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Understanding the Impact of SubjectiveUncertaintyon Architecture 

Generation and Supplier Identification in Early Complex Systems 

Design 

TheArchitecture & Supplier Identification Tool(ASIT) is a design support tool, 

which enables identification ofthe most suitable architectures and suppliers in 

early stages of complex systemsdesign, with consideration of overall 

requirements satisfaction and uncertainty.During uncertainty estimation,several 

types of uncertainties that are essential in early design (i.e., uncertainty of 

modules due to new technology integration, compatibility between modules, and 

supplier performance uncertainty) have been considered in ASIT. However, it 

remains unclear whetherexpert estimation uncertainties should be taken into 

account. From one perspective, expert estimation uncertainties may significantly 

influence the overall uncertaintysince early complex systems designgreatly 

depends on expert estimation; while an opposing perspective argues that expert 

estimation uncertaintiesshould be neglected because they are relatively much 

smaller in scale. In order to understand how expert estimation 

uncertainties(especially subjective uncertainty) influence the architecture and 

supplier identification results achieved through ASIT, a comprehensive study of 

possible modelling approaches has been discussed; and type-1 fuzzy sets and 2-

tuple fuzzy linguistic representation are selected to integrate subjective 

uncertainties into ASIT. A powertrain design case is used to compare results 

between considering subjective uncertainties and not considering them. 

Finally,the consideration of subjective uncertainty in early conceptual design as 

well as other design stages is discussed. 

Keywords: expert estimation uncertainty, subjective uncertainty,early conceptual 

design stage, early complex systems design,fuzzy set theory, 2-tuple fuzzy 

linguistic representation 
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1 INTRODUCTION 

In early designphases of complex systems, the OEMs (Original Equipment 

Manufacturers) strive to explore possibilities, delay decisions, and at the same time 

control both the performance and the uncertainty of the future system (Ye, Jankovic, 

Kremer, & Bocquet, 2014). Nowadays,more and more OEMs tend to involve their 

suppliers early in design in the context of an extended enterprise(Nguyen Van, 2006), 

especially in airplane and automotive industries. For example, Airbus has several 

thousand suppliers from more than 100 countries(Airbus Group, 2014).Among these 

suppliers, some arecalled first-tier suppliers, such as Snecma and Roll Royce for 

engines.These first-tier suppliersusually have the full responsibility of anentire module, 

and become involved starting in early conceptual design phase of the system in most 

cases. Therefore, it is important to consider the performance and uncertainty of these 

suppliers when estimating performance and uncertainty of the future system. However, 

very few methods consider both system architecture design as well as supplier 

information(Ye et al., 2014). In order to fill this gap,we proposed an Architecture & 

Supplier Identification Tool(ASIT)(Ye et al., 2014) to support design teams when 

considering these issues. Given the lack of data, fuzziness and different uncertainties 

inherent to early design, ASIT takes into account uncertainties related to interfaces, 

suppliers’ capability, and the capability of one subsystem/module to reach a certain 

performance. These data are estimated by experts using predefined linguisticterms (as 

shown in Tab.1 and Tab.2), and these linguistic terms are then translated intonumerical 

scales to facilitate calculation.  

We have observed that when using information coming from expert estimation, 

researchers use methods such as fuzzy sets(e.g.,J. (Ray) Wang, 2001) and rough 

sets(e.g.,Zhai, Khoo, & Zhong, 2009)to model the information in order to represent the 
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uncertainty in expert estimation. Because of new technology integration, new modules 

and new suppliers, ASIT also greatly relies on expert estimation. However, different 

from most of the existing design supporting methods, ASIT is developed for early 

conceptual design stage, where overall uncertainty level is much greater than in later 

design stages. Therefore, since the expert uncertainty is relatively small comparing to 

overall uncertainty, it is unclear whether using mathematical methods to model expert 

estimation will influence the overall results. 

In this paper, we propose to analyzethe influence of considering expert estimation 

uncertainties on ASIT resultsby answering the following two research questions: 

1. Which uncertainty modeling method is most suitable for representing the expert 

estimationuncertainties within the context of ASIT? 

2. Does the consideration of expert estimation uncertainties influence ASIT results? 

In the following sections, we start with an overview of the ASIT, and the uncertainties 

caused by expert estimation in ASIT. In section three, we give a review of different 

uncertainty representation methods that can be used to represent subjective uncertainty. 

The suitability of the uncertainty representation methods is analysed based on the 

characteristics of the early design stage and the ASIT, making up the set of comparison 

criteria. In section four, the operations of fuzzy sets, the selection of suitable 

membership functions, and the utilization of defuzzification methods are discussed. In 

section five, the selected representation methods are integrated into ASIT by using a 

powertrain case study. In section six, the results are compared and discussed before 

conclusions are presented in section seven. 
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2 THE EXPERT ESTIMATION UNCERTAINTIES IN ASIT 

The ASIT is an early design support tool that aims at generating possible system 

architectures given a list of suppliers that are co-designing the system. First, possible 

architectures are generated by integrating new technologies in order to better satisfy 

new requirements. Then, the generated architectures are filtered by uncertainty and 

requirement satisfaction thresholds in order to identify the architectures with relatively 

high performance and low uncertainty. Three major types of uncertainties are taken into 

account: (1) uncertainties related to capability of one subsystem/module to reach 

defined system performances, (2) interface related uncertainties, and(3) uncertainty 

related to supplier capabilities. 

The ASIT contains four phases, as shown in Fig.1. In phase one, the satisfaction of new 

requirements by OEM’s existing products is calculated with data from existing products 

stored in a database. Subsequently, the un-satisfied requirements, un-satisfied functions, 

and responsible modules for the un-satisfaction are identifiedthrough the mapping of 

―requirement – function – module type‖.In phase two, new solutions for the responsible 

module types are foundby experts in existing or new supplier companies. Then, all 

possible architectures are generated by taking one module from each module type. In 

phase three, uncertainty of generated architectures is calculated based on experts’ 

estimation of three types of uncertainties; requirements satisfaction level of 

architectures is calculated based on experts’ estimation of ―function satisfaction by 

modules‖. Finally, inphase four, by using the uncertainty and requirements satisfaction 

thresholds (which are defined by the OEM based on the tolerance of requirements 

satisfaction, and the risk that they are willing to take), the generated architectures are 

filtered to identify potential architectures and corresponding suppliers. 
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Figure 1 OVERVIEW OF ASIT 

During ASIT process, experts are consulted for two types of information: satisfaction 

levels, and uncertainties.Although expert evaluations are often expressed in an informal 

way, there are many methodstomake them more precise; one such mostly used method 

is pre-defined linguistic terms or ordinal scales. In ASIT, the satisfaction levels (Fiod-

Neto & Back, 1994)and uncertainties are predefined as shown in Tab.1 and Tab.2. Here, 

the two forms (i.e., linguistic and numerical) are provided together since the linguistic 

terms provide explanatory notes while the numerical levels facilitate aggregation. 

Table 1. SATISFACTION LEVELS 
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Table 2 PROPABILITIES 

 

Expert knowledge is―what is known by qualified individuals, responding to complex, 

difficult (technical) questions, obtained through formal expert elicitation‖ (Meyer and 

Booker,2001). As human beings, experts generate two categories of uncertainty: 

aleatory (random) and epistemic (subjective) (Medsker, Tan, & Turban, 1995). The 

aleatory uncertainty is also referred to as inherent uncertainty, irreducible uncertainty, 

and variability. It describes uncertainty due to random variation or inherent variation 

(Booker, Anderson, & Meyer, 2003). This type of uncertainty is considered to be rooted 

in the way the brain processes information(Dror & Charlton, 2006). The epistemic 

uncertainty is also referred to as subjective uncertainty and reducible uncertainty. The 

fundamental cause for this type of uncertainty is incomplete information or incomplete 

knowledge onsystem characteristics or the environment (Oberkampf, Helton, & Sentz, 

2001). Aleatory and epistemic uncertainties both exist in expert estimation. However, in 

early conceptual design phase of complex systems, very limited amount of information 

exists;this causes high level of epistemic uncertainty. In comparison to epistemic 
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uncertainty, thealeatory uncertainty, in this phase, is much smaller in scale. Therefore 

when integrating the two types of uncertainties, the aleatory uncertainty can be covered 

by the epistemic uncertainty. That is why we propose to consider only the epistemic 

uncertainty in the context of this study. 

One of the strategies to reduce epistemic uncertainty in complex system design is to use 

expert group evaluations (Medsker et al., 1995).In this study, we assume that a group of 

experts is used for each estimation in order to prevent from the situation that one expert 

does not have sufficient knowledge in a specific domain, or multiple domains. 

As per the discussion above, the most important uncertainty caused by expert estimation 

in ASIT is the subjective (epistemic) uncertainty, which is caused by the limited 

information in early design. In order to test the sensitivity of the ASIT tothis type of 

uncertainty, we need to first choose a suitable uncertainty representation method to 

model this type of uncertainty. In the next section, several approaches that can model 

the subjective uncertainty are reviewed and their appropriateness for use within ASIT is 

discussed.  

3 REPRESENTING SUBJECTIVE UNCERTAINTY IN ASIT 

In order to identify the most suitable method for representing subjective uncertainty in 

ASIT, we have compiled uncertainty representation methods that have been the most 

commonly used for representing this type of uncertainty(NG & Abramson, 1990; 

Oberkampf et al., 2001;Booker et al., 2003): 

 Subjective probability theory, 

 Imprecise probability theory, 
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 Evidence (Dempster-Shafer) theory, 

 Fuzzy sets, 

 Possibility theory, 

 Interval analysis theory, and 

 Rough sets. 

Epistemic uncertainty has been traditionally modeled as probability distributions. The 

probability theory has four perspectives including classical, empirical, subjective and 

axiomatic probabilities (Asadoorian & Kantarelis, 2005). The expert estimation can be 

modeled as subjective probability, which represents an individual’s measure of belief 

that an event will occur. The information gathered for the distribution could be a 

mixture of limited experimental data and a person’s experience, or the elicitation of 

multiple expert opinion (Oberkampf et al., 2001). The main concern of this method is 

that the ―fuzziness‖ of information is usually lost since in probability theory, an event 

either occurs or not (NG & Abramson, 1990). 

The imprecise probability (Walley, 1991) is a generalization of probability theory; it is 

used when a unique probability distribution is hard to identify. In imprecise probability, 

a lower probability and an upper probability are used instead of one single probability. 

For an uncertain event A, instead of assigning a single probability P(A), the imprecise 

probability assigns an interval ( ), ( )P A P A 
 

, with 0 ( ) ( ) 1P A P A   , where ( )P A is 

the lower probability for A, ( )P A is the upper probability for A, and ( ) ( )A P A P A  

is the imprecision for event A (Coolen, 2004). Similar to the probability theory, the 

fuzziness of information is thought to be lost when using imprecise probability. 
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The evidence (Dempster-Shafer) theory(Dempster, 1967; Shafer, 1976)is a 

generalization of the Bayesian theory of subjective probability. It allows considering the 

confidence one has in the probabilities assigned to the outcomes. The evidence theory 

uses an interval to represent the probabilities with a lower bound called ―believe‖ and 

an upper bound called ―plausibility‖. The ―believe‖ is the sum of the evidence that 

supports the hypothesis, while the ―plausibility‖ is 1 minus the sum of the evidence that 

opposes the hypothesis. According to NG & Abramson (1990), one obvious problem of 

the evidence theory is its implementation complexity since experts must provide all the 

beliefs for all subsets of possible hypotheses. 

In 1965, Zadeh (1965) started a revolution in uncertainty thinking by introducing the 

fuzzy set theory. This theory uses a membership function to represent the degree of 

membership of an element to a set of objects. The degree to which an element belongs 

to a set is defined by a value between 0 and 1; the higher the value is the greater its 

belongingness, and an element can partly belong to a fuzzy set. The fuzzy set is widely 

used in describing linguistic information since it can effectively represent the gradual 

changes of people’s perception of a concept in a certain context (Dalalah & Magableh, 

2008). Moreover, the fuzzy set theory also allows mathematical operations that help to 

provide quantitative methods to deal with qualitative data. 

The possibility theory (Zadeh, 1999; Dubois & Prade, 1988; Cooman, Ruan, & Kerre, 

1995) is an extension of  the theory of fuzzy sets. It can be used to express the vague 

terms used by human experts with precision and accuracy (NG & Abramson, 1990). 

Interval analysis (Moore, 1979; Kearfott & Kreinovich, 1996) is an approach that treats 

an interval as a new kind of number (Moore, 1979) and follows the following 

elementary properties (Moore & Lodwick, 2003): 
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[ , ] [ , ] [ , ]a b c d a c b d      (1)                                

[ , ] [ , ] [ , ]a b c d a d b c     (2)                          

[ , ][ , ] [min( , , , ),max( , , , )]a b c d ac ad bc bd ac ad bc bd  (3) 

[ , ] [ , ] [ , ][1/ ,1/ ]a b c d a b d c  where, 0 [ , ]c d                                 (4) 

The rough sets theory (Pawlak, 1982) uses a pair of sets to give the lower and upper 

approximation of the original set. This theory is used when objects are characterized by 

the same information and thus are indistinguishable (Pawlak, 1997). Each rough set has 

boundary-line elements, which cannot be properly classified using the available 

knowledge. 

These methods have all been used in previous works to represent expert’s subjective 

uncertainty. However, it is not clear how to choose a method according to a specific 

context (e.g., for ASIT). In order to identify approaches that can be seen as most 

suitable in the context of ASIT, we propose to consider the following four criteria: 

1. The method is able to represent numerical levels:In ASIT, experts use 

predefined linguistic terms and related numerical levels to represent their 

estimation. Therefore, the chosen method should be able to represent these types 

of dis-continuous numerical levels. 

2. The method requires reasonable amount of information: In ASIT, the 

estimation is provided by experts. Due to the limitationsin time, budget and 

human capacity, the amount of information required by the mathematical 

representation has to be reasonable. 
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3. The method should capture the “fuzziness” of expert estimation: Human 

knowledge is imprecise. The chosen method should be able to capture this kind 

of imprecision. 

4. Support multi-criteria group decision making: The aim of the potential supplier 

identification is to provide candidates for the supplier selection, which is usually 

a multi-criteria group decision making problem. In order to be able to use the 

supplier identification results directlyduring the supplier selection stage, the 

selected uncertainty representation method should be able to combine with other 

methods to support the multi-criteria group decision making. 

With regard to the first criterion (representing the numerical levels), the rough set 

theory is not suitable since it assumes that some of the elements are characterized by the 

same information hence indistinguishable. However, the elements defined by the 

numerical levels are clearly distinguishable (e.g., numbers 1 – 10 used in Tab.1). 

 In view of the second criterion (requiring reasonable amount of information), the 

evidence theory is inappropriate. According to the principles of evidence theory, experts 

need to provide 2
x
 beliefs foreach estimation, where x represents the number of 

elements. For example, when using satisfaction levels provided in Tab.1, x is equal to 

10. Therefore, when estimating ―how well module A satisfies function B‖, experts need 

to provide 2
10

 beliefs. With the increase of module and function counts, the number of 

estimation needed also increases. 

The third criterion (capturing the ―fuzziness‖ of expert estimation) makes the subjective 

probability theory, the imprecise probability theory, the possibility theory and the 

interval analysis theory inappropriate since they are not designed to capture the 

―fuzziness‖. 
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With regards to the fourth criterion (support multi-criteria group decision making), 

many fuzzy set based multi-criteria group decision making methods exist, including: 

 Fuzzy set theory + TOPSIS (Chen, Lin, & Huang, 2006), 

 Intuitionistic fuzzy sets + TOPSIS (Boran, Genç, Kurt, & Akay, 2009), 

 Fuzzy AHP (Kahraman, Cebeci, & Ulukan, 2003;Haq & Kannan, 2006;Chan, 

Kumar, Tiwari, Lau, & Choy, 2008), 

 Fuzzy AHP + cluster analysis (Bottani & Rizzi, 2008), 

 Fuzzy ANP (Vinodh, Anesh Ramiya, & Gautham, 2011), 

 Fuzzy ANP + TOPSIS (Önüt, Kara, & Işik, 2009), 

 Fuzzy multi-objective programming (Amid, Ghodsypour, & O’Brien, 2006), 

 Fuzzy arithmetic operation (Bayrak, Çelebi, & Taşkin, 2007), 

 Fuzzy SMART (Chou & Chang, 2008), 

 Fuzzy QFD (Bevilacqua, Ciarapica, & Giacchetta, 2006), 

 Fuzzy DEMATEL + TOPSIS  (Dalalah, Hayajneh, & Batieha, 2011). 

With regard to previously discussed criteria, the fuzzy set theory appears to be the most 

suitable mathematical representation to express subjectivity in expert estimations. In 

recent years, several branches of fuzzy set theory were developed; the most popular 

ones among these with applications in supplier identification and selection are: 

 Type-1 fuzzy sets (e.g., Önüt et al., 2009), 

 Interval type-2 fuzzy sets (e.g., Chen & Lee, 2010), 

 Intuitionistic fuzzy sets (e.g., Boran et al., 2009), 

 2-tuple fuzzy linguistic representation (e.g., Wang, 2010). 



14 

 

The type-1 fuzzy setsis the same as the ordinary fuzzy set theory. The re-name is for the 

purpose of distinguishing from the type-2 fuzzy sets. This theory uses a membership 

function to represent the degree of membership of an element to a set. The degree to 

which an element belongs to a set is defined by a value between 0 and 1.Higher the 

value is the greater its belongingness, and an element can partly belong to a fuzzy set. 

The fuzzy set is widely used in describing linguistic information as iteffectively 

represents the gradual changes of people’s perception of a concept in a certain context 

(Dalalah & Magableh, 2008).It is also widely used for representing human uncertainty. 

The interval type-2 fuzzy sets is a simplified form of type-2 fuzzy sets, which is defined 

by Mendel and John (2002) based on Zadeh’s Extension Principle (Zadeh, 1975). The 

type-2 fuzzy setsis able to model one additional degree of uncertainty than the type-1 

fuzzy sets.  In type-1 fuzzy sets the membership functions are crisp, but in type-2 fuzzy 

sets the membership functions are themselves fuzzy. Therefore, a type-2 membership 

function is a three-dimensional membership function, which is sometimes difficult to 

understand and define. The interval type-2 fuzzy sets simplified the fuzziness of the 

primary membership function of type-2 fuzzy sets by assuming that the fuzziness of the 

primary membership function is equal to one. Therefore, the interval type-2 fuzzy sets 

can be seen as composed of an upper membership function and a lower membership 

function, which are both of type-1 membership functions. The main problem with this 

representation for representing expert estimation is that it might be already difficult for 

experts to define one membership function; defining two is even harder. Moreover, in 

the context of representing expert estimation, the definition of the second membership 

function does not provide further understanding of the problem. Consequently, the 

interval type-2 fuzzy setsdoes not seem to beeffectiveto represent subjective uncertainty 

in expert estimation. 
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The intuitionistic fuzzy sets was proposed by Atanassov(1986) twenty years after 

Zadeh’s fuzzy sets. The intuitionistic fuzzy sets use dual membership degrees in each of 

the sets by giving both a degree of membership and a degree of non-membership. 

Similar to the interval type-2 fuzzy sets, it might be difficult for experts to define two 

membership functions foreach estimation; thus, the intuitionistic fuzzy setsdo not seem 

convenient for representing subjective uncertainty in expert estimation either. 

The 2-tuple fuzzy linguistic representation is developed by Herrera & Martinez (2000) 

based on the fuzzy set theory and the symbolic method(Delgado, Verdegay, & Vila, 

1993). The linguistic values (e.g., expert estimation) are usually modelled as fuzzy sets. 

When aggregating the linguistic values (fuzzy sets), the result may not exactly match 

any of the initial linguistic terms, and thus an approximate linguistic term must be found. 

However, the imprecision of this approximation is lost. In the 2-tuple fuzzy linguistic 

representation, the linguistic information is expressed by a 2-tuple ( , )s  , where s  

represents the approximate linguistic term, and   represents the imprecision of this 

approximation. This representation can efficiently prevent the loss of information and 

thus help the ranking of alternatives. 

Given the discussion above, we think that the type-1 fuzzy sets and the 2-tuple fuzzy 

linguistic representation are both suitable for representing subjectivity in expert 

estimations during early design. Therefore, we propose to use these two approaches to 

represent the subjective uncertainty and compare them to the initial results where 

subjectivity is not taken into account. Before integrating the two fuzzy methods into 

ASIT, the fuzzy techniques to be used should be defined, e.g., the operations of fuzzy 

sets,the selection of suitable membership functions, and the utilization of 

defuzzification methods. Theseare discussed in the next section. 
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4 FUZZY TECHNIQUES FOR REPRESENTING SUBJECTIVE 

UNCERTAINTY IN ASIT 

Many different fuzzy membership functionsexist. It is not possible or appropriate to test 

all of them in this work. Therefore, it is necessary to identify the most appropriate 

membership function within our research context. In addition, the simplification for 

fuzzy number operations should also be reviewed, since operations such as the 

multiplication of several fuzzy members can be very tedious. 

A fuzzy number is a special fuzzy set  ( , ( )),NN x x x R  , where x is a real value,

1 :R X     and ( )N x  is a continuous mapping from 
1R  to (0,1) (Haq& Kannan, 

2006).Operations of fuzzy numbers can be defined based on the extension principle 

proposed by Zadeh (1975). If M  and N  are fuzzy numbers, membership of (*)M N   is 

defined as follow (Gao, Zhang, & Cao, 2009): 

(*)
*

( ) sup min{ ( ), ( )}
M N M N

z x y

z x y  


   
(5) 

Where * stands for any of the four algebraic operations including addition, subtraction, 

multiplication and division. 

Fuzzification is the process of making a crisp quantity fuzzy (Ross, 2009, p. 93), which 

is normally the first step in using fuzzy set theory. The main objective of fuzzification is 

to define a membership function for each fuzzy quantity. The commonly used 

membership functions for linguistic terms are triangular, trapezoidal, left shoulder, right 

shoulder, Gaussian and Sigmoid (Garibaldi & John, 2003). Among the various shapes 

of membership functions, the triangular membership function has been frequently used 

in many fuzzy set applications (Pedrycz, 1994). Pedrycz (1994) explained the reason of 

the popularity of the triangular membership function: ―Undoubtedly, if the semantics of 
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a certain linguistic term has to be specified, then the simplest form of the membership 

function one could think of would be to provide a modal (typical) value of the 

considered term along with the lower and upper bounds. The distribution of the grades 

of membership between these boundaries is then linear – an acceptance of any other 

form of relationship to bear some legitimacy may definitely call for some auxiliary 

information about the membership values to be furnished at the selected intermediate 

points distributed within these bounds.‖ In this paper, we propose to use the triangular 

fuzzy membership function mainly because of the lack of information in early 

conceptual design stage. As presented previously, experts use predefined linguistic 

terms and numerical levels to give their estimation. Therefore, we have two types of 

information for defining a fuzzy membership function: (1) the estimation that is given 

by a group of experts; (2) the predefined numerical levels, and the distance between the 

levels. When using the triangular membership function, we assign the expert estimation 

as the mode of the triangular fuzzy number, and twice the distance between two 

adjacentlevels as the support. To the best of our knowledge, other types of membership 

functions all require more information than this.Therefore, we propose to use the 

triangular membership function to model experts’ subjective uncertainty in ASIT in 

early conceptual design stage. 

The basic features of triangular fuzzy numbers can be found in the work of Dubois and 

Prade(1978), and the basic operations can be found in the work of Chou 

andChang(2008). A triangular fuzzy number can be denoted as ( , , )N l m u , its 

membership function ( ) : [0,1]N x R   is represented as (Chang, 1996): 
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1 1
,    [ , ],

1
( ) ,   [ , ],

0,                           otherwise.

N

x x l m
m l m l

u
x x x m u

m u m u



   




  
 





(6) 

Where l m u  , l , m  and u  are the lower bound of the support, the core, and the upper 

bound of the support of N, respectively. 

Given two triangular fuzzy numbers 
1 2 3( , , )A a a a and 

1 2 3( , , )B b b b , operations of fuzzy 

numbers are shown below: 

Addition of two fuzzy numbers : 

1 1 2 2 3 3( , , )A B a b a b a b       (7) 

Addition of a real number k and a fuzzy number : 

1 2 3( , , )k B k b k b k b     (8) 

Multiplication of a real number k and a fuzzy number  : 

1 2 3( , , )k B kb kb kb  (9) 

Although the multiplication of a real number and a fuzzy triangular number is easy to 

calculate, a higher level operation (i.e., multiplication of two or several fuzzy numbers) 

is cumbersome with insurmountable computational effort (Triantaphyllou, 2000). Gaoet 

al. (2009) demonstrated that the result from multiplication of two triangular fuzzy 

numbers is not a triangular fuzzy number, and the result can be obtained by using 

nonlinear programming method, analytical method, computer drawing method and 

computer simulation method. Gao et al.(2009) demonstrated that by using an analytical 
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method, for two triangular fuzzy numbers such as
1 2 3 1 2 3( , , ), ( , , )A a a a B b b b   , the 

membership function of ( )N A B   is: 

2

1 2 1 2 1 1 1 2 1 2 2 3 2 1

1 1 2 2

2 1 2 1

2

3 2 3 2 3 3 3 2 3 2 2 3 2 3

2 2 3 3

2 3 2 3

( 2 ) ( ) 4( )( )
,

2( )( )

( 2 ) ( ) 4( )( )
( ) ,

2( )( )

0,                                         

N

a b b a a b a b b a a a b b x
a b x a b

a a b b

a b b a a b a b b a a a b b x
x a b x a b

a a b b


       
 

 

       
  

 


                                               otherwise













(10) 

Onenotices that the multiplication of several fuzzy numbers requires significant 

computational effort to obtain precise results. Therefore, in order to facilitate its 

application in engineering problems, a simplified formula is usually used(Chiou, Tzeng, 

& Cheng, 2005; Tzeng & Huang, 2011): 

1 1 2 2 3 3( , , )A B a b a b a b            (11) 

In decision making problems, a single scalar is preferred as output of a fuzzy process in 

order to facilitate ranking or selection. To transform fuzzy results into a scalar, 

defuzzification is performed. Defuzzification is defined as a mapping of fuzzy sets to 

elements of the universe considered significant with respect to this fuzzy set (Runkler, 

1997). Widely used defuzzification methods are maximum (max) membership principle, 

centroid method, weighted average method, mean max membership, center of sums, and 

center of largest area(Ross, 2009).Within the context of this study, the triangular fuzzy 

membership functions are used, which are peaked output functions with their maximum 

equal to the―significant element‖. Since in peaked output functions, the max 

membership principle is commonly used (Ross, 2009), we propose to use this 

defuzzification method in the 2-tuple linguistic representations.The max membership 

principle is given by the expression (Ross, 2009): 
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( *) ( ), for all 
A A

z z z Z    (12) 

Where z* is the defuzzified value. 

In the 2-tuple linguistic representation, the single number obtainedfrom defuzzification 

istransformed again to the initial expression domain (i.e., the predefined linguistic 

terms). The 2-tuple linguistic representation uses a 2-tuple ( , )s  to represent the results, 

where s refers to the closest linguistic term, α is a numerical value expressing the value 

of the translation from the original result to the closest linguistic term (Herrera & 

Martinez, 2000). 

Definition: Let 0{ ,..., }gS s s be a linguistic term set and [0, ]g   a value representing 

the result of a symbolic aggregation operation.Then, the 2-tuple that expresses the 

equivalent information to  , which is obtained with the following function (adopted 

from Herrera & Martinez, 2000): 

:[0, ] [ 0.5 ,0.5 )g S i i     (13) 

,          ( )
( ) ( , ),with 

,    [ 0.5 ,0.5 )

i

i

s i round
s

i i i


 

    


  

   

(14) 

Where round (·) is the usual round operation, si has the closest term to ―β‖, and ―α‖ is 

the value of the symbolic translation. δi is the gap between i and i-1 for {1,2,... }i g . 

Because of the lack of additional information in early conceptual design stage, the 

isosceles triangular membership function isused in this work. We assume that the 

support of the triangular fuzzy number is twice the predefined scale, which indicates the 

assumption that the group of experts are able to choose the correct linguistic term. In 

case of greater or smaller subjective uncertainty, the support of the triangular fuzzy 
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number can also be changed, but the principle and the reasoning of this workremains the 

same, and the results obtained in this work will not be greatly influenced. 

In the next section, the two fuzzy methods are integrated into ASIT using a powertrain 

design case as the context. 

5 THE POWER TRAIN DESIGN CASE 

This powertrain design case is used to show the initial ASIT results, and theintegration 

ofsubjective uncertaintiesthrough the two selected fuzzy methods. 

A powertrain is a system of mechanical parts in a vehicle that first provides energy, then 

converts it in order to propel the vehicle. Due to the increasing demand of lower 

emissions and higher fuel efficiency, the OEM plans to design a new powertrain for 

their motor vehicle to better satisfy market needs. Although the powertrain is normally 

an in-house subsystem, with only few modules outsourced (the battery and the engine 

for example), we assume in this case study that each module in the powertrain is 

planned to be outsourced to one supplier, for the purpose of illustration. The powertrain 

design case used in this work is very similar to the one used in Ye et al. (2014); the data 

used is the same except the added uncertainty information shown in Figure 6. See (Ye et 

al., 2014) for more information about ASIT and the powertrain design case. 

5.1 ASIT without Considering Subjective Uncertainty 

In ASIT phases 1 and 2, the satisfaction of new customer needs by existing products is 

estimated, the modules that should be improved are identified, and new modules are 

found. In phase 3,experts start providing estimation on satisfaction levels and 

uncertainties, after the generation of all possible architectures in which new modules are 

integrated. Since the subjective uncertainty studied in this work is caused by expert 
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estimation, we focus on phases 3, 4, and 5 in this case study because of space limitation. 

Please see Ye et al. (2014) for further information about the other phases of ASIT. 

We assume that modules that can sufficiently satisfy new requirements are found. All 

possible architectures with integration of these new modules are generated, as shown in 

Fig.2. The number ―1‖ represents that the module belongs to the architecture, while the 

―0‖ represents the module does not belong to the architecture. 

 

Figure 2. GENERATION OF ALL POSSIBLE ARCHITECTURES 

In phase 3, to calculate the overall uncertainty and satisfaction level ofeach architecture, 

estimations are provided by experts using scales defined in Tab.1 and Tab.2. Since the 

structure of the product is complex and the requirements vary from project to project, it 

is difficult for experts to estimate how well a product satisfies a requirement directly. In 

comparison, it is much easier to estimate how well a module satisfies a function, as 

shown in Fig.3. The numbers in Fig.3 represent satisfaction levels defined in Tab.1. For 

example, the ―engine 1‖ is a ―weak solution‖ for satisfying the function ―respect 

environment‖. Therefore, using information from Tab.1, the satisfaction level 2 is 

assigned to this estimation. Since the significant figures include all the precise digits 

and the first estimated digit (Serway & Jewett, 2013), we keep two significant figures 
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for the estimation. 

 

Figure 3. FUNCTION SATISFACTION LEVEL BY MODULES 

Then, using the composition of architectures (Fig.2), the ―satisfaction of functions by 

modules‖ is propagated to the ―satisfaction of functions by architectures‖. For 

simplicity, we assume that how an architecture satisfies a function depends on how the 

modules in the architecture satisfy the function. The function satisfaction level by an 

architectureis defined as the average of its modules’ satisfaction levelsfor this function. 

The ―satisfaction of functions by architectures‖ is then propagated to the ―satisfaction of 

requirements by architectures‖ by using the relations between requirements and 

functions (Fig.4).The requirement – function relations in Fig.4 represent the percentage 

that a function satisfies a requirement. For example, the requirement ―CAFE standard‖ 

is satisfied 50% by the function ―Economize fuel‖, 50% by ―provide power‖. 

 

Figure 4. REQUIREMENT-FUNCTION RELATIONS 
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For propagating the function satisfactions to requirements satisfactions, weused:  

1req arch fun archM M M   (15) 

Assuming equal importance of the requirements (this assumption can be changed if 

needed), an overall requirements satisfaction score is obtained for each of the possible 

architectures by calculating the average (Fig.5).This score represents how well the 

architecture satisfies the entire requirements set (with a 1-10 scale). We round the final 

result to two significant figures. 

 

Figure 5. REQUIREMENTS SATISFACTION (WITHOUT CONSIDERING EXPERT 

UNCERTAINTY) 

The overall uncertainty of an architecture is calculated based on uncertainty of modules 

(M5 in Fig.6), compatibility between modules (M4), and uncertainty of suppliers’ 

capabilities (M6). The matrix M3shows the supplier of each module. Since the 

uncertainties and compatibilities can all be considered as probabilities, ―the overall 

uncertainty of an architecture‖ is defined as the product of all its modules’ uncertainties, 

its suppliers’ uncertainties, and the compatibilities between its modules (independence 

of probabilities is assumed).Experts provide their estimations in linguistic terms defined 

in Tab.2.These linguistic terms are then converted intonumerical scales. 

The overall uncertainties of possible architectures are shown in Fig.7, which represents 

the percentage that an architecture can be developed without any problem. The 

confidence that one company has on the capabilities of a given supplier is also 

integrated in this overall uncertainty. 
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Figure 6. UNCERTAINTY INFORMATION 

 

Figure 7. UNCERTAINTY (WITHOUT CONSIDERING EXPERT UNCERTAINTY) 

5.2 Taking into Account Subjective Uncertaintyin ASIT 

5.2.1 Using Type-1 Fuzzy Sets 

Using this method, each expert’s estimation of satisfaction levels (using Tab.1)is 

converted to a 1 10 
fuzzy number scale. The isosceles triangular membership functions 

are used as shown in Fig. 8. These fuzzy numbers are then aggregated by using fuzzy 

operations defined in section 4. 

 

Figure 8. FUZZY NUMBERS FOR SATISFACTION LEVELS 

Let us take the satisfaction of requirement ―CAFE standard‖forarchitecture 6 as an 

example. In order to calculate how the architecture 6 satisfies the requirement ―CAFE 

standard‖, the functions ―Economize fuel‖ and ―Provide power‖ need to be considered 
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since they each satisfy 50% of this requirement (Fig.4).The possible architecture 6 is 

composed of modules ―engine 2‖, ―battery 2‖, ―transmission 1‖, ―electric motor 1‖, 

―driveshaft 1‖, and ―final drive 1‖. In order to calculate how the architecture satisfies 

the function ―Economize fuel‖, we need to calculate the average of how the engine 2 

and the battery 2 satisfy this function. Therefore: 

2 (0.5 4) (0.5 (9,10,11))

2 (4.5,5,5.5) (6.5,7,7.5)

FSL    

    

Here, the satisfaction level ―4‖ is not converted to a fuzzy number, since the engine 2 is 

an existing module. Therefore, the information of engine 2 comes from previous 

projects, instead of expert estimation, so that the subjective uncertainty is not 

considered. Using the same principle, satisfaction of function ―Provide power‖ can be 

calculated. Then, the satisfaction of requirement ―CAFE standard‖ can be calculated by: 

1 (0.5 (6.5,7,7.5)) (0.5 (5,5.5,6))

(3.25,3.5,3.75) (2.5,2.75,3)

(5.75,6.25,6.75)

RSL    

 



 

Assuming equal importance of the requirements (which can be changed if necessary), 

an overall requirements satisfaction score is obtained by calculating the average for 

each possible architectures (shown in Fig.9). 

 

Figure 9. REQUIREMENTS SATISFACTION BY USING TYPE-1 FUZZY SETS (VALUES) 

The requirements satisfactions obtained in Fig.9 can be illustrated using triangular fuzzy 

numbers as shown in Fig.10, with the threshold set at 6. 
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Figure 10. REQUIREMENTS SATISFACTION BY USING TYPE-1 FUZZY SETS (MEMBERSHIP 

FUNCTIONS) 

In this case, it is obvious that architectures 1, 2, 3, and 4 are below the satisfaction 

threshold (since the entire fuzzy number is below the threshold), while architectures 9, 

10, 11, and 12 are above the threshold. The situation for architectures 5, 6, 7, and 8 is 

more complicated, because they are partly above and partly below the threshold. We 

discuss this kind of situations later in this chapter. 

When estimating uncertainty of modules (M5), compatibility between modules (M4), 

and uncertainty of suppliers’ capabilities (M6), probability levels are needed from Tab.2. 

In order to integrate subjective uncertainty, we convert each numerical level in Tab.2 

into a triangular fuzzy number.The membership function of the fuzzy number set is 

shown in Fig.11. Since ―0‖ represents ―impossible‖ and ―1‖ represents ―certain‖, we 

have low fuzziness level, thus we keep them as crisp values during fuzzification. 

The overall uncertainty of an architecture is defined as the product of all its modules’ 

uncertainties, its suppliers’ uncertainties and the compatibilities between the modules. 

Therefore, the multiplication of several triangular fuzzy numbers is needed. Simplified 

as described in section 4, the result achieved is shown in Fig.12. 

 

Figure 11. FUZZY MEMBERSHIP FUNCTION FOR POSSIBILITIES 
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Figure 12. UNCERTAINTY USING TYPE-1 FUZZY SETS (VALUES) 

The illustration of overall uncertainties is shown in Fig.13, with the threshold set at 0.1. 

 

Figure 13. UNCERTAINTY USING TYPE-1 FUZZY SETS (MEMBERSHIP FUNCTIONS) 

In this case, it is quite obvious that architectures 1, 5, and 9 are below the threshold, 

while the architectures 2, 6, 3, 4, and 7 are above it. However, it is more difficult to 

define the situation of architectures 10, 11, and 12. We focus on the fuzzy results that 

are partly above and partly below the threshold for both satisfaction levels and 

uncertainties, as shown in Fig.14. 

 

Figure 14FUZZY RESULTS THAT ARE PARTLY ABOVE THE THRESHOLD 

The utilization of fuzzy methods is to the purpose of considering fuzziness in human 

estimation, which is also represented in the results shown in Fig.14. Therefore, when 

considering whether these results pass the threshold, the fuzziness should also be 

considered, which means that the belongingness of these results to the set that passes the 

threshold is also fuzzy. Therefore, we think that each of these results should have a 

degree of ―passing the threshold‖, and whether the architecture or supplier belongs to 
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the identified architecture or supplier depends on decision maker’s tolerance about the 

result.  

There are many ways to represent decision makers’ tolerance level. In this work, we use 

the α-cut to represent the tolerance, and define that the result passes the threshold if the 

maximum value of the fuzzy number after the α-cut passes the threshold. With this 

definition, the decision totally depends on the value of α— which represents the 

tolerance level of the decision maker (bigger α is, smaller the tolerance is).For example, 

if we set α at 0.7 for the overall uncertainty as shown in Fig.15, the architectures 10 and 

12 will pass the threshold and the architecture 11 does not pass the threshold. 

 

Figure 15USING α -CUT TO REPRESENT TOLERANCE LEVEL 

However, the purpose of using the α-cut is only to show that these kinds of fuzzy results 

should be considered fuzzy regarding their belonging to the identified candidates. They 

can be below or above the threshold regarding decision makers’ tolerance. Therefore, in 

architecture and supplier identification results, we represent this kind of candidates as 

―possible candidates depend on tolerance level‖.  

5.2.2 Using 2-Tuple Fuzzy Linguistic Representation 

The 2-tuple fuzzy linguistic representation is exactly the same as the type-1 fuzzy sets 

from fuzzification until obtaining fuzzy results (shown inFig.9 and Fig.12). After 

obtaining fuzzy results, the 2-tuple fuzzy linguistic representationdefuzzifies the results, 

and converts the defuzzification result back to the closest initial linguistic terms, and the 
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distance between the original results to the closest linguistic term. 

According to the reasoning in section 4, the max membership principle is used for 

defuzzification, and the results are shown in Fig.16 and Fig.17. 

 

Figure 16REQUIREMENTS SATISFACTION AFTER DEFUZZIFICATION 

 

Figure 17UNCERTAINTY AFTER DEFUZZIFICATION 

When using the 2-tuple fuzzy linguistic representation, a 2-tuple ( , )s  is used,where s 

represents the closest linguistic term, and α represents the distance. For example, the 

overall requirements satisfaction level of architecture 1 is equal to 4.7 (see Fig.16), its 

closest linguistic terms is represented by the level 5, which is ―a satisfactory solution‖. 

The distance between 4.7 and 5 is equal to -0.3. That is why in 2-tuple fuzzy linguistic 

representation, the overall requirements satisfaction level of architecture 1 is (N5, -0.3). 

The resultsof requirement satisfaction and uncertainty when using the 2-tuple fuzzy 

linguistic representationare shown in Fig.18 and Fig.19, respectively. 

 

Figure 18. REQUIREMENTS SATISFACTION USING 2-TUPLE LINGUISTIC REPRESENTATION 

 

Figure 19. UNCERTAINTY USING 2-TUPLE FUZZY LINGUISTIC REPRESENTATION 

6 COMPARISON OF RESULTS AND DISCUSSION 

In section 5, we obtained the requirements satisfaction levels and uncertainties for each 

of the architectures. The threshold is set at 6 or N6 for satisfaction levels, and 0.1 or 
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P0.1for uncertaintyto filter the generated architectures. The potential supplier 

identification results obtained without considering subjective uncertainty, considering 

subjective uncertainty using type-1 fuzzy sets and 2-tuple linguistic representation are 

compared in Fig.20. 

 

Figure 20. COMPARISON OF SUPPLIER IDENTIFICATION RESULTS 

Upon comparison of the results, we see that without considering subjective uncertainty, 

ASIT identifies three architectures (6, 7 and 8), which are also identified with 

consideration of subjective uncertainty using the two fuzzy methods. 

When using type-1 fuzzy sets, three ―possible architectures depend on tolerance level‖ 

are also identified (numbers 10, 11 and 12). Whether these three architectures belong to 

the identified architectures depends on the decision makers’ tolerance level.  

When using the 2-tuple fuzzy linguistic representation, aside from architectures 6, 7 and 

8, two additional architectures (10, 12)are identified. This expansion of thescopein 

results is because that the 2-tuple fuzzy linguistic representation converts the 
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defuzzification result to the initial linguistic terms, which rounds up the results, thus 

increases the tolerance level. 

From the comparison one can observe that (1) the architectures and suppliers identified 

without considering subjective uncertainty are also identified with consideration of 

subjective uncertainty by using the two fuzzy methods; (2) considering subjective 

uncertainty enlarges the result’s scope mainly because the consideration of subjective 

uncertainty increases the level of tolerance (i.e. more tolerant) when filtering candidates.  

However, the tolerance level can also be changed without considering subjective 

uncertainty, and by simply changing the thresholds. As shown in Fig.21, by changing 

the uncertainty threshold to 0.05, the samescope for results can be obtained as 

integrating subjective uncertainty using 2-tuple linguistic representation. By changing 

the uncertainty threshold to 0.04, same results can be obtained as using type-1 fuzzy 

sets to model subjective uncertainty. 

 

Figure 21 Changing thresholds without considering subjective uncertainty 

According to the analysis above, we found that (1) the result of ASIT without 

considering subjective uncertainty is reliable because the identified architectures are 

also within the result’s scope with consideration of subjective uncertainty; (2) same 
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results as considering subjective uncertainty can be obtained without considering 

subjective uncertainty by simply changing the value of thresholds.Therefore, we 

conclude that the consideration of subjective uncertainty does not considerably 

influence ASIT results, so that it is not necessary to consider the subjective uncertainty 

in ASIT in early conceptual design stage.However, it is very important to note that this 

conclusion is obtained under the situation of using triangular membership functions and 

which is due to the lack of information in early conceptual design stage. In other design 

stages, this conclusion may not be valid since when more information is available, other 

types of fuzzy membership functions can be used, which may lead to different results. 

This result also points out that under certain situation, it is not useful to consider expert 

estimation uncertainty. Considering expert estimation uncertainty without analyzing the 

situation may result in wasted effort. 

There are several limitations in this work, however. Firstly, although the max 

membership principleis demonstrated as a proper choice for defuzzification, it is still 

interesting to test other defuzzification methods, which may lead to different outcomes. 

Secondly, we assumed that using a group of experts is able to correct the cognitive bias 

of each expert. However, the cognitive bias is potentially a fruitful issue that is worth 

investigating further under the topic of expert uncertainty. In addition,this work is 

carried out specifically in the context of ASIT. It may benefit from a generalization to a 

broader context. 

7 CONCLUSIONS 

Due to innovation integration in early design phases, aside from previous project data, 

expert estimations are often used. In this work, we investigated how subjective 

uncertainty resulting from expert estimations influences the result of ASIT; ASIT is an 
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early design support tool proposed in our previous work. It is important to understand to 

what extent this approach can be used, and can yield robust results in an 

industrialcontext, and whether it is necessary to consider subjective uncertainty in ASIT. 

After analysing different uncertainty representation methods for subjective uncertainty, 

both Type-1 and 2-tuples fuzzy sets were found suitable for representing this type of 

uncertainty in ASIT. A powertrain design case was used to compare the results of the 

original ASIT and the results with integration of subjective uncertainties. The 

comparison shows that considering subjective uncertainty enlargesthe result set (i.e., 

more architectures and suppliers are identified) because the consideration of subjective 

uncertainty increases the level of tolerance (i.e., more tolerant) when filtering 

candidates. However, the initial set without considering subjective uncertainty was 

found to match the results in part; note that with the uncertainty integration the set of 

results expanded. Therefore, considering subjective uncertainty in ASIT will not have a 

considerable impact on the overall ASIT results, so that it is unnecessary to consider 

subjective uncertainty in ASIT in early conceptual design stage. 

The result of this work is valid only in the context of early conceptual design, where 

information is lacking, so that only triangular membership function can be used. The 

results also pointed out that it is not always necessary to consider expert estimation 

uncertainty. Before considering this type of uncertainty, the context should be analysed 

to prevent the waste of effort. 
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