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Quadratic dissipation inequalities for nonlinear systemsusing
event-triggered controllers

Romain Postoyan

Abstract—We present a method to design event-triggered found in [1], [7], [8], [31] for instance. Recently, the aotis
controllers that ensure the satisfaction of quadratic disipation  of [33] have designed event-triggering conditions to prese
inequalities for nonlinear sampled-data systems. We follw a specific type of quadratic dissipativity for interconreett

an emulation approach for this purpose. We first assume I t d del-b d hf .
that a static feedback law is designed in continuous-time to nonlinear systems, and a model-based approach for ensuring

guarantee such a dissipativity property. We then take into dquadratic dissipativity properties is investigated in][far
account sampling and we synthesize a triggering rule to discrete-time systems.

preserve dissipativity. The parameters of the sampling lavcan In this paper, we propose a method to design event-
be adjusted to approximately recover the quadratic terms othe triggered controllers to ensure quadratic dissipatiomnirad-

initial supply rate with any desired accuracy by solving a Inear ... .
matrix inequality, which can always be satisfied. We then tdor ities for nonlinear systems. Compared to [33], we study a

our results to specific quadratic dissipativity properties namely ~more general type of dissipativity, we present a different
(strict-)passivity and L»-stability. Our results cover periodic  approach, and we provide sufficient conditions for the ex-
sampling as a particular case, for which we provide new exptit  jstence of a minimum amount of time between any two
bounds on the maximum allowable sampling period. transmissions, which is not the case in [33]. We adopt

. INTRODUCTION an emulation approach for this purpose. We assume that

Event-triggered control consists in updating the input of g fegdbaqk law I'IS QesE;nedbto guara]}ntee allquaij/\rlanch dis-
control system only at time instants determined by a stat?”jkat'\_”tty mequal'iyt;]n the a ser_met_ 0 samplln_g.t N (tj en
dependent criterion. This paradigm is attractive for ayste axe into account the communication constraints and we
subject to communication or computation constraints, as tﬁ_erlve a swtabl_e_ tnggermg rule to preserve dlss_|pq/u\7ll'he
may significantly reduce transmissions between the pla {99€ering condition is pased on an guxmary variable that
and the controller as well as the number of controlle esign, whose Qynamlt_:s depends (in gengral) on the state of
executions compared to periodic sampling. Various even{® plant. The idea to introduce extra variables to construc

; ; - o the transmission law was suggested in [25], and has been
triggered control techniques are available for stabilorat : .
(e.g., [12], [25]), consensus (e.g., [6], [23], [27]), otiew- pursued in [7], [9], [24]. We show that the system in closed-

tion (e.g., [2], [16], [28]). On the other hand, the design O*o_op. Wit.h.the event-triggered controller ve.rifies a quaidrat
event-triggered controllers to ensure dissipativity @mies dissipativity property. The supply rate consists of exérants

remains largely unaddressed, despite its importance incgmpared to the_ one in .the absence of §amp|ing. These
wide range of control problems. This is probably due tgerms can be arbitrarily adjusted by appropriately tunimg t

the fact that it is difficult to guarantee the existence of drggering law. In othe_r words, we can fix any admissible
uniform minimum time between any two transmissions irperformance dggradgtlon compared to the |n|t|a] supplg rat
this context, which is an important requirement in practicén cont[nuous-tlme, 'F IS the_n easy o "’.‘d"?‘pt the t.”gge“?“’g l.

It is interesting to note that several event-triggered colers accordlngly,. by solvmg_ a linear matrix inequality, which i
of the literature require a dissipativity property to habd the always fea5|blg. There is a trade-off between the perfooman
closed-loop system in the absence of sampling. For instanE%qu're_me_nt (|n_ terms of supply rate) and the amount of
in [32], output feedback passivity properties of the plamd a transmissions, in the sense _that to _ask the_ supply rate to
the controller are used to construct output-feedback everjﬂe .close. to the one n (;ont|nu0us-t|me typically Iegd_s 0
triggered controllers. Another example is the work in [24 triggering conqnlon which generates more transmissions
where the event-triggered coordination among a network _|m|Iar observathns are_made in [1], [7] where robust e_vent
agents is investigated and where it is assumed that thesagetﬁ'tggered control is studied. We also present resultsrzdo

satisfy a strict-passivity property. In a number of case§9 (strict-)passivity andCQTstabiIity as particular cases. _
dissipativity is not an intrinsic property of the system but We model the event-triggered control system as a hybrid

is ensured by a feedback law. It is therefore important tgystem using the formalism of [10]. We use the definition

construct event-triggered controllers to preserve thoperty. gfﬁdssmatlwtyl proposed hn [20], Véh'Ch. suggests_to coamfl

Results for£,-stability and input-to-state stability can be fterent supply rates on flows an "’T”“mps_’ asine.g., .[ ]
[30]. As mentioned above, we provide sufficient conditions

R. Postoyan is with the Universitt de Lorraine, CRAN,t0 ensure the existence of a uniform minimum time between

UMR 7039 and the CNRS, CRAN, UMR 7039, Francetwo sampling instants (thus ruling out Zeno phenomenon).
romai n. post oyan@ni v-1lorraine. fr. His work was partially Wi lain h | | i . . .
supported by the ANR under the grant COMPACS (ANR-13-BS0649 e explain how to apply our results to linear time-invariant

02). systems, in which case the assumptions are written as linear



matrix inequalities. We also address the problem of presemvherel'(v) is the set of al(t’, ;') € domwv such that(#’, ;' +

ing strict-passivity for a pendulum with an event-triggere 1) € domo.

controller, which is useful for coordination problems, see We adapt below the definition of uniform semiglobal

[3], [24]. dwell-times proposed in [25] for autonomous hybrid systems
It is important to notice that our results cover periodido hybrid systems with inputs.

sampling as a particular case. In this context, we provide an Definition 1: The solutions to (1) havea uniform

explicit estimate of the maximum allowable sampling periodemiglobal dwell-timeif for any A > 0, there exists

(MASP) to ensure dissipativity with the proposed emulationr(A) > 0 such that for any solution pafe, v) to (1) with

based controllers. We expect the bound to be less conseryaf0,0)| < A and |||, ;) < A for any (¢, ") € domv,

tive than those derived in [15]. These results complement ttand any(s, i), (¢,j) € doma = domv with s +i < ¢ + j,

literature on dissipativity for nonlinear sampled-datateyns, j —i < (t —s)/7(A) + 1. O
see e.g. [15], [18], [19], [29]. We use the definition below of dissipativity, SeRefinition
The proofs are omitted for space reasons. 2 in [20].

Definition 2: System (1) is dissipative with thpair of
supply rates(p®(z,v), p?(x,v)) with p¢, p? continuous, if
Let R := (—o00,00), R>o := [0,00), Ry := (0,00), there exists atorage functionV : C' U D U G(D) — Rxg
Zso = {0,1,2,...}, andZ~¢ := {1,2,...}. A function which is continuously differentiable on a open set contgni

v : Rsp = Ry is of classK if it is continuous, zero C and continuous ofR™ such that

?t zerTo angunbounded._ Lét,y) € R™H . (a:,y_) stand_s (VV (@), F(z,0)) < p(z,0) (@, v) € C x R™

or [z, y]*. The notationl denotes the identity matrix, V(G() - V(z) < pilz,v) Vo € D 3)

whose dimensions depend on the context. In matrices, the =P '

symbol x stands for the symmetric block component. Let O

P € R™™ be a real, symmetric matrix, we respectively

denote its maximum and minimum eigenvalues\ay,, (P) )

and A\win (P). For two real, symmetric matricel/ and N, Consider the system

we write thatM <N whenN — M is positive semi-definite. &= f(a,u), y = h(z), (4)
We study hybrid systems of the form ([5], [10])

zeC &t = F(x,v)
zxeD a2t = G(a),

Il. PRELIMINARIES

IIl. PROBLEM STATEMENT

wherex € R” is the statey € R™ is the input,y € R™
(1) is an outputn,m € Z-o. We focus on the case where the

control input is given by a static feedback law of the form
wherex € R” is the statep € R™ is the input, /' is the

flow map, G is the jump map( is the flow set andD is u = k@) ©®)

the jump set. We assume thatand G are continuous on wherek : R® — R™ is continuously differentiable. The

C x R™ andD, respectively, and that andD are closed. control law may depend on the full stateor on some output
We recall some definitions related to [5], [10]. A subsebf plant (4), which is not necessarily.

E C R>oxZ> is ahybrid time domaiif for all (T, J) € E, We consider the scenario where a digital channel is used
En ([0, 7] x {0,...,J}) = U ([tj,tj+1],4) for  to ensure the communications between controller (5) and
7€{0,1,....J—1} plant (4). The sequence of transmission instants is denoted

some finite sequence of timés= t; < t; < ... < t;.

A function ¢ : E — R" is a hybrid signalif E is a hybrid
time domain. A hybrid signab : £ — R™ is called ahybrid
inputif v(-, j) is Lebesgue measurable and locally essentiall
bounded for eachi € Z>. A hybrid signalz : E — R" is
called ahybrid arcif z(-, j) is locally absolutely continuous z = flx, k(x)+e) ©6)
for eachj € Z>¢. A hybrid arcz : E — R™ and a hybrid y = h(x),

inputv : £ — R™ is a solution pair (z,v) to (1) if: (i)
x(0,0) € CUD; (i) for any j € Z>o, x(t,j) € C and
La(t,j) = F(x(t,§),v(t,j)) for almost allt € I7 where

by t;, i € T C Z>o, and is generated by an event-
triggering condition to be designed, which is co-locatethwi
the controller. The closed-loop dynamics becomes, for any
Y 7 and almost alk € [t tita],

wheree € R™ is the sampling-induced error on the control
input which is defined by

I :={t : (t,j) € E}; (iii) for every (¢t,j) € E such that e(t) = k(z(t;)) — k(z(t)) for almost allt € [t;,t;41].
(t,j+1) € E, x(t,j) € Dandz(t,j + 1) = G(x(t, j)). @)
Let v be a hybrid input, for anyt, j) € domv [5] The objective is to desigh and the sequence of trans-
mission instants to ensure a dissipativity property foteays
”“”(t,j) — max{ ess.sup (', 3, (6). We follow for this purpose an emulation approach.
(#,5")edomu\T'(v), t/+j'<t+j We assume that controller (5) is designed to guarantee
a dissipativity property for system (4) in the absence of
sup (", 3] ¢
(7,3 €T (v), t/+j' <t+j lwe define the storage functioii on C'U D U G(D) in Definition 2

(2)  and not onR™ as in Definition 2 in [20].



sampling. We then take into account sampling and designtlis point and its impact on the performances of the event-
triggering condition to preserve dissipativity for the bal- triggered controlled system for specific classes of sysiems
loop system. The approach is presented in details in thHeture work.

following.
V. TRIGGERING CONDITION AND HYBRID MODEL
IV. ASSUMPTIONS The triggering condition we propose is inspired by those
We assume that controller (5) is designed such that treeveloped in [25], [24] for the stabilization and the coerdi
assumption below holds. nation of nonlinear systems, respectively. The idea ig#ig

Assumption 1:There exist a continuously differentiable transmissions using an auxiliary variable € R. After a
functionV : R™ — Rx>q, p: R" - R, H : R™ — R™, real transmissiong is reset tob > 0 and the next triggering
matricesP, Q, R, S with P, Q, R symmetric andP positive instant occurs whe is equal toa € [0,b). The constants
definite, such that the following holds for anyc R™ and a, b are design parameters, we explain later how to tune them.
veR™ Between two triggering instants, the dynamicsgois given

(VV (@), £z, k(x) +v)) < —plz) — H(x)T PH(z) i
+vTRu +y"Qy + 2y" Sv. ¢ = —L(z,e)¢ - (91(z,e)* +ng2(z,¢)*)$* - ¢,
(8) (10)
U where L, g1, go come from Assumption 2, and,v are
Assumption 1 means that the closed-loop syst¢ém= design parameters. The constantsand ¢/ offer a trade-
f(z,k(z) + v) with input v and outputy is dissipative off between the speed of decrease¢obn flows (which is
with supply ratep(v,z) = —p(z) — H(z)"PH(z) + related to the amount of transmissions) and the accuraty wit
v"Ro + y"Qy + y" Sv + v"S"y and storage functio.  which the quadratic terms of the supply rate in Assumption 1
The quadratic terms irp are justified by the fact that are preserved, as explained in more details in Section VI-A.
(strict-)passivity, Lo-stability and sector-bounded systemswhile 1, can take any value iR, 1 is selected such that
lead to such terms as shown in Chapter 10.7 in [13], see algfere exist real, symmetric, positive definite matri¢ésnd
Section VI. Note thap is not required to be positive definite, ¢ which verify the linear matrix inequality (LMI) below
neither isV. The termH (xz) can be seen as an output to T
system (4), and the corresponding terndl ()T PH (x) in R—yM R S
(8) is useful to compensate for the sampling effect, like in * —F 0 < 0. (11)
[21]. It can be noted that the results still apply whéh * * -G
also depend on the input There exist various techniquesNotice that (11) holds for any such matricésand G by
to construct controller (5) such that (8) holds, see e.d,, [4taking + sufficiently big. On the other hand, the bigger
[22], [26]. the faster¢ decreases between two transmission instants in
We make the assumptions below on the dynamics of théew of (10), which typically leads to more transmissions.
sampling-induced error between two successive transsnissi  The overall system is described by the hybrid model below
instants. . N
Assumption 2:There exist real matrices\/, N with ¢=F(qguv) forgeC ¢"=Glq) forgeD,
M symmetric and positive definite, continuous functions . " (12)
L, g1, 9> : R*™ — R such that, the following holds. with ¢ := (z,¢,¢) € R™, C:={q : ¢ € [a,b]}, D := {q :
. : ¢ =a}, F(q,v) = (f(z,k(z)+e+v), —Vk(@)f(z, k(z)+
(i) M < P, whereP comes from Assumption 1. e+)), —L(z, )¢ — (g2 (. €) +1g3(z, €)) 6> — 1), G(q) :=
(i) Let W : e eTMe. For anyz € R” ande,v € R™, ! ’ IINE, €) T2 L, it

(x,0,b), andng :=n+m+ 1.
(VW (e), =Vk(z)f(z,k(x) + e+ v)) < L(z,e)W(e)
+2eT]V[(gl (x,e)H(z) + ga(z, e)Nv). S
(9) A. Dissipativity
O We are ready to state the main result.
Assumption 2 provides information on the growth of the Theorem 1:Let U(q) := V(z) + ¢W (e) for g € CU D
sampling-induced errar on flows, through the functioll’.  and suppose Assumptions 1-2 are satisfied. System (12) is
When L, g; and g, are constant, the conditions are similardissipative with storage functioff and the pair of supply

VI. MAIN RESULTS

to those assumed in [21] for the stabilization of nonlinearates(p¢(x,v),0) wherep®(z,v) = —p(z) + vT (R + F +
sampled-data systems with time-triggered transmissibims. %NT]\/IN)U +yT(Q + Gy +2yTSv.
underlying idea is that the-system is affected by the- Compared to the dissipativity property in the absence of

system and the exogenous inputhrough the ‘outputH (z)  sampling (see Assumption 1), the quadratic termspin
and Nv, respectively. To letl,, g; and g, being dependent consists of extra terms, namely (F+ X NTMN)v+yTGy,

on z ande as we do in Assumption 2 (and like in Sectionwhich depend on the designed parameteérs= andn. We

V.B in [25]) is more general and is justified in many casesare free to select these parameters as we wish. We can
see Section VIII-B for an example. There may not be therefore fix any admissible ‘degradation’ of the quadratic
unigque choice foiV/, L, g; andg- in (9). We will investigate part of the initial supply rate in Assumption 1 and select



the matrices¥', G and the constanj accordingly. Then, we

the design parametensande (through an appropriate choice

choosey in (10) such that (11) holds. Again, (11) alwaysof ) in (14)).
holds by takingy sufficiently big, however this leads to a fast ) )
decrease ofs in view of (10) and therefore, potentially, to C- Time-triggered control

frequent transmissions. To mitigate this effect, we pregos

When Assumption 2 holds with constaht g; andgs, the

minimize ¢ subject to the linear constraint (11), which carntime it takes for¢ to decrease from to a is constant. We
be efficiently done by numerical solvers. In that way, theherefore obtain a time-triggered policy. The previousiltiss

triggering condition directly adapts to the desired adibles

can be used to compute an estimate of the MASP with which

degradation of the supply rate. It is interesting to note thalissipativity is preserved.

the constants andb have no influence on the supply rate.

We can thus take = 0 andb big, in order to (heuristically)

Let I, G andn be fixed. We assume that these are selected
according to the desired supply rate under sampling (in

increase the inter-transmissions times. On the other harafjreement with Assumption 1). Selecto be the minimum

the pair (a,b) has an impact on the storage functibhas
¢ € [a,b] according to (12).

B. Passivity &L,-stability

We mentioned above that
(strict-)passivity and Lo-stability as particular
We tailor the previous result to these specific properties.

The corollary below allows preserving (strict-)passivity
system (12).

Corollary 1 ((Strict-)passivity):Suppose the following
holds.

(i) Assumption 1 is verified withR =0, Q@ =0, S = %}I

and p(x) > p(x) + yTEy for anyz € R", where £

inequality (8) covers
cases.

value such that (11) holds. Then the time it takesto
decrease frond to a is equal to

% (arctan (WT'FL) — arctan (MT“LL)

when L < 2,/0)
1 1
) L bt L
T(a,b) = ’ ’ when L = 2/71)
bl —r bl T
% (ln (gafiﬁfr) - hl (gafi%ir))

when L > 2./01),
(15)

wherer := /| — L2 + 43| and (¢ := ¢? + ng3. Sincea, b
can be arbitrarily selected such tHat< a < b, we derive
that the MASP denoted by* has to be such that

is a real symmetric and positive definite matrix and

p: R = Ry.
(i) Assumption 2 is verified withV = 0.
Selecty) > 0 in (12) such that
) < 0.

—ypM i1

* -F
System (12) is dissipative with storage functidrdefined in
Theorem 1 and the pair of supply rates’(z, v),0) where
pe(x,v) = —p(x) +y . O

(13)

Corollary 1 provides sufficient conditions to preserve’ < tiga

< lim  T(a,b)
(a,b)—(0,00)
%arctan (%) when L < 2/0) (16)

= i when L = 2,/
Zarctanh(%) whenL > 2\/7¢.

Remark 1:System (12) generates periodic sampling when
Assumption 2 holds with constanht g; andg,. These results
can be easily extended to cover time-varying sampling where
the sequence of transmission instatitsi € Zx, verifies
—t; <T* wherev € (0,7*] models the minimum

the passivity of system (4)-(5) (as implied by item (i) 0fallowable transmission intervals imposed by the set-ugeund

Corollary 1) using event-triggered controllers. LMI (13)

corresponds to (11) witlR =0, S = %]I andG = E.
The result below focuses ofi;-stability. Its proof also
follows from the proof of Theorem 1.
Corollary 2 (£»-stability): Suppose the following holds.
(i) Assumption 1 is verified withR = ~2I, Q = —I,
S =0andyeR.
(i) Assumption 2 is verified.
Selecty) > 0 in (12) such that, foe > 0,

21 2
(””f vM ””f) < 0.

* —&

System (12) is dissipative with storage functibhdefined
in Theorem 1 and the paifp°(z,v),0) wherep®(z,v) =
—p(x) —yTy+vT((72+€)]I+ SNTMN )o. O

As before, LMI (14) is always verified by taking suffi-
ciently big. We note that the origindl,-gain~y becomes with
the event-triggered controllef/+2 + ¢ + %)\max(NT]\/[N)
and that this gain can take any value(in oco) by adjusting

(14)

consideration, as done in Section V in [24] for examplé.

VII.

Theorem 1 and the subsequent corollaries show that dis-
sipativity is preserved using the proposed event-triggere
controllers. However, these results do not inform us about
the existence of a minimum amount of time between two
transmissions. It is clear from (12) that, after each jurhp, t
solution will flow for some time as long as ande do not
explode in finite (hybrid) time. Indeed, the time between two
successive jumps corresponds to the time it takespyfoo
decrease fronb to a; time which is always strictly positive
in this case, sincd, g; and g, are continuous. In practice,
we often have a stronger requirement that is that theresexist
a uniformminimum amount of time between two jumps. We
have already seen in Section VI-C that this is the case when
Assumption 2 is verified with constart, ¢g; and go, but
transmissions are periodic in this case. We present a €liffer
set of assumptions below to ensure the existence of uniform
dwell-times with event-triggered transmissions.

EXISTENCE OF DWELL-TIMES



Theorem 2:Consider system (12) and suppose the follow- 2) Assumption 2 is verified withW(e) = eTMe, L

ing holds. sufficiently big such thab M > —2M K B, g1 (z,e) =
(i) Assumption 1 is verified withl” and p such that for g2(z,e) =1, N = —KB and M such that
anyz € & (A+ BK)TKTMK(A+ BK)+CTQC < J.
aflzla) < V(o) (17) (22)

—p@)+yT(Q+E)y < —aV(x),

wherea, o € Ko, A CR™ and E is a real symmetric
positive definite matrix.

3) Equation (17) holds with anyx € K., E real,
symmetric, positive definite such that < J — (A +
BK)TKTMK (A + BK) — CTQC, a(s) = es? for

(i) Assumption 2 holds and for angz, e) € R™+™ somee > 0, for any s € Rxo, and.A = R™.
4) Equation (18) holds withy(s1, s2) = max{L, 1} for
maX{L((E,6),gl($,€)2,92($,€)2} S X(|x|Aa|e|) any81,82 ERZO ]
(18) Condition (22) can always be satisfied (it suffices to take
wherey : RZ, — Rx is continuous. M = &I with sufficiently smalle > 0 for instance, since

Selecty) > 0 in (12) such that (11) holds with = E. Then CTQC < J from Assumption 3). The existence of the

the solutions have a uniform semiglobal dwell-times. 0  matrix £ in item 3) of Proposition 1 follows from (22).
The first inequality in (17) holds whei is positive A consequence of Proposition 1 is that the conclusions

definite for instance, in which casd = {0}. The second of Theorems 1 and 2 apply to linear systems, provided

inequality in (17) essentially means that the dissipativit Assumption 3 holds. We note that transmissions are periodic

property in Assumption 1 has to be ‘strict’, see Chapter 6 iin this case as Assumption 2 holds with constany, g»

[14]. Item (ii) of Theorem 2 is a boundedness conditions ofsee Section VI-C).

the functionsl, g; andg, of Assumption 2. Finally, we note

that we can always select such that (11) is verified with B. Pendulum

G = Ein view of the explanations after (11). Examples of |t s explained in [3] how to design control laws to ensure
systems that verify the conditions of Theorem 2 are provideghordination among networks of systems of the form
in the next section.

t1=h Ly = 23
VIIl. CASE STUDIES o (w2), &2 = flaa,u), (23)

A. Linear time-invariant systems with z; € R™ andz, € R" are the statesy € R™

is the control input, and where the,-system with output
h(z2) is strictly passive. It is shown in [24] how to emulate
& = Az + Bu, y = Cu, (19) the controllers of [3] for event-triggered control. In some
cases, the strict passivity of the,-system is ensured by
feedback, which is ignored in [24]. We show below how to
ensure strict passivity using event-triggered contrslfer a
particular type of systems of the form (23), namely for the
pendulum. Hence, we consider the following system

Consider the system

wherez € R", v € R™, andy € R™. We make the
following assumption.

Assumption 3:Let R, @, S be real matrices an& and@
be symmetric. There exist a controller matdik, and real,
symmetric, positive definite matricd$ and J such that the

following holds 1 = o9 (24)
ctQc < J (20) Zo = —0Oisin(xy) — Ooxo + u,
and wherez; € R is the positiongz, € R is the velocity,f; > 0

BT — STC R of the rod and, > 0 is the ratio of the friction coefficient
(21) over the mass of the bob. We design the feedback law (5)
O aswu = 6;sin(z1). The dynamics in (24) becomes, once the
input is sampled,
Inequality (20) always holds and conditions to ensure (21) ) )
can be found in Chapter 6 in [14] for instance depending on @1 =3, @2 =—bhwate, (25)
the conS|dere(_1I_tr|pIe(tR,Q, 5). . wheree is defined as in (7).
The proposition below shows that the conditions of The- We now verify that the conditions of Corollary 1 and

orem 2 are verified under Assumppon 3_' - Theorem 2 hold. LetW(e) = Me? for e € R, with
Proposition 1: Suppose Assumption 3 is satisfied and thaM — P—10, Forz,, o, ccR
- - 2 N ) ) L]

controller (5) is given by = Kz, then the following holds.
1) Assumption 1 is verified with/ (z) = 2Tz, p(x) = (VW (e), =01 cos(z1)xe) = 2Me(—6; cos(z1)z2),
—aY(J—(A+BK)TKTM K (A+BK))x whereM is (26)
specified belowH (x) = —K(A+ BK)x for x € R”, hence Assumption 2 is verified with = g = N = 0,
P=M,andR,Q,S as in Assumption 3. gi1(x1) = —01cos(xy) and H(z2) = z2, and item (i) of

((A + BK)TII +II(A + BK) + J — CTQC * ) “0 is the ratio of the acceleration due to gravity over the langt



Corollary 1 holds. We also note that (18) holds with= 67.
On the other hand, foV (z3) = %x% foranyxzy,zo,v € R,

(8]

(VV(x2), 0222 + v) —0223 + x90. (27)

El
Thus, Assumption 1 holds with(z2) = 36223, P = M, [q]
R=0,Q =0andS = 3. Noting thatp(zz) = $y* with
y = x2, We have proved that the conditions of Corollary 1 arétll
verified with E = 16, and p(z2) = 16,23, 2o € R. We are
left with proving that (17) is guaranteed. The first ineqyali [12]
in (17) is trivially satisfied by takingd = R2. The second
inequality of (17) holds withE = 16, anda(s) = 65 for  [13]
s € R>o. We have proved that the conditions of Corollary 1
and Theorem 2 are guaranteed. (14
As a conclusion, the proposed approach allows ensuring
the strict passivity of the:;-system in (24) with output,
using event-triggered controllers.

[16]
IX. CONCLUSIONS

We have presented a method to ensure quadratic disgiy
pation inequalities for nonlinear systems using emulation
based event-triggered controllers. The triggering caolit
: . ; o . 18]
is designed using an auxiliary variable. A feature of thé
triggering rule is that it adapts to the desired accuracy
with which the quadratic terms of the initial supply ratel®!
are preserved by appropriately selecting its parametens. N
results have also been presented for time-triggered dontr{z0]
in particular new MASP bounds are provided. Finally, we
have shown how the approach can be applied to linegr;
time-invariant systems, and that it can be used to construct
event-triggered controllers which guarantee a strict ipags 2]
property for the pendulum. We think that the presenteg
results will be relevant in a variety of control problems e

dissipativity plays a key role, like coordination, robiess (23]
analysis, and stabilization problems. [24]
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