + λ3gz + λ3
Dz + Lz

m
,

and ρ(t) = ρ0
(
(1−λ3) exp(−(‖rd(0)‖−RE)/hs) +λ3 exp(−(‖rd(t)‖−RE)/hs)

)
, where gx, gy and

gz are given by (5), (g0)R = (gx0, gy0, gz0)>, and hs = 7143, ρ0 = 1.225. Applying the PMP, the
equations of the adjoint variable p also involve λ3. The shooting function is

Gλ3 =
(
vz(tf ) sinψf + vy(tf ) cos θf cosψf , vz(tf ) sin θf − vx(tf ) cos θf ,

pvy(tf ) sinψf − (pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf ),

E(tf )−Ef , ω(tf )− ωf , pr(tf ), H(tf ), {zi(t−i ) = zi(ti)
+, i = 1, · · · , N − 1}

)
.

(18)

This step is a continuation on the dynamics of the system, and the parameter λ3 does not explicitly
appear in the shooting function. By making the parameter λ3 vary from 0 to 1, we get the solution
of (UPUP).
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λ4-continuation and Kp-continuation. Finally, the parameter λ4 is used to act on the terms
induced by the penalty function, in the Hamiltonian

HKp = 〈p(t), f(x(t))〉+ u1(t)〈p(t), g1(x(t))〉+ u2(t)〈p(t), g2(x(t))〉 − (1 +K‖u‖2 + λ4KpP (x)),

The shooting function Gλ4 is de�ned by replacing H(tf ) with HKp(tf ) in the shooting function
Gλ3

given by (18). Making λ4 vary from 0 to 1, we obtain the solution of (PUP)K with the
penalty parameter Kp = Kp0. As said in Remark 1, a complementary continuation on Kp from
Kp0 to Kp1 is then required to retrieve a solution for which the path constraints are satis�ed in
an acceptable way. Moreover, as already mentioned, we can continue to decrease the value of K in
order to approach the solution of (PUP)K=0. This is an optional continuation step.

To implement e�ciently the above four-parameter continuation, we use the PC continuation
method combined with the multiple shooting method. However, we use two additional numerical
tricks in order to improve the robustness of the algorithm and to tackle Euler singularities (see
Section 2.1).

3.3 Change of Frame

Changing the reference frame can improve the problem conditioning and enhance the numerical
solution process. The new frame S′R is designed by adequately rotating the initial frame SR.
This is a nonlinear state transformation, leading to a preconditioner that makes the proposed
continuation procedure more robust. More precisely, we de�ne the new coordinate SR′ by two
single-axis rotations from the frame SR, given by

SR
Ry(β1)−−−−→ ◦ Rx(β2)−−−−→ SR′ ,

and the transition matrix from SR to S′R is LR′R = Rx(β2)Ry(β1). Denoting the Euler angles of
Sb with respect to the new frame SR′ as E′ = (θ′, ψ′, φ′), the transition matrix from S′R to Sb is
LbR′ = Rz(φ

′)Rx(ψ′)Ry(θ′).
Using that LbRLRR′ = Rz(φ)Rx(ψ)Ry(θ)L>R′R = LbR′ , the angles E′ are functions of E, β1,

and β2. Moreover, the velocity vector v in the S′R can also be obtained by (v)′R = LR′R(v)R. The
angular velocity vector ω is expressed in the body frame Sb and it is therefore not altered by this
coordinate change.

Given �xed β1 and β2, the change of frame corresponds to the nonlinear invertible change of
state variable x′ = diag(LR′R(r)R, LR′R(v)R, ϕatt(x), Id), where ϕatt(·) maps Euler angles in SR
to Euler angles in S′R, i.e., E

′ = ϕatt(x), and Id is the 3-dimensional identity matrix.
This state transformation can be seen as a preconditioner for our numerical method. Indeed,

we use a Newton-like method to solve the boundary value problem in the shooting method. Let
us for instance consider the simplest Newton method and let us denote by Z the variables of the
shooting method. Given an initial guess of Z = Z0, the equation G(Z) = 0 is solved iteratively
according to J(Zk)Zk+1 = J(Zk)Zk − G(Zk), where J = ∂G/∂Z. De�ne a di�eomorphism ϕ(·)
such that Z = ϕ(y). Then the original problem consists of solving G(y) = 0 and the Newton
method iterative step becomes J(yk)yk+1 = J(yk)yk − G(yk), where J(yk) = J(Zk)∂Z∂y (yk). The

matrix M = (∂Z∂y )−1 actually acts as a preconditioner in the shooting method and it can be used
to reduce the condition number of the Jacobian matrix J . In numerical experiments, we use the
Fortran subroutine hybrd.f (see [37]) which uses a modi�cation of the Powell hybrid method : the
choice of the correction is a convex combination of the Newton and scaled gradient directions, and
the updating of the Jacobian by the rank-1 method of Broyden.

Note in addition that the di�erential equations for the new variable x′ keep the same form as
for the old variable x, and by using the PMP, the adjoint vector p′ to the new state x′ can also be
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derived from (x, p), according to

p′r = LR′Rpr, p′v = LR′Rpv, p′E =

(
dϕatt(x)

dx

)−1>
pE , p′ω = pω.

To sum up, the new reference frame S′R can be chosen such that the problem (PUP)K is easier
to solve numerically. However, a priori, we do not know what values (β1, β2) are the most suitable.
We propose to choose the pair such that ψ′f = −ψ′0 and |ψ′f | + |ψ′0| being minimal. By doing
this, the terminal values on the yaw angle are closer to the origin and hence farther from Euler
singularities (see Section 2.1). We observe from numerical experiments that this choice enhances
the algorithm robustness.

3.4 Euler singularities

Smoothing the vector �elds at singular points of Euler angles also helps to tackle singularities.
Assuming that θ̇ is bounded, we have ωx sinφ + ωy cosφ → 0 when ψ → π/2 + kπ. Since θ̇φ̇ =

limψ→π/2+kπ(ωx sinφ+ωy cosφ)2 sinψ → 0 and θ̇/φ̇→ 1 as ψ → π/2+kπ, it follows that θ̇ = φ̇ = 0

as ψ → π/2 + kπ. Assuming that −pθ+pφ sinψ
cosψ → A <∞ as ψ → π/2 + kπ, it follows from the fact

that

A = lim
ψ→π/2+kπ

−pθ + pφ sinψ

cosψ
= lim
ψ→π/2+kπ

ṗθ + ṗφ sinψ + pφ cosψψ̇

sinψψ̇
= −A

that A = 0. Hence, we get ṗθ = 0, ṗφ = 0, ṗψ = a sin θpvx + a cos θpvz, ṗωx = −pψ cosφ, ṗωy =
pψ sinφ. Summing up, at points ψ → π/2 + kπ, (4) and (11) become

θ̇ = 0, ψ̇ = ωx cosφ− ωy sinφ, φ̇ = 0, ω̇x = −b̄u2, ω̇y = b̄u1,

ṗθ = 0, ṗψ = a sin θpvx + a cos θpvz , ṗφ = 0, ṗωx = −pψ cosφ, ṗωy = pψ sinφ.
(19)

When we are close to a singularity, we rather use (19).
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3.5 Algorithm

We describe the whole numerical strategy in the following algorithm.

Result: The solution of the problem (PUP)K
· Change of frame : compute (β1, β2) and the new initial condition x(0) = x′0 (Section 3.3);
· Solve (OCP0) to get a solution Z0;
· Initialize the multiple shooting method with Z0 and λi = 0, i = 1, · · · 4;
for i = 1, · · · , 4 do

while λi 6 1 and 4λimin 6 4λi 6 4λimax do
(Predictor) Predict a point (Z̃, λ̃i) according to (13);

(Corrector) Find the solution (Z̄, λ̄i) of Gλi(Z̃, λ̃i) = 0;
if successful then

(Z, λi) = (Z̄, λ̄i);
else

Choose a new step-length hs ;
end

end
if successful then

The λi-continuation is successful;
else

The λi-continuation failed;
end

end
Algorithm 1: Prediction-Corrector continuation

4 Numerical results

In this section, we solve (PUP)K using the algorithm proposed in Section 3.5. We �rst present
a pull-up maneuver of an ALV just after its release from the airplane and we present some statistical
results showing robustness of our algorithm. Then we apply the algorithm to the three-dimensional
reorientation maneuver of the upper stage of a LV after a stage separation.

4.1 Pull-up maneuvers of the AVL

We consider a pull-up maneuver of an ALV.
The data used in (4) and (6) approximate a Pegasus-like airborne launcher : a = 15.8, b = 0.2,

S = 14m2, Cx0 = 0.06, Cxα = 0, Cz0 = 0, Czα = 4.7. Let n̄max = 2.2g and q̄max = 47 kPa. The
initial conditions (8) are

rx0 = 11.9 km, ry0 = rz0 = 0, v0 = 235m/s, θv0 = −10◦,

ψv0 = 0◦, θ0 = −10◦, ψ0 = φ0 = 0, ωx0 = ωy0 = −1◦/s,

and the �nal conditions (9) are

θf = 42◦, ψf = 10◦, φf = 0, ωxf = ωyf = 0.

Note that generally the pull-up maneuvers are planar (ψf = 0◦). Here we set ψf = 10◦ with the
aim of showing that the algorithm can also deal e�ciently with the non-planar pull-up maneuvers
(ψf 6= 0◦).
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Figure 3 � Time history of state variable x(t) for an ALV.

The multiple shooting method is applied with three node points. The components of the state
variable x and the control u are reported on Figs 3 and 4. The components pωx , pωy and pθ of the
adjoint variable p are given on Fig. 4. The time histories of the load factor n̄ and of the dynamic
pressure q̄ are reported on Fig. 5.

From Fig. 5 (left), we see that there is a boundary arc of the load factor constraint. According
to the pωy (t) in Fig. 4 (right), we see that, over the boundary arc, the switching function h(t) =
b(pωy ,−pωx) indeed stays close to zero. Comparing the two sub�gures of Fig. 4, we see that the
control follows the form of the switching function. Moreover, the path constraint of the dynamic
pressure is not active.

As mentioned in Remark 1, the large value of Kp often causes numerical di�culties. In this
example, we observe on Fig. 4(right) that, at t = 5.86 s, the curve pθ(t) is not as smooth as the
other parts. Indeed, at t = 5.86 s, the penalty function P (x) starts to be positive and thus provides
nonzero terms in the adjoint di�erential equation.

Running this example requires 24.6 s to compute the optimal solution, with CPU : Intel(R)
Core(TM) i5-2500 CPU 3.30GHz ; Memory : 3.8 Gio ; Compiler : gcc version 4.8.4 (Ubuntu 14.04
LTS). If the multiple shooting method is applied with four node points, the computing time is 31.2 s.
Actually, this example takes a bit longer time since we have required a non-planar maneuver. For
a planar maneuver, the computing time is about 20 s (see Table 2).

In the following, we present some statistical results done with the same computer settings.
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Figure 5 � Time history of the constraints c(x(t)) for an ALV.

Statistical results We solve (PUP)K with di�erent terminal conditions. Initial and �nal condi-
tions are swept in the range given in Table 1. The last cell of the table de�nes the restriction applied
to the terminal conditions in order to exclude unrealistic cases. For each variable, we choose a dis-

Table 1 � Parameter ranges.
v0 θv0 ψv0 θ0 ψ0

�xed 0.8Ma [−10, 0]◦ �xed 0◦ [−10, 10]◦ �xed 0◦

θf ψf ωx0 ωy0 θ0 − θv0
[20, 80]◦ [−10, 10]◦ [−2, 2]◦/s [−2, 2]◦/s [0, 10]◦

cretization step and we solve all possible combinations of this discretization (factorial experiment).
There are 1701 cases.

Statistical results are reported in Table 2. The multiple shooting method is applied with two
node points. Set K = 1×103, Kp0 = 0.1 and Kp1 = 100. We see from the results that the algorithm
is robust with respect to terminal conditions and that it is rather fast in comparison with a simple
direct method. Note that the choice of the regularisation parameter K a�ects importantly the
resolution results.
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Table 2 � Statistical results.
Statistical results

planar non-planar
Number of cases 567 1134

Rate of success (%) 91.0 90.5
Average execution time (s)

- Total 20.9 46.2
- In λ1-continuation 0.36 0.32
- In λ2-continuation 1.27 1.44
- In λ3-continuation 2.27 3.46
- In λ4-continuation 17.23 40.75

Average number of simulations
- Total 150.3 229.3

- In λ1-continuation 51.1 14.9
- In λ2-continuation 17.5 28.0
- In λ3-continuation 16.7 25.7
- In λ4-continuation 65.0 160.7

4.2 Rapid attitude maneuver of the LVs

We note that, when solving the multi-burn ascent problem for LVs (see [5, 17, 20, 23]), it is
possible to �nd a control (Euler angles) that contains a jump between di�erent stages (see for
example [33, Fig. 3]). In this case, a rapid attitude maneuver has to be done such that the LV can
follow the optimal trajectory of the next stage. For this reason, we apply the presented algorithm
as well to the maneuver problem of the upper stages of the LVs.

In contrast to the ALV's pull-up maneuver, these attitude maneuvers are in general three-
dimensional and of lower magnitude. They occur at high altitudes (typically higher than 50 km)
since a su�ciently low dynamic pressure is required to ensure the separation safety. In addition,
compared to ALV, the velocity of in this case is in general much larger.

In this case, the path constraints are not active due to the low dynamic pressure, and we are
rather interested in obtaining the fastest possible maneuver. To this aim, we need to decrease the
parameter K, as shown in Fig. 2.

In the example, we set the system parameters in (4) and (6) to a = 20, b = 0.2, which
approximate an Ariane-like launcher. The initial conditions (8) are

rx0 = 100 km, ry0 = rz0 = 0, v0 = 5000m/s, θv0 = 30◦,

ψv0 = 0◦, θ0 = 40◦, ψ0 = φ0 = 0, ωx0 = ωy0 = 0,

and the �nal conditions (9) are

θf = 60◦, ψf = 10◦, φf = 0, ωxf = ωyf = 0.

The multiple shooting method is applied with four node points. On Figs 6 and 7, we report
the components of state and control variables. We observe that, when t ∈ [32, 145] s, the control is
very small, and the state variable θ = 151.5◦ ≈ θ∗ = 151.57◦, ψ = 8.6◦ ≈ ψ∗ = 8.85◦ with θ∗ and
ψ∗ calculated by (14). Indeed, the control in Fig. 7 is continuous thanks to the regularization term

K
∫ tf
0
‖u‖2dt in the cost functional. It helps to generate a solution and to avoid chattering [51, 52].
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Figure 6 � Time history of state variable x(t) for a LV.

In the presented result, we have started with K = 8 × 104 and stopped with K = 240 and the
computing time is about 110 s. This maneuver time tf is about 120 s, due to the fact that we require
as well the direction of the trajectory velocity to change as much as the Euler angles. While for real
LVs, only minor adjustment of velocity direction is needed while doing a large attitude maneuver.
Therefore, in practice, the maneuver time is in general only several seconds. Our aim of presenting
this �non-realistic" case is indeed to show that the proposed algorithm is also robust to a large
range of system con�gurations and quite extreme terminal conditions.

5 Conclusion

In this paper, we have addressed the problem of minimum time-energy pull-up maneuver pro-
blem for ALVs. The dynamics couple attitude and trajectory motion. Our algorithm combines
an indirect approach with a multi-parameter numerical continuation procedure. Starting from the
explicit solution of a simpli�ed problem of lower dimension, the successive continuations consist
of retrieving the true dynamics and terminal conditions. With two continuation parameters, the
terminal conditions are successively retrieved. Aerodynamic forces and variable gravity are then
introduced with a third continuation parameter. Finally, the state constraints are applied with
other continuations. The multiple shooting method, the PC continuation method, the change of
reference frame and the smoothing of vector �elds are also employed to improve numerical stability
and robustness of the algorithm. An example of the pull-up maneuver for an ALV is given and
statistical experiments show that our approach is fast and robust. In addition, the application
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for the rapid maneuver of an upper stage for a LV is exempli�ed numerically. Indeed, with this
algorithm, the solution of similar classes of problems can be obtained from scratch in a quite short
time, whatever the launcher data and the terminal conditions are.
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