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Quadratic dissipation inequalities for nonlinear systemsusing
event-triggered controllers

Romain Postoyan

Abstract— We present a method to design event-triggered
controllers that ensure the satisfaction of quadratic dissipation
inequalities for nonlinear sampled-data systems. We follow
an emulation approach for this purpose. We first assume
that a static feedback law is designed in continuous-time to
guarantee such a dissipativity property. We then take into
account sampling and we synthesize a triggering rule to
preserve dissipativity. The parameters of the sampling lawcan
be adjusted to approximately recover the quadratic terms ofthe
initial supply rate with any desired accuracy by solving a linear
matrix inequality, which can always be satisfied. We then tailor
our results to specific quadratic dissipativity properties, namely
(strict-)passivity and L2-stability. Our results cover periodic
sampling as a particular case, for which we provide new explicit
bounds on the maximum allowable sampling period.

I. I NTRODUCTION

Event-triggered control consists in updating the input of a
control system only at time instants determined by a state-
dependent criterion. This paradigm is attractive for systems
subject to communication or computation constraints, as it
may significantly reduce transmissions between the plant
and the controller as well as the number of controller
executions compared to periodic sampling. Various event-
triggered control techniques are available for stabilization
(e.g., [12], [25]), consensus (e.g., [6], [23], [27]), or estima-
tion (e.g., [2], [16], [28]). On the other hand, the design of
event-triggered controllers to ensure dissipativity properties
remains largely unaddressed, despite its importance in a
wide range of control problems. This is probably due to
the fact that it is difficult to guarantee the existence of a
uniform minimum time between any two transmissions in
this context, which is an important requirement in practice.
It is interesting to note that several event-triggered controllers
of the literature require a dissipativity property to hold for the
closed-loop system in the absence of sampling. For instance
in [32], output feedback passivity properties of the plant and
the controller are used to construct output-feedback event-
triggered controllers. Another example is the work in [24]
where the event-triggered coordination among a network of
agents is investigated and where it is assumed that the agents
satisfy a strict-passivity property. In a number of cases,
dissipativity is not an intrinsic property of the system but
is ensured by a feedback law. It is therefore important to
construct event-triggered controllers to preserve this property.
Results forLp-stability and input-to-state stability can be
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found in [1], [7], [8], [31] for instance. Recently, the authors
of [33] have designed event-triggering conditions to preserve
a specific type of quadratic dissipativity for interconnected
nonlinear systems, and a model-based approach for ensuring
quadratic dissipativity properties is investigated in [17] for
discrete-time systems.

In this paper, we propose a method to design event-
triggered controllers to ensure quadratic dissipation inequal-
ities for nonlinear systems. Compared to [33], we study a
more general type of dissipativity, we present a different
approach, and we provide sufficient conditions for the ex-
istence of a minimum amount of time between any two
transmissions, which is not the case in [33]. We adopt
an emulation approach for this purpose. We assume that
a feedback law is designed to guarantee a quadratic dis-
sipativity inequality in the absence of sampling. We then
take into account the communication constraints and we
derive a suitable triggering rule to preserve dissipativity. The
triggering condition is based on an auxiliary variable thatwe
design, whose dynamics depends (in general) on the state of
the plant. The idea to introduce extra variables to construct
the transmission law was suggested in [25], and has been
pursued in [7], [9], [24]. We show that the system in closed-
loop with the event-triggered controller verifies a quadratic
dissipativity property. The supply rate consists of extra terms
compared to the one in the absence of sampling. These
terms can be arbitrarily adjusted by appropriately tuning the
triggering law. In other words, we can fix any admissible
performance degradation compared to the initial supply rate
in continuous-time, it is then easy to adapt the triggering law
accordingly, by solving a linear matrix inequality, which is
always feasible. There is a trade-off between the performance
requirement (in terms of supply rate) and the amount of
transmissions, in the sense that to ask the supply rate to
be close to the one in continuous-time typically leads to
a triggering condition which generates more transmissions.
Similar observations are made in [1], [7] where robust event-
triggered control is studied. We also present results tailored
to (strict-)passivity andL2-stability as particular cases.

We model the event-triggered control system as a hybrid
system using the formalism of [10]. We use the definition
of dissipativity proposed in [20], which suggests to consider
different supply rates on flows and at jumps, as in e.g., [11],
[30]. As mentioned above, we provide sufficient conditions
to ensure the existence of a uniform minimum time between
two sampling instants (thus ruling out Zeno phenomenon).
We explain how to apply our results to linear time-invariant
systems, in which case the assumptions are written as linear



matrix inequalities. We also address the problem of preserv-
ing strict-passivity for a pendulum with an event-triggered
controller, which is useful for coordination problems, see
[3], [24].

It is important to notice that our results cover periodic
sampling as a particular case. In this context, we provide an
explicit estimate of the maximum allowable sampling period
(MASP) to ensure dissipativity with the proposed emulation-
based controllers. We expect the bound to be less conserva-
tive than those derived in [15]. These results complement the
literature on dissipativity for nonlinear sampled-data systems,
see e.g. [15], [18], [19], [29].

The proofs are omitted for space reasons.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞),
Z≥0 := {0, 1, 2, . . .}, and Z>0 := {1, 2, . . .}. A function
γ : R≥0 → R≥0 is of classK∞ if it is continuous, zero
at zero and unbounded. Let(x, y) ∈ R

n+m, (x, y) stands
for [xT, yT]T. The notationI denotes the identity matrix,
whose dimensions depend on the context. In matrices, the
symbol ⋆ stands for the symmetric block component. Let
P ∈ R

n×n be a real, symmetric matrix, we respectively
denote its maximum and minimum eigenvalues byλmax(P )
andλmin(P ). For two real, symmetric matricesM andN ,
we write thatM ≤ N whenN−M is positive semi-definite.

We study hybrid systems of the form ([5], [10])
{

x ∈ C ẋ = F (x, v)
x ∈ D x+ = G(x),

(1)

wherex ∈ R
n is the state,v ∈ R

m is the input,F is the
flow map,G is the jump map,C is the flow set andD is
the jump set. We assume thatF andG are continuous on
C × R

m andD, respectively, and thatC andD are closed.
We recall some definitions related to [5], [10]. A subset

E ⊂ R≥0×Z≥0 is ahybrid time domainif for all (T, J) ∈ E,
E ∩ ([0, T ] × {0, . . . , J}) =

⋃

j∈{0,1,...,J−1}

([tj , tj+1], j) for

some finite sequence of times0 = t0 ≤ t1 ≤ . . . ≤ tJ .
A function φ : E → R

n is a hybrid signal if E is a hybrid
time domain. A hybrid signalv : E → R

m is called ahybrid
input if v(·, j) is Lebesgue measurable and locally essentially
bounded for eachj ∈ Z≥0. A hybrid signalx : E → R

n is
called ahybrid arc if x(·, j) is locally absolutely continuous
for eachj ∈ Z≥0. A hybrid arcx : E → R

n and a hybrid
input v : E → R

m is a solution pair (x, v) to (1) if: (i)
x(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z≥0, x(t, j) ∈ C and
d
dt
x(t, j) = F (x(t, j), v(t, j)) for almost all t ∈ Ij where

Ij := {t : (t, j) ∈ E}; (iii) for every (t, j) ∈ E such that
(t, j + 1) ∈ E, x(t, j) ∈ D andx(t, j + 1) = G(x(t, j)).

Let v be a hybrid input, for any(t, j) ∈ domv [5]

‖v‖(t,j) := max

{

ess.sup
(t′,j′)∈domv\Γ(v), t′+j′≤t+j

|v(t′, j′)|,

sup
(t′,j′)∈Γ(v), t′+j′≤t+j

|v(t′, j′)|
}

,

(2)

whereΓ(v) is the set of all(t′, j′) ∈ domv such that(t′, j′+
1) ∈ domv.

We adapt below the definition of uniform semiglobal
dwell-times proposed in [25] for autonomous hybrid systems
to hybrid systems with inputs.

Definition 1: The solutions to (1) havea uniform
semiglobal dwell-timeif for any ∆ ≥ 0, there exists
τ(∆) > 0 such that for any solution pair(x, v) to (1) with
|x(0, 0)| ≤ ∆ and ‖v‖(t′,j′) ≤ ∆ for any (t′, j′) ∈ domv,
and any(s, i), (t, j) ∈ domx = domv with s + i ≤ t + j,
j − i ≤ (t− s)/τ(∆) + 1. �

We use the definition below of dissipativity, see1 Definition
2 in [20].

Definition 2: System (1) is dissipative with thepair of
supply rates(pc(x, v), pd(x, v)) with pc, pd continuous, if
there exists astorage functionV : C ∪ D ∪ G(D) → R≥0

which is continuously differentiable on a open set containing
C and continuous onRn such that

〈∇V (x), F (x, v)〉 ≤ pc(x, v) ∀(x, v) ∈ C × R
m

V (G(x)) − V (x) ≤ pd(x, v) ∀x ∈ D. (3)

�

III. PROBLEM STATEMENT

Consider the system

ẋ = f(x, u), y = h(x), (4)

wherex ∈ R
n is the state,u ∈ R

m is the input,y ∈ R
m

is an output,n,m ∈ Z>0. We focus on the case where the
control input is given by a static feedback law of the form

u = k(x) (5)

where k : R
n → R

m is continuously differentiable. The
control law may depend on the full statex or on some output
of plant (4), which is not necessarilyy.

We consider the scenario where a digital channel is used
to ensure the communications between controller (5) and
plant (4). The sequence of transmission instants is denoted
by ti, i ∈ I ⊆ Z≥0, and is generated by an event-
triggering condition to be designed, which is co-located with
the controller. The closed-loop dynamics becomes, for any
i ∈ I and almost allt ∈ [ti, ti+1],

ẋ = f(x, k(x) + e)
y = h(x),

(6)

wheree ∈ R
m is the sampling-induced error on the control

input which is defined by

e(t) := k(x(ti))− k(x(t)) for almost allt ∈ [ti, ti+1].
(7)

The objective is to designk and the sequence of trans-
mission instants to ensure a dissipativity property for system
(6). We follow for this purpose an emulation approach.
We assume that controller (5) is designed to guarantee
a dissipativity property for system (4) in the absence of

1We define the storage functionV on C ∪ D ∪ G(D) in Definition 2
and not onRn as in Definition 2 in [20].



sampling. We then take into account sampling and design a
triggering condition to preserve dissipativity for the closed-
loop system. The approach is presented in details in the
following.

IV. A SSUMPTIONS

We assume that controller (5) is designed such that the
assumption below holds.

Assumption 1:There exist a continuously differentiable
functionV : Rn → R≥0, ρ : Rn → R, H : Rn → R

m, real
matricesP,Q,R, S with P,Q,R symmetric andP positive
definite, such that the following holds for anyx ∈ R

n and
v ∈ R

m

〈∇V (x), f(x, k(x) + v)〉 ≤ −ρ(x)−H(x)TPH(x)
+vTRv + yTQy + 2yTSv.

(8)
�

Assumption 1 means that the closed-loop systemẋ =
f(x, k(x) + v) with input v and outputy is dissipative
with supply rate p(v, x) = −ρ(x) − H(x)TPH(x) +
vTRv + yTQy + yTSv + vTSTy and storage functionV .
The quadratic terms inp are justified by the fact that
(strict-)passivity,L2-stability and sector-bounded systems
lead to such terms as shown in Chapter 10.7 in [13], see also
Section VI. Note thatρ is not required to be positive definite,
neither isV . The termH(x) can be seen as an output to
system (4), and the corresponding term−H(x)TPH(x) in
(8) is useful to compensate for the sampling effect, like in
[21]. It can be noted that the results still apply whenH
also depend on the inputv. There exist various techniques
to construct controller (5) such that (8) holds, see e.g., [4],
[22], [26].

We make the assumptions below on the dynamics of the
sampling-induced error between two successive transmission
instants.

Assumption 2:There exist real matricesM,N with
M symmetric and positive definite, continuous functions
L, g1, g2 : Rn+m → R such that, the following holds.

(i) M ≤ P , whereP comes from Assumption 1.
(ii) Let W : e 7→ eTMe. For anyx ∈ R

n ande, v ∈ R
m,

〈∇W (e),−∇k(x)f(x, k(x) + e+ v)〉 ≤ L(x, e)W (e)
+2eTM

(

g1(x, e)H(x) + g2(x, e)Nv
)

.
(9)

�

Assumption 2 provides information on the growth of the
sampling-induced errore on flows, through the functionW .
WhenL, g1 andg2 are constant, the conditions are similar
to those assumed in [21] for the stabilization of nonlinear
sampled-data systems with time-triggered transmissions.The
underlying idea is that thee-system is affected by thex-
system and the exogenous inputv through the ‘output’H(x)
andNv, respectively. To letL, g1 and g2 being dependent
on x and e as we do in Assumption 2 (and like in Section
V.B in [25]) is more general and is justified in many cases,
see Section VIII-B for an example. There may not be a
unique choice forM , L, g1 andg2 in (9). We will investigate

this point and its impact on the performances of the event-
triggered controlled system for specific classes of systemsin
future work.

V. TRIGGERING CONDITION AND HYBRID MODEL

The triggering condition we propose is inspired by those
developed in [25], [24] for the stabilization and the coordi-
nation of nonlinear systems, respectively. The idea is trigger
transmissions using an auxiliary variableφ ∈ R. After a
transmission,φ is reset tob > 0 and the next triggering
instant occurs whenφ is equal toa ∈ [0, b). The constants
a, b are design parameters, we explain later how to tune them.
Between two triggering instants, the dynamics ofφ is given
by

φ̇ = −L(x, e)φ−
(

g1(x, e)
2 + ηg2(x, e)

2
)

φ2 − ψ,
(10)

where L, g1, g2 come from Assumption 2, andη, ψ are
design parameters. The constantsη and ψ offer a trade-
off between the speed of decrease ofφ on flows (which is
related to the amount of transmissions) and the accuracy with
which the quadratic terms of the supply rate in Assumption 1
are preserved, as explained in more details in Section VI-A.
While η can take any value inR>0, ψ is selected such that
there exist real, symmetric, positive definite matricesF and
G which verify the linear matrix inequality (LMI) below





R− ψM R ST

⋆ −F 0
⋆ ⋆ −G



 < 0. (11)

Notice that (11) holds for any such matricesF andG by
taking ψ sufficiently big. On the other hand, the biggerψ,
the fasterφ decreases between two transmission instants in
view of (10), which typically leads to more transmissions.

The overall system is described by the hybrid model below

q̇ = F (q, v) for q ∈ C q+ = G(q) for q ∈ D,
(12)

with q := (x, e, φ) ∈ R
nq , C := {q : φ ∈ [a, b]}, D := {q :

φ = a}, F (q, v) := (f(x, k(x)+e+v),−∇k(x)f(x, k(x)+
e+v)),−L(x, e)φ−

(

g21(x, e)+ηg
2
2(x, e)

)

φ2−ψ), G(q) :=
(x, 0, b), andnq := n+m+ 1.

VI. M AIN RESULTS

A. Dissipativity

We are ready to state the main result.
Theorem 1:Let U(q) := V (x) + φW (e) for q ∈ C ∪ D

and suppose Assumptions 1-2 are satisfied. System (12) is
dissipative with storage functionU and the pair of supply
rates(pc(x, v), 0) wherepc(x, v) = −ρ(x) + vT(R + F +
1
η
NTMN)v + yT(Q+G)y + 2yTSv. �

Compared to the dissipativity property in the absence of
sampling (see Assumption 1), the quadratic terms inpc

consists of extra terms, namelyvT(F+ 1
η
NTMN)v+yTGy,

which depend on the designed parametersF , G andη. We
are free to select these parameters as we wish. We can
therefore fix any admissible ‘degradation’ of the quadratic
part of the initial supply rate in Assumption 1 and select



the matricesF , G and the constantη accordingly. Then, we
chooseψ in (10) such that (11) holds. Again, (11) always
holds by takingψ sufficiently big, however this leads to a fast
decrease ofφ in view of (10) and therefore, potentially, to
frequent transmissions. To mitigate this effect, we propose to
minimizeψ subject to the linear constraint (11), which can
be efficiently done by numerical solvers. In that way, the
triggering condition directly adapts to the desired admissible
degradation of the supply rate. It is interesting to note that
the constantsa and b have no influence on the supply rate.
We can thus takea = 0 andb big, in order to (heuristically)
increase the inter-transmissions times. On the other hand,
the pair (a, b) has an impact on the storage functionU as
φ ∈ [a, b] according to (12).

B. Passivity &L2-stability

We mentioned above that inequality (8) covers
(strict-)passivity and L2-stability as particular cases.
We tailor the previous result to these specific properties.

The corollary below allows preserving (strict-)passivityfor
system (12).

Corollary 1 ((Strict-)passivity):Suppose the following
holds.

(i) Assumption 1 is verified withR = 0, Q = 0, S = 1
2 I

and ρ(x) ≥ ρ̄(x) + yTEy for any x ∈ R
n, whereE

is a real symmetric and positive definite matrix and
ρ̄ : Rn → R≥0.

(ii) Assumption 2 is verified withN = 0.

Selectψ > 0 in (12) such that
(

−ψM 1
2 I

⋆ −E

)

< 0. (13)

System (12) is dissipative with storage functionU defined in
Theorem 1 and the pair of supply rates(pc(x, v), 0) where
pc(x, v) = −ρ̄(x) + yTv. �

Corollary 1 provides sufficient conditions to preserve
the passivity of system (4)-(5) (as implied by item (i) of
Corollary 1) using event-triggered controllers. LMI (13)
corresponds to (11) withR = 0, S = 1

2 I andG = E.
The result below focuses onL2-stability. Its proof also

follows from the proof of Theorem 1.
Corollary 2 (L2-stability): Suppose the following holds.

(i) Assumption 1 is verified withR = γ2I, Q = −I,
S = 0 andγ ∈ R.

(ii) Assumption 2 is verified.

Selectψ > 0 in (12) such that, forε > 0,
(

γ2I− ψM γ2I
⋆ −ε

)

< 0. (14)

System (12) is dissipative with storage functionU defined
in Theorem 1 and the pair(pc(x, v), 0) where pc(x, v) =

−ρ(x)− yTy + vT
(

(γ2 + ε)I+ 1
η
NTMN

)

v. �

As before, LMI (14) is always verified by takingψ suffi-
ciently big. We note that the originalL2-gainγ becomes with
the event-triggered controller

√

γ2 + ε+ 1
η
λmax(NTMN)

and that this gain can take any value in(γ,∞) by adjusting

the design parametersη andε (through an appropriate choice
of ψ in (14)).

C. Time-triggered control

When Assumption 2 holds with constantL, g1 andg2, the
time it takes forφ to decrease fromb to a is constant. We
therefore obtain a time-triggered policy. The previous results
can be used to compute an estimate of the MASP with which
dissipativity is preserved.

Let F ,G andη be fixed. We assume that these are selected
according to the desired supply rate under sampling (in
agreement with Assumption 1). Selectψ to be the minimum
value such that (11) holds. Then the time it takesφ to
decrease fromb to a is equal to

T (a, b) :=



































2
r

(

arctan
(

2bℓ+L
r

)

− arctan
(

2aℓ+L
r

))

whenL < 2
√
ℓψ

1
aℓ+L

2

− 1
bℓ+L

2

whenL = 2
√
ℓψ

1
r

(

ln
(

2bℓ+L−r
2aℓ+L−r

)

− ln
(

2bℓ+L+r
2aℓ+L+r

))

whenL > 2
√
ℓψ,

(15)
wherer :=

√

| − L2 + 4ψℓ| and ℓ := g21 + ηg22 . Sincea, b
can be arbitrarily selected such that0 ≤ a < b, we derive
that the MASP denoted byT ⋆ has to be such that

T ⋆ < lim
(a,b)→(0,∞)

T (a, b)

=







2
r
arctan

(

r
L

)

whenL < 2
√
ℓψ

2
L

whenL = 2
√
ℓψ

2
r
arctanh

(

r
L

)

whenL > 2
√
ℓψ.

(16)

Remark 1:System (12) generates periodic sampling when
Assumption 2 holds with constantL, g1 andg2. These results
can be easily extended to cover time-varying sampling where
the sequence of transmission instantsti, i ∈ Z≥0, verifies
υ ≤ ti+1 − ti ≤ T ⋆ whereυ ∈ (0, T ⋆] models the minimum
allowable transmission intervals imposed by the set-up under
consideration, as done in Section V in [24] for example.�

VII. E XISTENCE OF DWELL-TIMES

Theorem 1 and the subsequent corollaries show that dis-
sipativity is preserved using the proposed event-triggered
controllers. However, these results do not inform us about
the existence of a minimum amount of time between two
transmissions. It is clear from (12) that, after each jump, the
solution will flow for some time as long asx ande do not
explode in finite (hybrid) time. Indeed, the time between two
successive jumps corresponds to the time it takes forφ to
decrease fromb to a; time which is always strictly positive
in this case, sinceL, g1 andg2 are continuous. In practice,
we often have a stronger requirement that is that there exists
a uniformminimum amount of time between two jumps. We
have already seen in Section VI-C that this is the case when
Assumption 2 is verified with constantL, g1 and g2, but
transmissions are periodic in this case. We present a different
set of assumptions below to ensure the existence of uniform
dwell-times with event-triggered transmissions.



Theorem 2:Consider system (12) and suppose the follow-
ing holds.

(i) Assumption 1 is verified withV and ρ such that for
any x ∈ R

n

α(|x|A) ≤ V (x)
−ρ(x) + yT(Q+ E)y ≤ −α(V (x)),

(17)

whereα, α ∈ K∞, A ⊆ R
n andE is a real symmetric

positive definite matrix.
(ii) Assumption 2 holds and for any(x, e) ∈ R

n+m

max{L(x, e), g1(x, e)2, g2(x, e)2} ≤ χ(|x|A, |e|)
(18)

whereχ : R2
≥0 → R≥0 is continuous.

Selectψ > 0 in (12) such that (11) holds withG = E. Then
the solutions have a uniform semiglobal dwell-times. �

The first inequality in (17) holds whenV is positive
definite for instance, in which caseA = {0}. The second
inequality in (17) essentially means that the dissipativity
property in Assumption 1 has to be ‘strict’, see Chapter 6 in
[14]. Item (ii) of Theorem 2 is a boundedness conditions on
the functionsL, g1 andg2 of Assumption 2. Finally, we note
that we can always selectψ such that (11) is verified with
G = E in view of the explanations after (11). Examples of
systems that verify the conditions of Theorem 2 are provided
in the next section.

VIII. C ASE STUDIES

A. Linear time-invariant systems

Consider the system

ẋ = Ax+Bu, y = Cx, (19)

where x ∈ R
n, u ∈ R

m, and y ∈ R
m. We make the

following assumption.
Assumption 3:Let R,Q, S be real matrices andR andQ

be symmetric. There exist a controller matrixK, and real,
symmetric, positive definite matricesΠ andJ such that the
following holds

CTQC < J (20)

and
(

(A+BK)TΠ+Π(A+BK) + J − CTQC ⋆
BTΠ− STC −R

)

< 0.

(21)
�

Inequality (20) always holds and conditions to ensure (21)
can be found in Chapter 6 in [14] for instance depending on
the considered triplet(R,Q, S).

The proposition below shows that the conditions of The-
orem 2 are verified under Assumption 3.

Proposition 1: Suppose Assumption 3 is satisfied and that
controller (5) is given byu = Kx, then the following holds.

1) Assumption 1 is verified withV (x) = xTΠx, ρ(x) =
−xT(J−(A+BK)TKTMK(A+BK))x whereM is
specified below,H(x) = −K(A+BK)x for x ∈ R

n,
P =M , andR,Q, S as in Assumption 3.

2) Assumption 2 is verified withW (e) = eTMe, L
sufficiently big such thatLM ≥ −2MKB, g1(x, e) =
g2(x, e) = 1, N = −KB andM such that

(A+BK)TKTMK(A+BK) + CTQC < J.
(22)

3) Equation (17) holds with anyα ∈ K∞, E real,
symmetric, positive definite such thatE < J − (A +
BK)TKTMK(A + BK) − CTQC, α(s) = ǫs2 for
someǫ > 0, for any s ∈ R≥0, andA = R

n.
4) Equation (18) holds withχ(s1, s2) = max{L, 1} for

any s1, s2 ∈ R≥0. �

Condition (22) can always be satisfied (it suffices to take
M = εI with sufficiently smallε > 0 for instance, since
CTQC < J from Assumption 3). The existence of the
matrix E in item 3) of Proposition 1 follows from (22).
A consequence of Proposition 1 is that the conclusions
of Theorems 1 and 2 apply to linear systems, provided
Assumption 3 holds. We note that transmissions are periodic
in this case as Assumption 2 holds with constantL, g1, g2
(see Section VI-C).

B. Pendulum

It is explained in [3] how to design control laws to ensure
coordination among networks of systems of the form

ẋ1 = h(x2), ẋ2 = f(x2, u), (23)

with x1 ∈ R
n1 and x2 ∈ R

n2 are the states,u ∈ R
n1

is the control input, and where thex2-system with output
h(x2) is strictly passive. It is shown in [24] how to emulate
the controllers of [3] for event-triggered control. In some
cases, the strict passivity of thex2-system is ensured by
feedback, which is ignored in [24]. We show below how to
ensure strict passivity using event-triggered controllers for a
particular type of systems of the form (23), namely for the
pendulum. Hence, we consider the following system

ẋ1 = x2
ẋ2 = −θ1 sin(x1)− θ2x2 + u,

(24)

wherex1 ∈ R is the position,x2 ∈ R is the velocity,θ1 > 0
is the ratio of the acceleration due to gravity over the length
of the rod andθ2 > 0 is the ratio of the friction coefficient
over the mass of the bob. We design the feedback law (5)
asu = θ1 sin(x1). The dynamics in (24) becomes, once the
input is sampled,

ẋ1 = x2, ẋ2 = −θ2x2 + e, (25)

wheree is defined as in (7).
We now verify that the conditions of Corollary 1 and

Theorem 2 hold. LetW (e) = Me2 for e ∈ R, with
M = P = 1

2θ2. For x1, x2, e ∈ R,

〈∇W (e),−θ1 cos(x1)x2〉 = 2Me(−θ1 cos(x1)x2),
(26)

hence Assumption 2 is verified withL = g2 = N = 0,
g1(x1) = −θ1 cos(x1) andH(x2) = x2, and item (ii) of



Corollary 1 holds. We also note that (18) holds withχ = θ21.
On the other hand, forV (x2) =

1
2x

2
2, for anyx1, x2, v ∈ R,

〈∇V (x2),−θ2x2 + v〉 = −θ2x22 + x2v. (27)

Thus, Assumption 1 holds withρ(x2) = 1
2θ2x

2
2, P = M ,

R = 0, Q = 0 andS = 1
2 . Noting thatρ(x2) = 1

2y
2 with

y = x2, we have proved that the conditions of Corollary 1 are
verified withE = 1

4θ2 and ρ̄(x2) = 1
4θ2x

2
2, x2 ∈ R. We are

left with proving that (17) is guaranteed. The first inequality
in (17) is trivially satisfied by takingA = R

2. The second
inequality of (17) holds withE = 1

4θ2 andα(s) = 1
2θ2s for

s ∈ R≥0. We have proved that the conditions of Corollary 1
and Theorem 2 are guaranteed.

As a conclusion, the proposed approach allows ensuring
the strict passivity of thex2-system in (24) with outputx2
using event-triggered controllers.

IX. CONCLUSIONS

We have presented a method to ensure quadratic dissi-
pation inequalities for nonlinear systems using emulation-
based event-triggered controllers. The triggering condition
is designed using an auxiliary variable. A feature of the
triggering rule is that it adapts to the desired accuracy
with which the quadratic terms of the initial supply rate
are preserved by appropriately selecting its parameters. New
results have also been presented for time-triggered control,
in particular new MASP bounds are provided. Finally, we
have shown how the approach can be applied to linear
time-invariant systems, and that it can be used to construct
event-triggered controllers which guarantee a strict passivity
property for the pendulum. We think that the presented
results will be relevant in a variety of control problems where
dissipativity plays a key role, like coordination, robustness
analysis, and stabilization problems.
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[21] D. Nešić, A.R. Teel, and D. Carnevale. Explicit computation of the
sampling period in emulation of controllers for nonlinear sampled-data
systems.IEEE Trans. on Automatic Control, 54(3):619–624, 2009.

[22] R. Ortega, A. Lorı́a, P.J. Nicklasson, and H. Sira-Ram´ırez. Passivity-
based Control of Euler-Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications. Springer-Verlag, London, 1998.

[23] C. De Persis and P. Frasca. Robust self-triggered coordination with
ternary controllers.IEEE Trans. on Aut. Control, 58:3024–3038, 2013.

[24] C. De Persis and R. Postoyan. A Lyapunov redesign of coordination
algorithms for cyberphysical systems. InarXiv 1404.0576, 2014.

[25] R. Postoyan, P. Tabuada, D. Nešić, and A. Anta. A framework for the
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