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Non-localization of eigenfunctions for Sturm-Liouville

operators

Thibault Liard∗ Pierre Lissy† Yannick Privat‡§

Abstract

In this article, we investigate a non-localization property of the eigenfunctions of Sturm-
Liouville operators Aa = −∂xx + a(·) Id, where a(·) runs over the bounded nonnegative po-
tential functions on the interval (0, L) with L > 0. More precisely, we address the extremal
spectral problem of minimizing the L2-norm of a function e(·) on a measurable subset ω of
(0, L), where e(·) runs over all eigenfunctions of Aa, at the same time with respect to all
subsets ω having a prescribed measure and all nonnegative L∞ potential functions a(·) having
a prescribed essentially upper bound. We provide some existence and qualitative properties of
the minimizers, as well as precise lower and upper estimates on the optimal value. Numerous
consequences in control and stabilization theory are then highlighted, both theoretically and
numerically.

Keywords: Sturm-Liouville operators, eigenfunctions, extremal problems, calculus of variations,
control theory, wave equation.

AMS classification: 34B24, 49K15, 47A75, 49J20, 93B07, 93B05

1 Introduction and main results

1.1 Localization/Non-localization of Sturm-Liouville eigenfunctions

In a recent survey article concerning the Laplace operator ([8]), D. Grebenkov and B.T. Nguyen
introduce, recall and gather many possible definitions of the notion of localization of eigenfunctions.
In particular, they consider, in the section 7.7 of their article, the Dirichlet-Laplace operator on a
given bounded open set Ω of IRn, a Hilbert basis of eigenfunctions (uj)j∈IN∗ in L2(Ω) and use as a
measure of localization of the eigenfunctions on a measurable subset V ⊂ Ω the following criterion

Cp(V ) = inf
j∈IN∗

‖uj‖Lp(V )

‖uj‖Lp(Ω)
,

where p > 1. For instance, evaluating this quantity for different choices of subdomains V if Ω is a
ball or an ellipse allows to illustrate the so-called whispering galleries or bouncing ball phenomena.
At the opposite, when Ω denotes the d-dimensional box (0, `1)× · · · × (0, `d) (with `1, . . . , `d > 0),
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‡CNRS, Université Pierre et Marie Curie (Univ. Paris 6), UMR 7598, Laboratoire Jacques-Louis Lions, F-75005,

Paris, France (yannick.privat@upmc.fr).
§The third author is supported by the ANR projects AVENTURES - ANR-12-BLAN-BS01-0001-01 and OPTI-

FORM - ANR-12-BS01-0007

1



it is recalled that Cp(V ) > 0 for any p > 1 and any measurable subset V ⊂ Ω whenever the ratios
(`i/`j)

2 are not rational numbers for every i 6= j.
Many other notions of localization have been introduced in the literature. Regarding the

Dirichlet/Neumann/Robin Laplacian eigenfunctions on a bounded open domain Ω of IRn and using
a semi-classical analysis point of view, the notions of quantum limit or entropy have been widely
investigated (see e.g. [1, 3, 4, 7, 11, 17]) and provide an account for possible strong concentrations
of eigenfunctions. Notice that the properties of Cp(V ) are intimately related to the behavior
of high-frequency eigenfunctions and especially to the set of quantum limits of the sequence of
eigenfunctions considered. Identifying such limits is a great challenge in quantum physics ([4, 7, 34])
and constitute a key ingredient to highlight non-localization/localization properties of the sequence
of eigenfunctions considered.

Given a nonzero integer p, the non-localization property of a sequence (uj)j∈IN∗ of eigenfunctions
means that the real number Cp(V ) is positive for every measurable subset V ⊂ Ω. Regarding the
one-dimensional Dirichlet-Laplace operator on Ω = (0, π), it has been highlighted in the case where
p = 2 (for instance in [10, 21, 30]) that

inf
|V |=rπ

C2(V ) = inf
|V |=rπ

inf
j∈IN∗

2

π

∫

V

sin(jx)2 dx > 0,

for every r ∈ (0, 1).
Motivated by these considerations, the present work is devoted to studying similar issues in

the case p = 2, for a general family of one-dimensional Sturm-Liouville operators of the kind Aa =
−∂xx + a(·) Id with Dirichlet boundary conditions, where a(·) is a nonnegative bounded potential
defined on an interval (0, L) with L > 0. More precisely, we aim at providing lower quantitative
estimates of the quantity C2(V ), where (uj)j∈IN∗ denotes now a sequence of eigenfunctions of Aa,
in terms of the measure of V and the essential supremum of a(·) by minimizing this criterion at
the same time with respect to V and a(·), over the class of subsets V having a prescribed measure
and over a well-chosen class of potentials a(·), relevant from the point of view of applications.
Independently of its intrinsic interest, the choice “p = 2” is justified by the fact that the quantity
C2(V ) plays a crucial role in many control, stabilization or inverse problems, as highlighted in the
sequel.

Let us mention that using the Liouville transform (see [5, Page 292]), the result obtained for
the Sturm-Liouville operator Aa can be easily transferred to the operator −∂x(w(x)∂x) for some
weight function w belonging to an appropriate class of functions.

The article is organized as follows: in Section 1.2, the extremal problem we will investigate is
introduced. The main results of this article are stated in Section 1.3: a comprehensive analysis
of the extremal problem is performed, reducing in some sense (that will be made precise in the
sequel) this infinite-dimensional problem to a finite one. We moreover provide very simple lower
and upper estimates of the optimal value. The whole section 2 is devoted to the proofs of the main
and intermediate results. Finally, consequences and applications of our main results for observation
and control theory and several numerical illustrations and investigations are gathered in Section 3.

1.2 The extremal problem

Let L be a positive real number and a(·) be an essentially nonnegative function belonging to
L∞(0, L). We consider the operator

Aa := −∂xx + a(·) Id,

defined on D(Aa) = H1
0 (0, L) ∩H2(0, L). As a self-adjoint operator, Aa admits a Hilbert basis of

L2(0, L) made of eigenfunctions denoted ea,j ∈ D(Aa) and there exists a sequence of increasing
positive real numbers (λa,j)j∈IN∗ such that ea,j solves the eigenvalue problem
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{
−e′′a,j(x) + a(x)ea,j(x) = λ2

a,jea,j(x), x ∈ (0, L),

ea,j(0) = ea,j(L) = 0.
(1)

By definition, the normalization condition

∫ L

0

e2
a,j(x) dx = 1 (2)

is satisfied and we will also impose in the sequel that e′a,j(0) > 0, so that the function ea,j is
uniquely defined.

With regards to the explanations of Section 1.1, we are interested in the non-localization prop-
erty of the sequence of eigenfunctions (ea,j)j∈IN∗ . The quantity of interest, denoted J(a, ω), is
defined by

J(a, ω) = inf
j∈IN∗

∫
ω
e2
a,j(x) dx

∫ L
0
e2
a,j(x) dx

= inf
j∈IN∗

∫

ω

e2
a,j(x) dx, (3)

where ω denotes a measurable subset of (0, L) of positive measure.
The real number J(a, ω) is the equivalent for the Sturm-Liouville operators Aa of the quantity

C2(V ) introduced in Section 1.1 for the one-dimensional Dirichlet-Laplace operator.
It is natural to assume the knowledge of a priori informations about the subset ω and the

potential function a(·). Indeed, we will choose them in some classes that are small enough to make
the minimization problems we will deal with non-trivial, but also large enough to provide “explicit”
(at least numerically) values of the criterion for a large family of potential.

Hence, in the sequel, we will assume that:

• the measure (or at least an upper bound of the measure) of the subset ω is given. Indeed,
we will show in the sequel that prescribing either the measure of ω or an upper bound drives
to the same solution of the optimal design problem we will consider;

• the potential function a(·) is nonnegative and essentially bounded.

We believe that such conditions are physically relevant and also adapted to the context of control
or inverse problems.

Fix M > 0, r ∈ (0, 1), α and β two real numbers such that α < β. Let us introduce the class
of admissible observation subsets

Ωr(α, β) = {Lebesgue measurable subset ω of (α, β) such that |ω| 6 r(β − α)}, (4)

as well as the class of admissible potentials

AM (α, β) = {a ∈ L∞(α, β) such that 0 6 a 6M a.e. on (α, β)} , (5)

in which the potential function a(·) will be chosen in the sequel.

Let us now introduce the optimal design problem we will investigate.

Extremal spectral problem. Let M > 0, r ∈ (0, 1) and L > 0 be fixed. We consider

m(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω), (PL,r,M )

where the functional J is defined by (3), Ωr(0, L) and AM (0, L) are respectively defined
by (4) and (5).
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In the sequel, we will call minimizer of the problem (PL,r,M ) a triple (a, ω, j) ∈ AM (0, L) ×
Ωr(0, L)× IN∗ (whenever it exists) such that

inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω) =

∫

ω

ea,j(x)2 dx.

1.3 Main results and comments

Let us state the main results of this article. The next theorems are devoted to the analysis of
the optimal design problems (PL,r,M ).

We also stress on the fact that the estimates of J(a, ω) in the following result are valuable
for every measurable subset ω of prescribed measure and that we do not need to make additional
topological assumption on it.

Theorem 1. Let r ∈ (0, 1) and M ∈ IR∗+.

i Problem (PL,r,M ) has a solution (j0, ω
∗, a∗). In particular, there holds

m(L,M, r) = min
a∈AM (0,L)

min
ω∈Ωr(0,L)

∫

ω

ea,j0(x)2 dx,

and the solution a∗ of Problem (PL,r,M ) is bang-bang, equal to 0 or M a.e. in (0, L).

ii Assume that M ∈ (0, π2/L2]. Then, ω∗ is the union of j0 + 1 intervals, and a∗ has at most
3j0 − 1 and at least j0 switching points1.

Moreover, one has the estimate

γr3 6 m(L,M, r) 6 r − sin(πr)

π
, (6)

with γ = 7
√

3
8 (3− 2

√
2) ' 0.2600.

The estimate (6) is in fact inferred from a more precise estimate for the optimal design problem

mj(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx, (Pj,L,r,M )

with j ∈ IN∗. Because of its intrinsic interest, we state this estimate in the following proposition,
which constitutes therefore an essential ingredient for the proof of the last point of Theorem 1.

Proposition 1. Let r ∈ (0, 1) and let us assume that M ∈ (0, π2/L2]. Then, there holds

mj(L,M, r) > r3mj , (7)

for every j ∈ IN∗, where the sequence (mj)j∈IN∗ is defined by

mj =





1
2 if j = 1,

(2j2−1)(j2−1)
3
2

(√
j2

j2−2
−1

)2

3j3

((
j2

j2−2

) j
2−1

)2 if j > 2.

1Recall that a switching point of a bang-bang function is a point at which this function is not continuous.
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In the following result, we highlight the necessity of imposing a pointwise upper bound on
the potentials functions a(·) to get the existence of a minimizer. Indeed, we have the following
non-existence result when the pointwise constraint “a 6M” is not imposed anymore.

Theorem 2. Let r ∈ (0, 1) and j ∈ IN∗. Then, the optimal design problem

inf
a∈A∞(0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx, (Pj,L,r,∞)

where A∞(0, L) = ∪M>0AM (0, L), has no solution.

We conclude this section by a series of remarks and comments on the main results we have just
stated.

Remark 1. As we will see later, the proofs of point (i), the first part of point (ii) are quite classical
and rests upon classical optimization tools. The main difficulty was to prove the left inequality of
(6), which comes from the more refine estimates (7).

Remark 2. Let us highlight the interest of Theorem 1 for numerical investigations. Indeed, in
view of providing numerical lower bounds of the quantity J(a, ω), Theorem 1 enables us to reduce
the solving of the infinite-dimensional problems (PL,r,M ) to the solving of finite ones, since one
has just to choose the optimal 3j∗0 − 1 switching points defining the best potential function a∗ and
to remark that necessarily ω∗ is uniquely defined once a∗ is defined (since it is defined in terms of
a precise level set of ea∗,j∗0 , see Proposition 2). We will strongly use this remark in Section 3.2.1,
where illustrations and applications of Problem (PL,r,M ) are developed.

Remark 3. As it will be emphasized in the sequel, the restriction on the range of values of the
parameter M in the second point of Theorem 1 makes each eigenfunction ea,j convex or concave
on each nodal domain. It is a crucial element of the proofs of Theorem 1 and Proposition 1,
that allows to compare each quantity

∫
ω
ea,j(x)2 dx with the integral of the square of well-chosen

piecewise affine functions.

Remark 4. According to Section 3.2.1, numerical simulations seem to indicate, at least in the

case where M = π2

L2 , that there exists a triple (j∗0 , ω
∗, a∗) such that j∗0 = 1, the set ω∗ and the

graph of a∗ are symmetric with respect to L/2 and a∗ is a bang-bang function equal to 0 or M a.e.
in (0, L) having exactly two switching points, solving Problem (PL,r,M ). We were unfortunately
unable to prove this assertion.

A less ambitious issue would consist in finding an upper estimate of the optimal index j∗0 . Even
this question appears difficult in particular since it is not obvious to compare the real numbers
mj(L,M, r) for different indexes j. One of the reasons of that comes from the fact that the
cost functional we considered does not write as the minimum of an energy function, making the
comparison between eigenfunctions of different orders intricate.

Remark 5. It can be noticed that the lower bound in Proposition 1 is independent of the parameter
L. This can be justified by using a rescaling argument allowing in particular to restrict our
investigations to the case where L = π.

Lemma 1. Let j ∈ IN∗, r ∈ (0, 1), M > 0 and L > 0. Then, there holds

inf
a∈AM (0,π)

inf
ω∈Ωr(0,π)

∫

ω

ea,j(x)2 dx = inf
a∈AMπ2

L2

(0,L)
inf

ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx, (8)

The proof of this lemma rests upon the simple change of variable x = πy/L.
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Remark 6. The estimate (6) can be considered as sharp with respect to the parameter r, at least
for r small enough (which is the most interesting case, at least in view of the applications). Indeed,

there holds πr−sin(πr)
π ∼ π2

6 r
3 as r tends to 0, which shows that the power of r in the left-hand

side cannot be improved. The graphs of the quantities appearing in the left and right-hand sides
of (6) with respect to r are plotted on Figure 1 below.

An interesting issue would thus consist in determining the optimal bounds in the estimate (6),
namely

`− = inf
r∈(0,1)

m(L,M, r)

r3
and `+ = sup

r∈(0,1)

m(L,M, r)

r3
.

It is likely that investigating this issue would rely on a refined study of the optimality conditions of
the problems above, but also of the problem (PL,r,M ). According to (6), we know that `− ∈ [γ, 1]
and `+ ∈ [γ, π2/6].

Remark 7 (Behavior of the sequence (mj)j∈IN∗ .). One can prove by using the explicit formula of
mjthat this sequence is increasing. Moreover, straightforward computations show that it converges
to 2/3 as j tends to +∞.

Figure 1: Plots of r 7→ γr3 (thin line) and x 7→ (πr − sin(πr))/π (bold line).

2 Proofs of Theorem 1, Proposition 1, and Theorem 2

2.1 Preliminary material: existence results and optimality conditions

We gather in this section several results we will need in the sequel to prove Theorem 1, Propo-
sition 1, and Theorem 2.

Let us first investigate the following simpler optimal design problem, where the potential a(·)
is now assumed to be fixed, and which will constitute an important ingredient in the proof.

Auxiliary problem: fixed potential. For a given j ∈ N∗, M > 0, r ∈ (0, 1) and
a ∈ AM (0, L), we investigate the optimal design problem

inf
χ∈Ur

∫ L

0

χ(x)ea,j(x)2 dx, (Aux-Pb)
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where the set Ur is defined by

Ur =

{
χ ∈ L∞(0, L) | 0 6 χ 6 1 a.e. in (0, L) and

∫ L

0

χ(x) dx = rL

}
. (9)

We provide a characterization of the solutions of Problem (Aux-Pb).

Proposition 2. Let r ∈ (0, 1). The optimal design problem Problem (Aux-Pb) has a unique
solution that writes as the characteristic function of a measurable set ω∗ of Lebesgue measure rL.
Moreover, there exists a positive real number τ such that ω∗ is a solution of Problem (Aux-Pb) if
and only if

ω∗ = {ea,j(x)2 < τ}, (10)

up to a set of zero Lebesgue measure.

In other words, any optimal set, solution of Problem (Aux-Pb), is characterized in terms of the
level set of the function ea,j(·)2.

A proof of this result can be found in [28, Theorem 1] or [33, Chapter 1]. It yields the existence
of a positive real number τ such that ω∗ is a solution of Problem (Aux-Pb) if and only if

χ{ea,j(x)2<τ} 6 χω∗(x) 6 χ{ea,j(x)26τ}(x),

for almost every x ∈ (0, L), by using a standard argument of decreasing rearrangement. We also
mention [13, 19] as references on rearrangements and symmetrization of functions and their use
in shape optimization. The conclusion follows by noting that for every c > 0, the set {e2

a,j = c}
has zero Lebesgue measure, by using standard properties of eigenfunctions of Sturm-Liouville
operators.

Let us now investigate the continuity of the mapping a 7→ ea,j .

Lemma 2. Let M ∈ IR∗+ and j ∈ N∗. Let us endow the space AM (0, L) with the weak-? topology
of L∞(0, L) and the space H1

0 (0, L) with the standard strong topology inherited from the Sobolev
norm ‖ · ‖H1

0
. Then the function a ∈ AM (0, L) 7→ ea,j ∈ H1

0 (0, L) is continuous.

The principle of the proof of this lemma is standard, and is roughly recalled for the sake of
completeness in Appendix A. The following existence result is a direct consequence of this lemma.

Proposition 3. Let M ∈ IR∗+, j ∈ IN∗ and r ∈ (0, 1). The optimal design Problem (Pj,L,r,M ) has
at least one solution (a∗j , ω

∗
j ).

Proof of Proposition 3. Let us consider a relaxed version of the optimal design Problem
(Pj,L,r,M ), where the characteristic function of ω has been replaced by a function χ in Ur where
Ur is defined by (9). This relaxed version of (Pj,L,r,M ) writes

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx.

Let us endow AM (0, L) and Ur with the weak-? topology of L∞(0, L). Thus, both sets are compact.
Moreover, according to Lemma 2 and since it is linear in the variable χ, the functional (a, χ) ∈
AM (0, L)×Ur 7→

∫ L
0
χ(x)ea,j(x)2 dx is continuous. The existence of a solution (a∗j , χ

∗
j ) follows for

the relaxed problem. Finally, noting that

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx = inf
χ∈Ur

∫ L

0

χ(x)ea∗j ,j(x)2 dx,

7



there exists a measurable set ω∗j of measure rL such that χ∗j = χω∗j , by Proposition 2.

The existence of a solution of Problem (Pj,L,r,M ) is then proved and there holds

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx = inf
a∈AM (0,L)

∫

ω∗
ea,j(x)2 dx.

We now state necessary first order optimality conditions that enable us to characterize every
critical point (a∗j , ω

∗
j ) of the optimal design problem (Pj,L,r,M ).

Proposition 4. Let j ∈ IN∗, r ∈ (0, 1) and M > 0. Let (a∗j , ω
∗
j ) be a solution of the optimal design

problem (Pj,L,r,M ) and let

0 = x0
j < x1

j < x2
j < · · · < xj−1

j < L = xjj (11)

be the j + 1 zeros2 of the j-th eigenfunction ea∗j ,j.

For i ∈ {1 . . . j}, let us denote by a∗j,i the restriction of the function a∗j to the interval (xi−1
j , xij)

and by ω∗j,i the set ω∗j ∩ (xi−1
j , xij). Then, necessarily, there exists τ ∈ IR∗+ such that

• one has ω∗j = {ea∗j ,j(x)2 < τ} up to a set of zero Lebesgue measure,

• one has
Mχ{pj(x)ea∗

j
,j(x)>0} 6 a∗j (x) 6Mχ{pj(x)ea∗

j
,j(x)>0}(x), (12)

for almost every x ∈ (0, L), where pj is defined piecewisely as follows: for i ∈ {1 . . . j}, the
restriction of pj to the interval (xi−1

j , xij) is denoted pj,i, and pj,i is the (unique) solution of
the adjoint system

{−p′′j,i(x) + (a∗j,i(x)− λ2
a∗j ,j

)pj,i(x) = (qj,i − ˜cj,i)ea∗j ,j , x ∈ (xi−1
j , xij),

pj,i(x
i−1
j ) = pj,i(x

i
j) = 0,

(13)

verifying moreover ∫ xij

xi−1
j

pj,i(x)ea∗j,i,j(x) dx = 0, (14)

where qj,i and ˜cj,i are given by

˜cj,i =

∫ xij
xi−1
j

qj,i(x)e2
a∗j ,j

(x) dx

∫ xij
xi−1
j

e2
a∗j ,j

(x) dx
, and qj,i = χω∗j,i . (15)

In other words, any optimal set solution of Problem (Pj,L,r,M ) is characterized in terms of a
level set of the function ea∗j ,j(·)2 and the optimal potential function is characterized in terms of a

level set of the function pj(·)ea∗j ,j(·).

Remark 8. i Note that, according to Fredholm’s alternative (see for example [12]), System
(13)-(14) has a unique solution.

2Recall that the family {xk
j }06k6j is the set of nodal points of the eigenfunction ea∗,j that are known to be

simple.
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ii Another presentation of the first order optimality conditions gathered in Proposition 4 could
have been obtained by applying the so-called Pontryagin Maximum Principle (see e.g. [22]).

Before proving this proposition, let us state a technical lemma about the differentiability of the
eigenfunctions ea,j with respect to a.

Lemma 3. Let us endow the space AM (0, L) with the weak-? topology of L∞(0, L) and the
space H1

0 (0, L) with the standard strong topology inherited from the Sobolev norm ‖ · ‖H1 . Let
a ∈ AM (0, L) and Ta,AM (0,L) the tangent cone3 to the set AM (0, L) at point a. For every
h ∈ Ta,AM (0,L), the mapping a 7→ ea,j is Gâteaux-differentiable in the direction h, and its derivative,
denoted ėa,j, is the (unique) solution of

{
−ė′′a,j(x) + a(x)ėa,j(x) + h(x)ea,j(x) = λ̇2

a,jea,j(x) + λ2
a,j ėa,j(x), x ∈ (0, L),

ėa,j(0) = ėa,j(L) = 0,
(16)

with λ̇2
a,j =

∫ L
0
h(x)ea,j(x)2 dx.

The proof of the differentiability is completely standard and is based on the fact that the eigen-
values λa,j are simple. For this reason, we skip it and refer to [18, pages 375 and 425].

Proof of Proposition 4. The first point results from Proposition 2.
Let us show the second point.
Let us now compute the Gâteaux-derivative of the cost functional a 7→ Jω∗j (a), where

Jω∗j (a) = J(a, ω∗j ) =

∫

ω∗j

ea,j(x)2 dx,

at a = a∗j in the direction hj ∈ Ta∗j ,AM (0,L). We denote it 〈dJω∗j (a∗j ), h〉 and there holds

〈dJω∗j (a∗j ), hj〉 = 2

∫

ω∗
ėa∗j ,j(x)ea∗j ,j(x) dx,

where ėa∗j ,j is the solution of (16).
Let us write this quantity in a more convenient form to state the necessary first order optimality

conditions. Let hj be an element of the tangent cone Ta∗j ,AM (0,L). Let us write hj =
∑j−1
i=1 hj,i

where hj,i = hjχ(xi−1
j ,xij)

for all i ∈ {1 . . . j}. Hence, hj,i ∈ Ta∗j ,AM (0,L) and there holds

〈dJω∗j (a∗j ), hj〉 =

j∑

i=1

〈dJω∗j (a∗j ), hj,i〉.

It follows that it is enough to consider perturbations with compact support contained in each
nodal domain in order to compute the Gâteaux-derivative of Jω∗j . We will use for that purpose the

adjoint state pj piecewisely defined by (13)-(14).
Fix i ∈ {1 . . . j} and let hj,i be an element of the tangent cone Ta∗j ,AM (xi−1

j ,xij)
. Let us multiply

the first line of (13) by ėa∗j,i,1 and then integrate by parts. We get

∫ xij

xi−1
j

ė′a∗j,i,1(x)p′j,i(x) + (a∗j,i(x)− λ2
a∗j,i,1

)ėa∗j,i,1(x)pj,i(x) dx =
1

2
〈dJ(a∗j ), hj,i〉. (17)

3That is the set of functions h ∈ L∞(0, L) such that, for any sequence of positive real numbers εn decreasing to
0, there exists a sequence of functions hn ∈ L∞(0, L) converging to h as n → +∞, and a + εnhn ∈ AM (0, L) for
every n ∈ IN (see for instance [13, chapter 7]).
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Similarly, let us multiply the first line of (16) by pj,i and then integrate by parts. We get

∫ xij

xi−1
j

ė′a∗j,i,1(x)p′j,i(x) + (a∗j,i(x)− λ2
a∗j,i,1

)ėaj,i,1(x)pj,i(x) dx

= λ̇2
a∗j ,j

∫ xij

xi−1
j

eaj,i,1(x)pj,i(x) dx−
∫ xij

xi−1
j

hj,i(x)eaj,i,1(x)pj,i(x) dx. (18)

Combining (17) with (18) and using the condition (14) yields

〈dJω∗j (a∗j ), hj,i〉 = −2

∫ xij

xi−1
j

hj,i(x)ea∗j,i,1(x)pj,i(x) dx. (19)

As a result, for a general hj ∈ Ta∗j ,AM (0,L), there holds

〈dJω∗j (a∗j ), hj〉 = −2

j∑

i=1

∫ xij

xi−1
j

hj,i(x)pj,i(x)ea∗j,i,1 dx = −2

∫ L

0

hj(x)ea∗j ,j(x)pj(x) dx.

Let us state the first order optimality conditions. For every perturbation hj in the cone Ta∗j ,AM (0,L),

there holds 〈dJ(a∗j ), hj〉 > 0, which writes

− 2

∫ L

0

hj(x)ea∗j ,j(x)pj(x) dx > 0. (20)

The analysis of such optimality condition is standard in optimal control theory (see for example
[22]) and permits to recover easily (12). This ends the proof.

2.2 Proof of Theorem 1

Step 1: existence and bang-bang property of the minimizers (first point of Theorem 1).
Notice first that each of the infima defining Problem (PL,r,M ) can be inverted with each other. As
a result, and according to Proposition 3, there exists an optimal pair (a∗j , ω

∗
j ) such that

m(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω) = inf
j∈IN∗

inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx

= inf
j∈IN∗

∫

ω∗j

ea∗j ,j(x)2 dx.

It remains then to prove that the last infimum is reached by some index j0 ∈ IN∗. We will use the
two following lemmas.

Lemma 4. Let M > 0 and (aj)j∈IN∗ be a sequence of AM (0, L). The sequence (e2
aj ,j

)j∈IN∗ converges

weakly-? in L∞(0, L) to the constant function 1
L .

The proof of Lemma 4 is standard and is postponed to Appendix B for the sake of clarity. The
proof of the next lemma can be found in [25, 29].

Lemma 5. Let L > 0 and V0 ∈ (0, L). There holds

inf
ρ∈L∞(0,L;[0,1])∫ L

0
ρ(x) dx=V0

∫ L

0

ρ(x) sin2

(
jπ

L
x

)
dx =

1

2

(
V0 −

L

π
sin
(π
L
V0

))
,

for every j ∈ IN∗. Moreover, this problem has a unique solution ρ that writes as the characteristic
function of a measurable subset ωj of (0, L).
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As a consequence of Lemma 4 and Lemma 5 (the weak-? convergence being used with the “test”
function ξω∗j ∈ L1(0, L)), and by minimality of m(L,M, r) (note that 0 ∈ AM (0, L)), there holds

m(L,M, r) = inf
j∈IN∗

∫

ω∗j

ea∗j ,j(x)2 dx = inf
ω∈Ωr(0,L)

inf
j∈IN∗

∫

ω

ea∗j ,j(x)2 dx

6 inf
ω∈Ωr(0,L)

inf
j∈IN∗

∫

ω∗j

e0,j(x)2 dx =
2

L
inf

ω∈Ωr(0,L)
inf
j∈IN∗

∫

ω∗
sin2

(
jπ

L
x

)
dx

= r − 1

π
sin (rπ) < r = lim

j→+∞

∫

ω∗
ea∗j ,j(x)2 dx.

As a consequence, the infimum infj∈IN∗
∫
ω∗j
ea∗j ,j(x)2 dx is reached by a finite integer j∗0 . The

existence result follows.
From now on and for the sake of clarity, we will denote by (j0, ω

∗, a∗) instead of (j0, ω
∗
j0
, a∗j0) a

solution of Problem (PL,r,M ). We now prove that the solution a∗ of Problem (PL,r,M ) is bang-bang.
Let us write the necessary first order optimality conditions of Problem (PL,r,M ). To simplify the
notations, the adjoint state introduced in Proposition 4 will be denoted by p (resp. pi) instead of
pj0 (resp. pj0,i). For 0 < α < β < L, introduce the sets

• I0,a∗(α, β): any element of the class of subsets of [α, β] in which a∗(x) = 0 a.e.;

• IM,a∗(α, β): any element of the class of subsets of [α, β] in which a∗(x) = M a.e.;

• I?,a∗(α, β): any element of the class of subsets of [α, β] in which 0 < a∗(x) < M a.e., that
writes also

I?,a∗(α, β) =

+∞⋃

k=1

{
x ∈ (α, β) :

1

k
< a∗(x) < M − 1

k

}
=:

+∞⋃

k=1

I?,a∗,k(α, β).

We will prove that the set I?,a∗,k(0, L) =
⋃j
i0=1 I?,a∗,k(xi0−1

j , xi0j ) has zero Lebesgue measure,
for every nonzero integer k. Let us argue by contradiction, assuming that one of these sets
I?,a∗,k(xi0−1

j , xi0j ) is of positive measure. Let x0 ∈ I?,a∗,k(xi0−1
j , xi0j ) and let (Gk,n)n∈IN be a

sequence of measurable subsets with Gn,k included in I?,a∗,k(xi0−1
j , xi0j ) and containing x0, the

perturbations a∗ + th and a∗ − th are admissible for t small enough. Choosing h = χGk,n and
letting t go to 0, it follows that

〈dJ(a∗), h〉 =

∫ x
i0
j

x
i0−1
j

h(x)
(
−ea∗j ,j(x)pi0(x)

)
dx = 0⇐⇒

∫

Gk,n

(
−ea∗j ,j(x)pi0(x)

)
dx = 0.

Dividing the last equality by |Gk,n| and letting Gk,n shrink to {x0} as n → +∞ shows that
ea∗j ,j(x0)pi0(x0) = 0 for almost every x0 ∈ I?,a∗,k(xi0−1

j , xi0j ), according to the Lebesgue density

Theorem. Since ea∗j ,j does not vanish on (xi0−1
j , xi0j ) we then infer that pi0(x) = 0 for almost

every x ∈ I?,a∗,k(xi0−1
j , xi0j ). Let us prove that such a situation cannot occur. The variational

formulation of System (13)-(14) writes: find pi0 ∈ H1
0 (xi0−1

j , xi0j ) such that for every test function

ϕ ∈ H1
0 (xi0−1

j , xi0j ), there holds

−
∫ x

i0
j

x
i0−1
j

pi0(x)ϕ′′(x) + (ai0(x)− λ2
ai0 ,1

)pi0(x)ϕ(x) dx =

∫ x
i0
j

x
i0−1
j

(qi0 − ˜ci0,j)ea∗j ,jϕ(x) dx.
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Since I?,a∗,k(xi0−1
j , xi0j ) is assumed to be of positive measure, let us choose test functions ϕ whose

support is contained in I?,a∗,k(xi0−1
j , xi0j ). There holds

∫ L

0

(qi0 − ˜ci0,j)ea∗j ,j(x)ϕ(x) dx = 0,

for such a choice of test functions, whence the contradiction. We then infer that |I?,a∗,k(xi0−1
j , xi0j )| =

0 and necessarily, a∗ is bang-bang.

Step 2: counting the switching points of a∗ and the number of connected components
of ω∗ (first part of the second point of Theorem 1). For the sake of simplicity, we first
give the argument in the case where the infimum m(L,M, r) is reached at j0 = 1 and we will then
generalize our analysis to any j0 ∈ IN∗.

At this step, we know that a∗1 is bang-bang and ω∗1 is characterized in terms of the level set of
the function ea∗1 ,1(·)2. According to (20), the number of switching points of a∗1 corresponds to the
number of zeros of the function x 7→ p1(x)ea∗1 ,1(x). Let us evaluate this number.

Since M 6 π2/L2, there holds ‖a∗1‖∞ 6 π2

L2 . As a consequence and using (1), one deduces
that the eigenfunction ea∗! ,1 is strictly concave and reaches its maximum at a unique point xmax ∈
(0, L). Moreover, since ea∗1 ,1 is increasing on (0, xmax) and decreasing on (xmax, L) with ea∗1 ,1(0) =
ea∗1 ,1(π) = 0, from Proposition 2, there exists (α, β) ∈ (0, L)2 such that α < β and

q∗ := χω∗1 = 1− χ(α,β), (21)

with α < xmax < β.
Let us provide a precise description of the function p1. One readily check by differentiating two

times the function p1/ea∗1 ,1 that the function p1 may be written as

p1(x) = f(x)ea∗1 ,1(x) (22)

for every x ∈ (0, L), where the function f is defined by

f(x) = −
∫ x

0

g(t)dt+ f(0), with f(0) =

∫ L

0

(∫ x

0

g(t)dt

)
e2
a∗1 ,1

(x) dx (23)

and the function g is defined by

g(t) =

∫ t
0
(q∗(s)− c̃)e2

a∗1 ,1
(s) ds

e2
a∗1 ,1

(t)
, (24)

where here and in the rest of the proof, we will call by c̃ the number c̃1,1 (whose definition was
given in (15)). In the following result, we provide a description of the function g.

Lemma 6. The function g defined by (24) verifies

g(0) = g(L) = 0, (25)

there exists a unique real number og in (0, L) such that g(og) = 0, (26)

g > 0 in (0, og) and g < 0 in (og, L), (27)

g is decreasing on (α,min(og, xmax)) and (max(og, xmax), β). (28)
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Proof of Lemma 6. Let us first prove (26). We consider the function g̃ defined by

g̃(t) =

∫ t

0

(q∗(s)− c̃)e2
a∗1 ,1

(s) ds, (29)

so that the function g writes

g =
g̃

ea∗1 ,1(·)2
. (30)

According to (21) and remarking that 0 < c̃ < 1 according to (15), the function g̃ is strictly
increasing on (0, α) and (β, L), and strictly decreasing on (α, β). Besides, using (15), there holds

g̃(0) = g̃(L) = 0. (31)

Hence, using the variations of g̃ given before and (31) that g̃ (and hence g) has a unique zero on
(0, L) that we call og from now on. Moreover, clearly g̃ > 0 on (0, og) and g̃ < 0 on (og, L), hence,
using (30), we deduce the same property for g and (27) is proved.

Equality (25) is readily obtained by making a Taylor expansion of e2
a∗1 ,1

and g̃ around 0 and L

and using (30). Indeed, there holds

e2
a∗1 ,1

(x) ∼ x2e2
a∗1 ,1
′
(0) and g̃(x) ∼ (q∗(0)− c̃)x3e2

a∗1 ,1
′
(0)/3 as x→ 0,

e2
a∗1 ,1

(x) ∼ (x− π)2

2
e2
a∗1 ,1
′
(π) and g̃(x) ∼ (q∗(π)− c̃)x3e2

a∗1 ,1
′
(π)/3 as x→ π.

To conclude, it remains to prove (28). From (24), one observes that g is differentiable almost
everywhere on (0, L) and

g′(x) = q∗(x)− c̃−
2e′a∗1 ,1(x)g(x)

ea∗1 ,1(x)
, (32)

for almost every x ∈ (0, L). Using the variations of ea∗1 ,1, (21) and (32), we infer that g′ is negative
almost everywhere on (α,min(og, xmax)) ∪ (max(og, xmax), β), from which we deduce (28).

The proof of Lemma 6 is then complete.

As a consequence of (27) and (23), f is strictly decreasing on (0, og) and strictly increasing on
(og, L) where og is defined in (26). We conclude that f has at most two zeros in (0, L). Moreover,
thanks to (14) and (22), f has at least one zero in (0, L). Since ea∗1 ,1(·) does not vanish in (0, L),
one infers that a∗1 has at least 1 and at most 2 switching points.

To generalize our argument to any order j > 2, notice that using the notations of Proposition
4 and its proof, one has (−1)i0+1e∗aj,i0 ,1(x) > 0 for all x ∈ (xi0−1

j , xi0j ) with i0 ∈ {1 · · · j}. Then,
mimicking the argument above in the particular case where j0 = 1, one shows that the function a∗j
has at most two switching points in (xi0−1

j , xi0j ) and at least one. Besides, since the nodal points{
xij
}
i∈{1,···j−1} can also be switching points, we conclude that the function a∗j has at most 3j0− 1

and at least j0 switching points in (0, L).

Step 3: proof of the estimate (6) (last part of the second point of Theorem 1). Let us
first show the easier inequality, in other word the right one. It suffices to write that m(L,M, r) is
bounded from above by infω∈Ωr(0,L) infj∈IN∗ J(0, ω). Inverting the two infima and using Lemma 5
leads immediately to the desired estimate.

The left inequality appears more intricate to establish. It rests upon the difficult result stated in
Proposition 1, whose proof is quite long and technical but the method is elementary and interesting.
For this reason, we will temporarily admit this result and postpone its proof to Section 2.3.
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Let us remark that m2 = 7
8

√
3(3 − 2

√
2). Then, it just remains to prove that mj > m2 for

every j ∈ IN\{0, 1}. For that purpose, introduce the function F defined on [2,+∞) by

F (x) =

(2x2 − 1)(x2 − 1)3/2

((
x2

x2−2

)1/2

− 1

)2

x3

((
x2

x2−2

)x/2
− 1

)2 .

Notice that F (j) = 3mj for every j ∈ IN∗. Let us write F (x) = u(x)v(x) with

u(x) =

(2x2 − 1)

((
x2

x2−2

)1/2

− 1

)2

((
x2

x2−2

)x/2
− 1

)2 and v(x) =
(x2 − 1)3/2

x3
.

Let us show that u(x) > u(2) for every x > 2. This comes to show that ψ(x) 6 0, where

ψ(x) = γ

((
x2

x2 − 2

)x/2
− 1

)
−
√

2x2 − 1

((
x2

x2 − 2

)1/2

− 1

)
,

with γ =
√
u(2) =

√
7(
√

2− 1), for every x > 2. The derivative of ψ writes

ψ′(x) = γ

(
x2

x2 − 2

)x/2
w(x)− 2x√

2x2 − 1

(√
x2

x2 − 2
− 1

)
−
√

2x2 − 1

(x2 − 2)3/2
,

with w(x) = ln
(√

x2

x2−2

)
− 1

x2−2 . The derivative of w writes

w′(x) =
4

x(x2 − 2)2

and therefore, the function w is increasing and negative since limx→+∞ w(x) = 0. One then infers
that ψ′(x) writes as the sum of three negative terms and is thus negative on [2,+∞). Hence, the
function ψ decreases on this interval and therefore, ψ(x) 6 ψ(2) = 0 for every x ∈ [2,+∞). The
expected result on u follows.

Let us now show that v(x) > v(2) for every x ∈ [2,+∞). The derivative of v writes

v′(x) =
3
√
x2 − 1

x4
,

is therefore positive on [2,+∞), and the expected conclusion follows.

2.3 Proof of Proposition 1

The proof is quite technical. As previously, we will first consider the case where j = 1, in other
words we will provide a lower estimate of the quantity m1(L, r) by using a convexity argument.
We will then deduce the general result holding for any j ∈ IN∗ by using that the j-th eigenfunction
ea,j of Aa coincides with the first eigenfunction of the restriction of Aa on each nodal domain.

Notice that, proving that the estimate (7) holds for every M ∈ (0, π2/L2] is equivalent to
showing it for the particular value

M = π2/L2,

which will be assumed from now on. Let a be a generic element of AM (0, L).
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First step: proof of Proposition 1 in the case “j = 1”. We will need the following result,
that yields an estimate of the maximum of ea,1 on (0, L) in terms of the L2 norm of ea,1 and the
derivatives of ea,1 at x = 0 and x = L.

Lemma 7. With the assumptions of Proposition 1, there holds

e2
a,1(xmax) > max

{
3

2L

∫ L

0

e2
a,1(x) dx,

L2

2π2
max{e′a,1(0)2, e′a,1(L)2}

}
. (33)

Proof of Lemma 7. Since e′a,1(xmax) = 0, multiplying Equation (1) by e′1 and integrating on
(x, xmax) (with possibly x > xmax) leads to

e′a,1(x)2 =

∫ xmax

x

(λ2
a,j − a(x))

d

dx
(e2
a,1(x)) dx (34)

for every x ∈ (0, L). Besides, according to the Courant-Fischer minimax principle, one has

0 6 λ2
a,1 − a(·) 6 2π2

L2
in (0, L). (35)

Therefore, combining (34) and (35) yields

e′a,1(x)2 6
2π2

L2
(e2
a,1(xmax)− e2

a,1(x)), (36)

for every x ∈ (0, L). In particular, applying (36) at x = L and x = 0, we obtain

max{e′a,1(L)2, e′a,1(0)2} 6 2π2

L2
e2
a,1(xmax), (37)

Moreover, by integrating (36) between 0 and L, we obtain

∫ L

0

e′a,1(x)2 dx+
2π2

L2

∫ L

0

e2
a,1(x) dx 6

2π2

L2
e2
a,1(xmax)L. (38)

We obtain (33) from (37) and by combining (38) with Poincaré’s inequality

∫ L

0

ea,1(x)2 dx 6
L2

π2

∫ L

0

e′a,1(x)2 dx.

According to (33), and assuming since the eigenfunction ea,1 is normalized in L2(0, L), there
holds

e2
a,1(xmax) >

3

2L
. (39)

Since ea,1 is concave and according to (39), one has the successive inequalities

ea,1(x) > Tra,1(x) > 41(x), (40)

for every x ∈ [0, L], where Tra,1 and 41 denote the piecewise affine functions defined by

Tra,1(x) =

{
ea,j(xmax)x

xmax
on (0, xmax)

ea,j(xmax)(L−x)
L−xmax on (xmax, L)

and 41(x) =





√
3x√

2Lxmax
on (0, xmax)

√
3(L−x)√

2L(L−xmax)
on (xmax, L).
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Lα∗ β∗

(1− r)L

xmax

ea,1(xmax)

√
3
2L

0

41

Tra,1

Figure 2: Graphs of the functions ea,1, Tra,1 and 41.

Combining (39) with (40) and according to Proposition 2, we readily obtain

inf
ω∈Ωr(0,L)

∫

ω

ea,1(x)2 dx > inf
ω∈Ωr(0,L)

∫

ω

41(x)2dx =

∫

ω̂

41(x)2dx, (41)

with ω̂ = (0, α∗) ∪ (β∗, L) verifying

41(α∗) = 41(β∗) and |ω̂| = L− β∗ + α∗ = rL.

It follows that α∗ = rxmax, β∗ = (1− r)L+ rxmax and one obtains

∫

ω̂

41(x)2 dx =

∫ rxmax

0

41(x)2 dx+

∫ L

(1−r)L+rxmax

41(x)2 dx =
r3

2
= r3m1. (42)

We have then proved Proposition 1 in the case where j = 1.

Second step: proof of Proposition 1 in the general case. In what follows, we assume that
j > 2.
Let 0 = x0

j < x1
j < x2

j < · · · < xj−1
j < L = xjj be the j + 1 zeros of the j-th eigenfunction ea,j .

Introduce γ = (γ1, · · · , γj−1) ∈ (0, 1)j such that

γi =

∫ xi+1
j

xij

e2
a,j(x) dx, i = 1, . . . , j − 1. (43)

Note that, because of the normalization condition on the function ea,j , there holds

j−1∑

i=0

γi = 1. (44)

In the sequel, we will use the following notations, for all i ∈ {0, · · · , j − 1},

Ωi = (xij , x
i+1
j ), ηi =

|Ωi|
L
∈ (0, 1), and ea,j(x

i
max) = max

x∈Ωi
ea,j(x). (45)
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In the sequel, we will distinguish between several cases, depending on the value of the first integer
i0 ∈ {0, · · · , j − 1} (that exists thanks to (44)) such that

γi0 >
1

j
. (46)

First case: assume that i0 = 1. Since the function ea,j(·) is concave, we claim that
∫

ω

ea,j(x)2 dx >
∫

ω

Tra,j(x)2dx, (47)

for every ω ∈ Ωr(0, L) where the function Tra,j is piecewise affine, defined on each interval
(xij , x

i+1
j ), with i ∈ {1, . . . , j − 1}, by

Tra,j(x) =





x−xij
ximax−xij

ea,j(x
i
max) on (xij , x

i
max),

xi+1
j −x

xi+1
j −ximax

ea,j(x
i
max) on (ximax, x

i+1
j ),

for every x ∈ (xij , x
i+1
j ).

ea,1(x
1
max)

ea,1(x
2
max)

ea,1(x
3
max)

x03
x13 x23 LΩ0

Ω1

Ω2

Figure 3: Illustration of the case “i0 = 1” with 3 nodal domains (j = 3).

Since the j-th eigenfunction ea,j coincides with the first eigenfunction of −∂xx + a(·) Id with
Dirichlet conditions on (xij , x

i+1
j ), the method of the first step can be adapted. By reproducing

the proof of Lemma 7 to show (33), we obtain

ea,j(x
i
max)2 > max





2π2

|Ωi|2 + π2

L2(
π2

|Ωi|2 + π2

L2

)
|Ωi|

∫ xi+1
j

xij

ea,j(x)2 dx,
1

π2

|Ωi|2 + π2

L2

max{e′a,j(xij)2, e′a,j(x
i+1
j )2}



 .

(48)
One derives from the equivalent of (36) in this case the estimates

π2

|Ωi|2
− pi2

L2
6

e′a,j(x
i
j)

2

ea,j(ximax)2
6

π2

|Ωi|2
+
pi2

L2
and

π2

|Ωi|2
− pi2

L2
6

e′a,j(x
i+1
j )2

ea,j(ximax)2
6

π2

|Ωi|2
+
pi2

L2
. (49)

Applying (48) for i = 0 and using (46) yields

ea,j(x
0
max)2 > A0 with A0 =

2π2

|Ω0|2 + π2

L2

j
(

π2

|Ω0|2 + π2

L2

)
|Ω0|

=
1

Lj

(
2 + η2

0

η0(1 + η2
0)

)
. (50)
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Let us now provide an estimate of ea,1(x1
max)2. Combining the inequalities (48) with i = 1 and

(49) with i = 0, we get

ea,1(x1
max)2 >

e′a,j(x
1
j )

2

π2

|Ω1|2 + π2

L2

>
( π2

|Ω0|2 −
π2

L2 )ea,1(x0
max)2

π2

|Ω1|2 + π2

L2

. (51)

Combining (50) and (51) yields

ea,j(x
1
max)2 > A1 with A1 =

(L2 − |Ω0|2)|Ω1|2
(L2 + |Ω1|2)|Ω0|2

A0 =
(1− η2

0)η2
1

(1 + η2
1)η2

0

A0.

By induction, it follows that

ea,j(x
i
max)2 > Ai with Ai =

(
i∏

k=1

(1− η2
k−1)η2

k

(1 + η2
k)η2

k−1

)
A0, (52)

for every i ∈ {1, · · · , j − 1}. Hence, (52) together with (47) allows us to write

∫

ω

ea,j(x)2 dx >
∫

ω

4j(x)2 dx,

where 4j is the piecewise affine function defined on (0, L) by

4j(x) =





(x−xij)
(ximax−xij)

√
Ai on (xij , x

i
max),

(xi+1
j −x)

(xi+1
j −ximax)

√
Ai on (ximax, x

i+1
j ),

for every i ∈ {0, · · · , j − 1} and x ∈ (xij , x
i+1
j ).

ea,1(x
1
max)

ea,1(x
2
max)

ea,1(x
3
max)

x03
x13 x23

√
A0

−
√
|A1|

√
A2

∆j

L

Figure 4: Graphs of the functions ea,1 and 4j .

According to Proposition 2, we obtain

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx > inf
ω∈Ωr(0,L)

∫

ω

4j(x)2 dx =

∫

ω̂

4j(x)2 dx, (53)

where ω̂ = {4j(x)2 < τ} up to a set of zero Lebesgue measure and |ω̂| = rL. Let i ∈ {0, · · · , j−1}
and let us introduce ωi = ω̂ ∩ (xij , x

i+1
j ). There exist α∗i , β

∗
i and ri ∈ (0, 1) such that ωi =

18



(xij , α
∗
i ) ∪ (β∗i , x

i+1
j ), |ωi| = ri(x

i+1
j − xij), and therefore

j−1∑

i=0

ri(x
i+1
j − xij) = rL. (54)

By definition of ω̂, one has 4j(α∗i ) = 4j(β∗i ) = 4j(α∗i+1), consequently there holds

α∗i = ri(x
i
max − xij) + xij , β∗i = xi+1

j − ri(xi+1
j − ximax), (55)

and
r2
i+1Ai+1 = r2

iAi = · · · = r2
0A0. (56)

As a result, one obtains

∫

ω∗
4j(x)2 dx =

j−1∑

i=0

∫

ωi

4j(x)2 dx =
1

3

j−1∑

i=0

r3
i |Ωi|Ai. (57)

To compute the numbers ri, we use (56) together with (52), which yields to

ri =

√
A0

Ai
r0 =

√√√√
i∏

k=1

(1 + η2
k)η2

k−1

(1− η2
k−1)η2

k

r0. (58)

Since
∑j−1
i=0 ri

|Ωi|
L =

∑j−1
i=0 riηi = r, one infers

r0 =
r

η0 +
∑j−1
i=1 ηi

√∏i
k=1

(1+η2k)η2k−1

(1−η2k−1)η2k

=
r

η0

(
1 +

∑j−1
i=1

√∏i
k=1

(1+η2k)

(1−η2k−1)

) . (59)

Besides, using (58), there holds

j−1∑

i=0

r3
i |Ωi|Ai = r2

0A0

j−1∑

i=0

ri|Ωi| = r2
0A0rL. (60)

We conclude by combining (60) with (57) that

∫

ω̂

4j(x)2 dx =
1

3
A0r

2
0rL, (61)

where A0 and r0 are respectively given by (50) and (59).
Since our goal is to estimate

∫
ω̂
4j(x)2 dx from below, regarding (61), we need to find a lower

bound on r0 and consequently on the numbers |Ωi| according to (60). We will use the following
Lemma.

Lemma 8. For every i ∈ {0, · · · , j − 1}, there holds

L√
j2 + 1

6 |Ωi| 6
L√
j2 − 1

. (62)
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Proof of Lemma 8. According to the Courant-Fischer minimax principle, one has

jπ

L
6 λa,j 6

√(
jπ

L

)2

+
π2

L2
.

Since the j-th eigenfunction ea,j is also the first eigenfunction of the operator −∂xx + a(·) Id with
Dirichlet boundary conditions on Ωi, we also have

π

|Ωi|
6 λa,j 6

√(
π

|Ωi|

)2

+
π2

L2
.

We then infer
π√(

jπ
L

)2
+ π2

L2

6 |Ωi| 6
π√(

jπ
L

)2 − π2

L2

.

It follows from Lemma 8 that 1√
j2+1

6 ηi 6 1√
j2−1

and therefore

j−1∑

i=1

√√√√
i∏

k=1

(1 + η2
k)

(1− η2
k−1)

6 g1(j),

where

g1(j) =

j−1∑

i=1

(
j2

j2 − 2

) i
2

=

(
j2

j2−2

) j
2 −

(
j2

j2−2

) 1
2

(
j2

j2−2

) 1
2 − 1

.

According to (59), one has

r0 >
r

η0(1 + g1(j))
. (63)

Combining (50), (61) and (63), we obtain

∫

ω̂

4j(x)2 dx > r3 inf
η0∈

(
1√
j2+1

, 1√
j2−1

) g2(η0, j), (64)

with

g2(η0, j) =
1

3j

(
2 + η2

0

η0(1 + η2
0)

)(
1

η0 + η0g1(j)

)2

.

Since for every η0 > 0, we have

∂g2

∂η0
(η0, j) = −

(√
j2

j2−1 − 1
)2 (

11η2
0 + 3η4

0 + 6
)

(
( j2

j2−1 )
j
2 − 1

)2

η4
0(1 + η2

0)2j
6 0,

the function η0 7→ g2(η0, j) is decreasing, so that (64) becomes

∫

ω̂

4a,j(x)2 dx > r3g2

(√
1

j2 − 1
, j

)
= r3wj , (65)
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and the expected result is proved.

Second case: assume now that i0 = 2. We will prove that the estimate choosing i0 = 1 is worst
than the estimate that we obtain with i0 = 2. Using (48) with i = 1, we have

e2
a,j(x

1
max) > A1 with A1 =

1

Lj

(
2 + η2

1

η1(1 + η2
1)

)
. (66)

Combining the inequality (48) with i = 0, (49) with i = 1 and (66) we get

A0 =
(1− η2

1)η2
0

(1 + η2
0)η2

1

A1. (67)

Using (48) with i = 2, (49) with i = 1 and (66) we have

e2
a,j(x

2
max) > A2 with A2 =

(1− η2
1)η2

2

(1 + η2
2)η2

1

A1.

By induction, for every i ∈ {2, · · · , j − 1} we have

e2
a,j(x

i
max) > Ai with Ai =

(
i∏

k=2

(1− η2
k−1)η2

k

(1 + η2
k)η2

k−1

)
A1 (68)

Since r2
iAi = r2

1A1,
∑j−1
i=0 riηi = r, one computes by using (68) and (67)

r1 =
r

η1 + η0

√
A1

A0
+
∑j−1
i=2 ηi

√
A1

Ai

=
r

η1 + η0

√
1+η20
1−η21

+
∑j−1
i=2 ηi

√∏i
k=2

(1+η2k)η2k−1

(1−η2k−1)η2k

.

Moreover,
j−1∑

i=2

ηi

√√√√
i∏

k=2

(1 + η2
k)η2

k−1

(1− η2
k−1)η2

k

= η1

j−1∑

i=2

√√√√
i∏

k=2

1 + η2
k

1− η2
k−1

and since 1√
j2+1

6 ηi 6 1√
j2−1

according to Lemma 8, there holds

r1 >
r

η1 + η1

√
j2

j2−2 + η1

∑j−1
i=2

(
j2

j2−2

) i−1
2

.

Since j > 2, we have

√
j2

j2 − 2
+

j−1∑

i=2

(
j2

j2 − 2

) i−1
2

−
j−1∑

i=1

(
j2

j2 − 2

) i
2

=

√
j2

j2 − 2
−
(

j2

j2 − 2

) j−1
2

6 0,

and it follows that
r1 >

r

η1 + η1

∑j−1
i=1

(
j2

j2−2

) i
2

.
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As a consequence, using the same approach as the one used for the case where i0 = 1, we infer
that

inf
ω∈Ωr(0,L)

∫

ω

4j(x)2 dx > r3 inf
η1∈

(
1√
j2+1

, 1√
j2−1

) g2(η1, j)

with

g2(η1, j) =
1

3j

(
2 + η2

1

η1(1 + η2
1)

)(
1

η1 + η1g1(j)

)2

and g1(j) =

(
j2

j2−2

) j
2 −

(
j2

j2−2

) 1
2

(
j2

j2−2

) 1
2 − 1

.

One gets the same conclusion as in the first case.
Finally, mimicking this proof and adapting it for every j0 ∈ {3, · · · , j − 1}, we prove that the

estimate with i0 = 1 is the worst one. We then obtain the same conclusion.

2.4 Proof of Theorem 2

We argue by contradiction, assuming that the optimal design problem (Pj,L,r,∞) has a solution
a∗ ∈ L∞(0, L). Then, there exists M0 such that a∗ is a solution of the problem

inf
a∈A∞(0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx = inf
a∈AM0

(0,L)
inf

ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx.

We will use the notations of Proposition 4 and Section 2.2.
The contradiction will be obtained by constructing a perturbation a∗n of a∗ such that

J(a∗n) < J(a∗).

According to Proposition 4, a∗ is non-trivial and bang-bang, equal to 0 and M0 almost everywhere
in (0, L) so that there exists i0 ∈ {1, · · · , j} such that the set IM0,a∗(x

i0−1
j , xi0j ) is measurable of

positive measure.
Thanks to the regularity of the Lebesgue measure, there exists an increasing sequence of com-

pact sets (Kn)n∈IN strictly included in IM0,a∗(x
i0−1
j , xi0j ) satisfying

lim
n→∞

|Kn| = |IM0,a∗(x
i0−1
j , xi0j )|,

where | · | denotes the Lebesgue measure. In what follows, we will use the notation Ic to denote
the complement of any set I ⊂ [0, L] in [0, L]. We introduce

a∗n(x) =

{
M0 + 1

ϕ(n) on Kn,

0 on Kc
n,

with ϕ(n) = |IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n|.

Let us remark that

a∗n(x)− a(x) =





1
ϕ(n) on Kn,

−M0 on IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n,

0 on IM0,a∗(x
i0−1
j , xi0j )c.
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Kn

IM0,a∗(x
i0
j , x

i0+1
j )

xi0j xi0+1
j

−M0

M0 +
1
n
−

Figure 5: perturbation a∗n(. . . ) of a∗(−).

Hence, we get

〈dJ(a), ϕ(n)(a∗n − a∗)〉 = −2

∫ x
i0
j

x
i0−1
j

ϕ(n)(a∗n(x)− a∗(x))eai0 ,1(x)pi0(x) dx

= 2M0ϕ(n)

∫

IM0,a
∗ (x

i0−1
j ,x

i0
j )∩Kc

n

eai0 ,1(x)pi0(x) dx

−
∫

Kn

eai0 ,1(x)pi0(x) dx,

for n ∈ IN. Using (12), we have eai0 ,1pi0 > 0 on IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n and eai0 ,1pi0 > 0 on Kn

for all n ∈ IN. Since limn→+∞ ϕ(n) = 0 and according to the Lebesgue density theorem,

lim
n→+∞

2M0ϕ(n)

∫

IM0,a
∗ (x

i0−1
j ,x

i0
j )∩Kc

n

eai0 ,1(x)pi0(x) dx = 0.

As a consequence, there exists n0 ∈ IN such that for all n > n0

〈dJ(a), ϕ(n)(a∗n − a∗)〉 < 0.

Thus, there exists n1 ∈ IN verifying J(a∗n1
) < J(a∗), whence the contradiction. We then infer that

the optimal design problem (Pj,L,r,∞) has no solution.
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3 Applications and numerical investigations

3.1 Controllability issues for the wave equation

3.1.1 The cost of the control in large time

Let us fix T > 0 and consider the one dimensional wave equation with potential

∂ttϕ(t, x)− ∂xxϕ(t, x) + a(x)ϕ(t, x) = 0, (t, x) ∈ (0, T )× (0, L),

ϕ(t, 0) = ϕ(t, L) = 0, t ∈ [0, T ],

(ϕ(0, x), ∂tϕ(0, x)) = (ϕ0(x), ϕ1(x)), x ∈ [0, L],

(69)

where the potential a(·) is a nonnegative function belonging to L∞(0, L). It is well known
that for every initial data (ϕ0, ϕ1) ∈ H1

0 (0, L) × L2(0, L), there exists a unique solution ϕ in
C0(0, T ;H1

0 (0, L)) ∩ C1(0, T ;L2(0, L)) of the Cauchy problem (69).
Let ω be a given measurable subset of (0, L) of positive Lebesgue measure. The equation (69)

is said to be observable on ω in time T if there exists a positive constant C such that

C

∫ L

0

(
ϕ1(x)2 + ϕ′0(x)2 + a(x)ϕ0(x)2

)
dx 6

∫ T

0

∫

ω

∂tϕ(t, x)2 dxdt (70)

for all (ϕ0, ϕ1) ∈ H1
0 (0, L)×L2(0, L). We denote by CT,obs(a, ω) the largest constant in the previous

inequality, that is

CT,obs(a, ω) = inf
(ϕ0,ϕ1)∈H1

0 (0,L)×L2(0,L)
(ϕ0,ϕ1)6=(0,0)

∫ T
0

∫
ω
∂tϕ(t, x)2 dxdt

∫ L
0

(ϕ1(x)2 + ϕ′0(x)2 + a(x)ϕ0(x)2) dx
. (71)

This constant can be interpreted a quantitative measure of the well-posed character of the inverse
problem of reconstructing the solutions from measurements over [0, T ]×ω. Moreover, this constant
also plays a crucial role in the frameworks of control theory. Indeed, consider the internally
controlled wave equation on (0, L) with Dirichlet boundary conditions





∂tty(t, x)− ∂xxy(t, x) + a(x)y(t, x) = ha,ω(t, x), (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, π) = 0, t ∈ [0, T ],

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ (0, L),

(72)

where ha,ω is a control supported by [0, T ] × ω and ω is a Lebesgue measurable subset of (0, L).
Recall that for every initial data (y0, y1) ∈ L2(0, L) × H−1(0, L) and every ha,ω ∈ L2((0, T ) ×
(0, L)), the problem (72) has a unique solution y verifying moreover y ∈ C0(0, T ;L2(0, L)) ∩
C1(0, T ;H−1(0, L)). This problem is said to be null controllable at time T if and only if for
every initial data (y0, y1) ∈ L2(0, L)×H−1(0, L), one can find a control ha,ω ∈ L2((0, T )× (0, L))
supported by [0, T ]× ω such that the solution y of (72) verifies y(T, ·) = ∂ty(T, ·) = 0.

Let us assume that (72) is null controllable. At fixed (y0, y1) ∈ L2(0, L) × H−1(0, L), since
the set of all controls ha,ω steering (y0, y1) to (0, 0) is a closed vector space of L2((0, T )× (0, L)),
there exists a unique control of minimal L2((0, T ) × ω)−norm that we denote hopta,ω, which can
be constructed “explicitly” as the minimum of a functional according to the Hilbert Uniqueness
Method (HUM, see [23]). Thus, we can define the HUM operator ΓTa,ω by

ΓTa,ω : H1
0 (0, L)× L2(0, L) −→ L2((0, T )× (0, L))

(y0, y1) 7−→ hopta,ω.
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ΓTa,ω is linear and continuous and we define its norm

‖ΓTa,ω‖ = sup

{ ‖ha,ω‖L2((0,T )×(0,L)

‖(y0, y1)‖L2(0,L)×H−1(0,L)
| (y0, y1) ∈ L2(0, L)×H−1(0, L) \ {(0, 0)}

}
,

which is called the cost of the control at time T (because it measures the minimal energy needed
to bring an initial condition to (0, 0)). Using a standard duality argument, it can be showed that
(72) is null controllable if and only if (69) is observable, and in this case the cost of the control is

‖ΓTa,ω‖ = CT,obs(a, ω)−1,

with CT,obs(ω)−1 the optimal constant in the observability inequality (70), defined by (71).
The dependence of CT,obs(a, ω)−1 with respect to different parameters (the observability time

T , the potential a, the observability set ω) has been studied by many authors (see [35], where an
application to the controllability of semilinear wave equations is given, [6] for some results in the
multi-dimensional case obtained thanks to Carleman estimates and [10] for precise lower bounds
obtained through different methods) but its exact behavior is not known.

In the following result, one provides several estimates of CT,obs(a, ω) (and then ‖ΓTa,ω‖) and con-
stitutes another justification of the interest of the problems introduced in Section 1.2, in particular
of the issue of obtaining a lower bound estimate of the quantity J(a, ω).

Theorem 3. Let L > 0 and let a be a nonnegative function in L∞(0, L).

i There holds
CT,obs(a, ω) ∼ TJ(a, ω) as T → +∞.

ii Let a ∈ AM (0, L) with M < 3π2/L2 and define T (a) = 2π
γa

with γa =
3π2

L2 −M
2π
L +

√
π2

L2 +M
. For all

T > T (a), there holds

0 < c1(T, γa) 6
CT,obs(a, ω)

J(a, ω)
6 c2(T, γa),

with c1(T, γa) = 2
π

(
T − 4π2

γ2
aT

)
and c2(T, γa) = 20T

min{2π,γaT} .

The proof of this theorem is postponed to Section C.

3.1.2 Randomized observability constant

Let us provide another interpretation of the quantity J(a, ω). It corresponds also to an averaged
version of the observability constant CT,obs(a, ω) defined by (71), over random initial data. More
precisely, let (βν1,j)j∈IN∗ and (βν2,j)j∈IN∗ be two sequences of independent Bernoulli random variables
on a probability space (X ,A,P), satisfying

P(βν1,j = ±1) = P(βν2,j = ±1) =
1

2
and E(βν1,jβ

ν
2,k) = 0,

for every j and k in IN∗ and every ν ∈ X . Here, the notation E stands for the expectation over
the space X with respect to the probability measure P.

Then, J(a, ω) is the largest constant C for which the inequality

C

∫ L

0

(
ϕ1(x)2 + ϕ′0(x)2 + a(x)ϕ0(x)2

)
dx 6 E

(∫ T

0

∫

ω

|∂tϕν(t, x)|2 dx dt
)
, (73)
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holds for all (ϕ0, ϕ1) ∈ H1
0 (0, L;C)× L2(0, L;C), where ϕν is defined by

ϕν(t, x) =

+∞∑

j=1

(
βν1,jaje

iλa,jt + βν2,jbje
−iλa,jt) ea,j(x),

with

aj =
1

2

(∫ L

0

ϕ0(x)ea,j(x) dx− i

λa,j

∫ L

0

ϕ1(x)ea,j(x) dx

)
,

bj =
1

2

(∫ L

0

ϕ0(x)ea,j(x) dx+
i

λa,j

∫ L

0

ϕ1(x)ea,j(x) dx

)
,

(74)

for every j ∈ IN∗.
In other words, ϕν denotes the solution of the wave equation (69) with the random initial data

ϕ0,ν(·) and ϕ1,ν(·) determined by their Fourier coefficients aνj = βν1,jaj and bνj = βν2,jbj .
In this context, the quantity J(a, ω) is called randomized observability constant and we refer

to [27, Section 2.3] and [31, Section 2.1] for further explanations on its use in inverse problems.
Moreover, a deterministic interpretation of this quantity is provided in [32].

3.1.3 Decay rate for a damped wave equation

From the estimates of the observability constant CT,obs(a, ω), we can also deduce estimates of
the rate at which energy decays in a damped string. Consider the damped wave equation on (0, π)
with Dirichlet boundary conditions




∂tty(t, x)− ∂xxy(t, x) + a(x)y(t, x) + 2kχω(x)∂ty(t, x) = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, π) = 0, t ∈ [0, T ],

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ (0, L),
(75)

with k > 0. Recall that for all initial data (y0, y1) ∈ H1
0 (0, π)× L2(0, π), the problem (75) is well

posed and its solution y belongs to C0(0, T ;H1
0 (0, π)) ∩ C1(0, T ;L2(0, π)).

The energy associated to System (75) is defined by

Ea,ω(t) =

∫ π

0

(
∂ty(t, x)2 + ∂xy(t, x)2 + a(x)y(t, x)2

)
dx.

According to Theorem 3 and to [10, Section 3.3], by using the same notations as in the statement
of Theorem 3, if ω is a measurable subset of (0, π), a ∈ AM (0, π) with M < 3π2/L2, there holds
for every (y0, y1) ∈ H1

0 (0, π)× L2(0, π) and t > 2T (a),

Ea,ω(t) 6 Ea,ω(0)e−δ(a,ω)t,

with

ln

(
1 + (1 + T (a)2)c1(T, γa)J(a, ω)

(1 + T (a)2)c1(T, γa)J(a, ω)

)
6 2T (a)δ(a, ω) 6 ln

(
1 + (1 + T (a)2)c2(T, γa)J(a, ω)

(1 + T (a)2)c2(T, γa)J(a, ω)

)
.

3.2 Numerical investigations

In the whole section, we will consider that L = π according to Lemma 1, and two given numbers
r ∈ (0, 1) and M ∈ (0, 1).

26



3.2.1 The toy case “j0 = 1” and M ∈ (0, 1]

In the case “j0 = 1”, according to Theorem 1, there exist at most two switching points in (0, π)
denoted o1 and o2 such that

0 6 o1 6 o2 6 π and a(x) = Mχ(0,o1)∪(o2,π). (76)

Therefore, the issue of determining the optimal potential a(·) comes to minimize the function

(0, π)2 3 (o1, o2) 7→ inf ω⊂(0,π)
s.t. |ω|=rπ

∫
ω
ea,1(x)2 dx, where a(·) is given by (76). Fixing τa =

√
λ2
a,1 −M ,

one computes

ea,1(x) =





sin (τax) x ∈ (0, o1),
sin (τao1) cos (λa,1(x− o1)) + τa

λa,1
cos (τao1) sin (λa,1(x− o1)) x ∈ (o1, o2),

sin(τao1) cos(λa,1(o2−o1))+ τa
λa,1

cos(τao1) sin(λa,1(o2−o1))

sin(τa(π−o2)) sin(τa(π − x)) x ∈ (o2, π),

up to a multiplicative normalization constant, where the eigenvalue λa,1 solves the transcendental
equation

λa,jτa
tan(τa(π − o2 + o1))

tan(λ(o2 − o1))
− τ2

a = M
sin(τa(π − o2)) sin(τao1)

cos(τa(π − o2 + o1))
.

This last equation is solved numerically by using a Newton method. Since M ∈ (0, 1], the eigen-
function ea,1 is concave on (0, π). As a consequence, the optimal set ω, as level set of the function
e2
a,1, writes ω = (0, α)∪ (β, π) with α < β, according to Proposition 2. In that case, we determined
α and β with the help of a Newton method, using that β = (1− r)π + α and ea,1(α)2 = ea,1(β)2.

These considerations allow to rewrite the extremal problem (PL,r,M ) as a two-dimensional
optimization problem, that we solved numerically by using a Nelder-Mead simplex search method
on a standard desktop machine.
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0.6

0.8

1

r

Figure 6: L = π and M = 1. Left: plots of the optimal set ω(−), a(-) and e2
a∗1 ,1

(. . . ) with respect

to the space variable with r = 0.3. Right: plot of r 7→ m1(L, r) (−), r 7→ r − sin(πr)
π (-) and

r 7→ r3/2 (· · · ).
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3.2.2 Numerical solving of (Pj,L,r,M ) for for j > 2.

Let j ∈ IN\{0, 1} and M = (0, 1]. We fix o0 = 0 and o3j = π. According to Theorem 1, we
reduce the solving of the infinite-dimensional problem (Pj,L,r,M ) to a (3j− 1)-dimensional one. In
other terms, we minimize the function

(0, π)3j−1 3 o = (o1, · · · , o3j−1) 7−→ inf
ω⊂(0,π)

s.t. |ω|=rπ

∫

ω

ea,1(x)2 dx,

where a(·) is a potential function defined on (0, π) such that,

a(x) =

{
M on (oi, oi+1),
0 on (oi+1, oi+2),

for every even integer i ∈ {0, · · · , 3j − 2} and every x ∈ (oi, oi+2). Notice that, when 3j − 2 is
a odd number then a(x) = M on (o3j−1, o3j). Thus, given the switching points o ∈ (0, π)3j−1,

o1 o2 o3o0 = 0 o3j = π

−1

Figure 7: Construction of a(·).

one computes the eigenfunction ea,j(·) by using a shooting method combined with a Runge-Kutta
method. The eigenvalue λ is determined by solving ea,λ(π) = 0 with a Newton method.

According to Proposition 2, the set ω coincides with {e2
a,j 6 τ} for some parameter τ chosen in

such a way that |ω| = rπ. We are then driven to find an estimate of τ , which is done by computing
the decreasing rearrangement e∗a,j

2 of e2
a,j (see, e.g., [13, 19, 33]) and using that τ = e∗a,j

2(rπ).
These considerations allow to rewrite the cost functional as a function of (3j−1) variables. The

resulting finite-dimensional problem is then solved numerically by using a Nelder-Mead simplex
search method on a standard desktop machine.

Figures 9 and 10 illustrate the research of the optimal potential. The parameter r is running
over the interval [0, 1]. On Figure 9, the optimal value of the criterion (w.r.t. r) is compared to the
estimate obtained in Theorem 1 for the parameter values j ∈ {2, 3, 4}. Recall that the numbers
mj are defined in Proposition 1.

On Figure 10, the graph of the optimal value with respect to r is plotted for the parameter
values j ∈ {1, 2, 6}. Notice that the mapping j 7→ mj(L,M, r) seems to be increasing, although
we did not manage to prove it.
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Figure 8: j = 2, L = π, M = 1 and r = 0.3. Graph of e2
a,2 and determination of the Lagrange

parameter τ .
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Figure 9: L = π and M = 1. Plots of mj (−o−), mjr
3 (· · · ) and r 7→ r − sin(πr)

π (−) with respect
to r for j ∈ {2, 3, 4}.
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Appendix

A Proof of Lemma 2

One refers for instance to [12] for a survey of the tools used to prove the continuity of eigenvalues
and eigenfunctions with respect to several parameters. Nevertheless, we provide here the main lines
of the proof for the sake of completeness.

We first investigate the continuity of the first eigenfunction, in other words, the case “j = 1”.
Let (an)n∈IN∗ be a sequence of AM (0, L) converging for the weak-? topology of L∞(0, L) to a.
Then, using that an 6 M in (0, L) for all n ∈ IN∗ and according to the Courant-Fischer minimax
principle (see [5, Page 405]), one has

λ2
an,1 = min

u∈H1
0 (0,L)\{0}

∫ L
0
u′(x)2 + an(x)u(x)2 dx

∫ L
0
u(x)2 dx

6
π2

L2
+M.

It follows that, up to a subsequence, the sequence (λ2
an,1)n∈IN∗ converges to a real nonnegative

number denoted λ2. The variational formulation of the eigenproblem (1) writes: find ean,1 in
H1

0 (0, L) such that for every test function ϕ ∈ H1
0 (0, L), one has

∫ L

0

e′an,1(x)ϕ′(x) + an(x)ean,1(x)ϕ(x) dx = λ2
an,1

∫ L

0

ean,1(x)ϕ(x) dx. (77)

Taking as test function ϕ = ean,1 and using the fact that
∫ L

0
ean,1(x)2 dx = 1 for every n ∈ IN∗ yields

easily that the sequence (ean,1)n∈IN∗ is uniformly bounded in H1
0 (0, L). From Rellich-Kondrachov

Theorem, it converges up to a subsequence weakly in H1(0, L) and strongly in L2(0, L) to an
element f of H1

0 (0, L). Passing into the limit in (77) yields that there exists some j ∈ N∗ such that
f = ea,j and λ = λa,j . Moreover, since

∫ L

0

e′an,1(x)2 dx = λan,1 −
∫ L

0

an(x)ean,1(x)2 dx,
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the sequence (‖ean,1‖H1(0,L))n∈IN∗ converges to ‖ea,j‖H1(0,L). Combining this fact with the weak
convergence of (ean,1)n∈IN∗ to ea,j in H1

0 (0, L) proves that this convergence is in fact strong. Finally,
using the embedding C0([0, L]) ↪→ H1(0, L) and passing to the limit in the inequality ean,1 > 0
in (0, L) yields that ea,j is of constant sign. Therefore, there holds necessarily j = 1 and the
conclusion follows.

To adapt this result to higher orders, it is enough to make the same reasoning on each nodal
domain. Without loss of generality, consider the case j = 2. Using the same notations as previously,
the function ean,2 has two nodal domains (0, ξn) and (ξn, L). Moreover, the sequence (ξn)n∈IN

converges, up to a subsequence to some ξ∗ ∈ [0, L]. Applying the previous arguments to ean,2χ(0,ξn)

and ean,2χ(ξn,L) proves that each of these quantities converges strongly in H1(0, L), respectively
to ea,jχ(0,ξ∗) and ea,jχ(ξ∗,L). Moreover, one shows as previously that each of these functions is of
constant sign and that ξ∗ ∈ (0, L) by passing to the limit in the equality

∫ L

0

ean,1(x)ean,2(x) dx = 0,

which proves that the sign of the function ea,j is non constant. Hence, the function ea,j has two
nodal domains, whence the result.

To generalize this result to other eigenfunctions, it is enough to use an induction argument and
the L2 orthogonality of ea,j with ea,j−1 that we do not present in details here. The conclusion
follows.

B Proof of Lemma 4

Let us define φj =
eaj,j(·)
e′aj,j

(0) . The function φj solves the Cauchy system

{ −φ′′j (x) + aj(x)φj(x) = λ2
jφj(x), x ∈ (0, L),

φj(0) = 0, φ′j(0) = 1.

Let us notice that, according to the Courant-Fischer minimax principle, there holds λaj ,j >
π
L for

every j ∈ IN∗ and limj→+∞ λaj ,j = +∞. According to [26, Chapter 1, Theorem 3] and using a
rescaling argument, we infer

φj(x) =
sin(λaj ,jx)

λaj ,j
+ O

(
1

λ2
aj ,j

)
.

As a consequence, there holds

φ2
j (x) =

sin2(λaj ,jx)

λ2
aj ,j

+ O

(
1

λ3
aj ,j

)
, (78)

where the remainder term does not depend on x. Therefore, using the Riemann-Lebesgue lemma,
one gets that ∫ L

0

φ2
j (x)dx =

L

2λ2
a,j

+ o

(
1

λ2
a,j

)
, (79)

and since eaj ,j =
φj
‖φj‖2 , the combination of (78) and (79) yields

e2
aj ,j(x) =

2

L
sin2(λaj ,jx) + O

(
1

λaj ,j

)
. (80)
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Let ϕ ∈ L1(0, L). Using (80), one shows that

∫ L

0

eaj ,j(x)2ϕ(x) dx =
2

L

∫ β

α

sin2(λaj ,jx)ϕ(x) dx+ O

(
1

λaj ,j

)
.

By linearizing sin2(λaj ,jx) and using the real version of the Riemann-Lebesgue lemma, the expected
result follows.

C Proof of Theorem 3

Before proving this theorem, let us recall some basic facts on Ingham’s inequality (see [14]), an
inequality for nonharmonic Fourier series much used in control theory.

Proposition 5. For every γ > 0 and every T > 2π
γ , there exist two positive constants C1(T, γ)

and C2(T, γ) such that for every sequence of real numbers (µn)n∈IN∗ satisfying

∀n ∈ IN∗ |µn+1 − µn| > γ, (81)

there holds

C1(T, γ)
∑

n∈Z∗
|an|2 6

∫ T

0

∣∣∣∣∣
∑

n∈Z∗
aneiµnt

∣∣∣∣∣

2

dt 6 C2(T, γ)
∑

n∈Z∗
|an|2, (82)

for every (an)n∈IN∗ ∈ `2(C).

Denoting by C1(T, γ) and C2(T, γ) the optimal constants in (82), several explicit estimates of
these constants are provided in [14]. For example, it is proved in the article cited above that

C1(T, γ) > 2

(
T

π
− 4π

γ2T

)
and C2(T, γ) 6

20T

min{2π, γT} .

The idea to use Ingham inequalities in control theory is a long story (see for instance [2, 9, 15, 16,
20]).

Notice that, up to our knowledge, the best constants in [14] are not known. In the particular
case where µn = πn/L for every n ∈ IN∗, one shows easily that for every T > 2L, C1(T, γ) = π

⌊
T
2π

⌋

and C2(T, γ) = C1(T, γ) + 1, the bracket notation standing for the integer floor.
The following result on the asymptotic as T → +∞ of optimal constants Ingham’s inequalities

will be a crucial tool to prove Theorem 3.

Proposition 6. Assume that the sequence (µn)n∈IN∗ satisfies (81). Then, there holds

lim
T→+∞

C1(T, γ)

T
= lim
T→+∞

C2(T, γ)

T
= 1.

Proof of Proposition 6. Let (an)n∈IN∗ ∈ `2(C) be such that ‖a‖`2 = 1. Introduce the quantity

QT (a, µ) =

∫ T

0

∣∣∣∣∣
∑

n∈Z∗
aneiµnt

∣∣∣∣∣

2

dt.
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We write

QT (a, µ) =

∫ T

0

∑

n∈Z∗
|an|2 dt+

∫ T

0

∑

n 6=m
anāme

i(µn−µm)t dt

= T − i
∑

n 6=m

anām(ei(µn−µm)T − 1)

µn − µm

= T − i
∑

n 6=m

bnb̄m
µn − µm

+ i
∑

n 6=m

anām
µn − µm

,

with bn = ane
iµnT for every n ∈ Z∗.

According to [24, Theorem 2], one has

∣∣∣∣∣∣
∑

n 6=m

bnb̄m
µn − µm

∣∣∣∣∣∣
6
π

γ
‖a‖2`2 and

∣∣∣∣∣∣
∑

n 6=m

anām
µn − µm

∣∣∣∣∣∣
6
π

γ
‖a‖2`2 ,

where γ = infn∈Z∗ µn+1 − µn. Then, it follows that

1− π

γT
6

1

T
inf

a∈`2|‖a‖`2=1
QT (a, µ) 6

1

T
sup

a∈`2|‖a‖`2=1

QT (a, µ) 6 1 +
π

γT
,

whence the result.

Decomposing the solution ϕ of (69) in the spectral basis {ea,j}j∈IN∗ allows to write that

ϕ(t, x) =

+∞∑

j=1

(αj cos(λa,jt) + βj sin(λa,jt)) ea,j(x), (83)

where

αj =

∫ L

0

ϕ0(x)ea,j(x) dx, βj =
1

λa,j

∫ L

0

ϕ1(x)ea,j(x) dx, (84)

for every j ∈ IN∗. We are now ready to prove Theorem 3.

Proof of Theorem 3. Introduce the spectral gap

γ = inf
j∈N∗

λa,j+1 − λa,j . (85)

It is well-known that γ > 0 for every a ∈ L∞(0, L). Let us first prove point (i). Using (82), we get
that, for T > 2π/γ,

∫ T

0

∫

ω

|∂tϕ(t, x)|2 dxdt =
1

2

∫ T

0

∫

ω

∣∣∣∣∣
∑

k∈Z∗
i sgn(k)λa,|k|

√
a2
|k| + b2|k|e

i sgn(k)(λa,|k|t−θ|k|)ea,|k|(x)

∣∣∣∣∣

2

dxdt

>
C1(T, γ)

2

∑

k∈Z∗
(a2
|k| + b2|k|)λ

2
a,|k|

∫

ω

ea,|k|(x)2 dx

= C1(T, γ)

+∞∑

j=1

(a2
j + b2j )λ

2
a,j

∫

ω

ea,j(x)2 dx, (86)
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where (θj)j∈IN∗ denotes the sequence defined by eiθj =
aj+ibj√
a2j+b

2
j

for every j ∈ IN∗. Similarly, one

gets ∫ T

0

∫

ω

|∂tϕ(t, x)|2 dxdt 6 C2(T, γ)

+∞∑

j=1

(a2
j + b2j )λ

2
a,j

∫

ω

ea,j(x)2 dx. (87)

Using the energy identity

∫ L

0

(
ϕ2
t (t, x) + ϕ2

x(t, x) + a(x)ϕ2(t, x)
)
dx =

+∞∑

j=1

λ2
a,j(a

2
j + b2j ), (88)

and combining it with (86), (87) and the asymptotic of optimal constants in Ingham’s inequalities
stated in Proposition 6 leads to the desired result. Let us now prove point ii. According to (86),
(87), and (88), there holds

0 < C1(T, γ) 6
CT,obs(ω)

infj∈IN∗
∫
ω
ea,j(x)2 dx

6 C2(T, γ), (89)

with C1(T, γ) > 2
(
T
π − 4π

γ2T

)
and C2(T, γ) 6 20T

min{2π,γT} . To conclude, it remains to provide an

estimate of the spectral gap γ defined by (85).

Lemma 9. Let a ∈ AM (0, L) with M ∈ (0, 3π2/L2). There holds

λa,j+1 − λa,j >
3π2

L2 −M
2π
L +

√
π2

L2 +M
,

for every j ∈ IN∗.

Proof. The Courant-Fischer minimax principle writes

λ2
a,j = min

V⊂H1
0 (0,π)

dimV=j

max
u∈V \{0}

∫ π
0

(u′(x)2 + a(x)u(x)2)dx∫ π
0
u(x)2 dx

.

Using that 0 6 a(x) 6M for almost every x ∈ (0, L) yields

jπ

L
6 λa,j 6

√(
jπ

L

)2

+M, (90)

for every j ∈ IN∗. It suffices indeed to compare λ2
a,j with the j-th eigenvalue of a Sturm-Liouville

operator with constant coefficients. We infer

λa,j+1 − λa,j >
(j + 1)π

L
−
√(

jπ

L

)2

+M,

=
(1 + 2j) π

2

L2 −M

(j + 1) πL +

√(
j2π2

L2

)
+M

.

for every j ∈ IN∗. The sequence j 7→ (1+2j) π
2

L2−M

(j+1) πL+

√(
j2π2

L2

)
+M

being increasing, the expected

estimate follows.

Therefore, according to Lemma 9, one has γ > γa. Hence, choosing γ = γa in (89) for all
T > T (a) = 2π

γa
yields the expected conclusion.

34



References
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[32] Yannick Privat, Emmanuel Trélat and Enrique Zuazua, Randomised observation, control and stabilisation of
waves, Preprint HAL (2015).
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Poincaré Anal. Non Linéaire 10 (1993), 109–129.

36


	Introduction and main results
	Localization/Non-localization of Sturm-Liouville eigenfunctions
	The extremal problem
	Main results and comments

	Proofs of Theorem ??, Proposition ??, and Theorem ??
	Preliminary material: existence results and optimality conditions
	Proof of Theorem ??
	Proof of Proposition ??
	Proof of Theorem ??

	Applications and numerical investigations
	Controllability issues for the wave equation
	The cost of the control in large time
	Randomized observability constant
	Decay rate for a damped wave equation

	Numerical investigations
	The toy case ``j0=1'' and M(0,1]
	Numerical solving of (??) for for j 2.


	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Theorem ??

