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A multi-observer approach for the state estimation of nonlinear systems

We present a prescriptive approach for the state estimation of nonlinear systems. We first assume that we know a local observer, i.e. a dynamical system whose state converges to the plant state when it is initialized nearby the plant initial condition. We sample the set where the plant initial condition is assumed to lie with a finite number of points; noting that this set can be arbitrarily large. A local observer is initialized at each of these sampled points to form a bank of observers called multi-observer. A supervisor is then constructed to select one of these observers at any time instant. The selected state estimate is guaranteed to converge to the state of the plant, provided the number of samples is sufficiently large and a detectability property holds, which is expressed in terms of Lyapunov-based conditions. An explicit lower bound on the required number of observers is given when an estimate of the basin of convergence of the local observer is available. We explain how to apply the approach to nonlinear systems with globally Lipschitz and differentiable nonlinearities. Simulations results are presented for a Wilson-Cowan oscillator.

I. INTRODUCTION

The design of global observers for nonlinear systems is a difficult task in general and available techniques apply to specific classes of systems. Local observers, on the other hand, are usually easier to construct. In this case, we are only interested in the behaviour of the estimation error around the origin. We can thus use first order approximations to analyze it, when the involved vector fields are sufficiently smooth. This leads to a time-varying dynamical system which is linear in the estimation error and hence easier to analyze in general. Various methods have been proposed in the literature to construct local observers, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF], [START_REF] Hammouri | Local observer for infinitesimally observable nonlinear systems[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], [START_REF] Sundarapandian | Local observer design for nonlinear systems[END_REF], [START_REF] Xia | On exponential observers for nonlinear systems[END_REF].

The main drawback of local observers is that they must be initialized nearby the initial condition of the system to work efficiently. However, we do not know the initial condition of the plant, it may therefore be difficult to guarantee this requirement in practice. The aim of this paper is to present a method to overcome this limitation. We consider general nonlinear systems, for which it is assumed that we know a local observer. Any of the techniques cited above can be applied at this step to synthesize the local observer. We assume that the initial condition of the plant lies in a known compact set H. There is no restriction of the 'size' of this set, it can therefore be taken arbitrarily large if needed. We then sample the compact set with N points, and we initialize N versions of the same local observer at each of these points. The sampling of H has to be such that at least one observer has its initial condition nearby the initial condition of the plant by taking N sufficiently large. We then design a suitable criterion to select a single observer at any time instant, and we define the state estimate of the overall scheme to be the estimate provided by this observer. The convergence of the selected estimate is guaranteed, provided N is sufficiently large and a detectability condition for the state estimation error system holds, which is related to the concept of output-to-state stability [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF].

The proposed technique is inspired by the supervisory control framework, see e.g., [START_REF] Hespanha | Hysteresis-based switching algorithms for supervisory control of uncertain systems[END_REF], [START_REF] Liberzon | Switching in systems and control[END_REF], [START_REF] Morse | Supervisory control of families of linear set-point controllers -Part I. Exact matching[END_REF], [START_REF] De Persis | Supervisory control with state-dependent dwell-time logic and constraints[END_REF]. Indeed, like in works on supervisory control, the scheme consists of a multi-estimator and a supervisor, which selects one of the observers at each time instant. However, none of the results on supervisory control applies to our problem as, on the one hand, their purpose is to stabilize the origin of the system, and, on the other hand, they typically assume the knowledge of a global estimator that converges to the trajectory of the system when there is no parametric uncertainty, which is very different from the scope of this paper. The supervisory approach has recently been extended for the estimation of the states and the parameters of nonlinear systems in [START_REF] Chong | Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework[END_REF]. It is assumed in [START_REF] Chong | Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework[END_REF] that a global state estimator can be constructed when the system parameters are known. A method is then proposed to also estimate the parameters online. We therefore address a different objective compared to [START_REF] Chong | Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework[END_REF], namely the state estimation of nonlinear systems, and we resort to different assumptions, techniques and analysis.

The presented approach is prescriptive. We explain how to apply it to a class of globally Lipschitz nonlinear systems as an example. We provide conditions using matrix inequalities, which guarantee the satisfaction of the assumptions needed for the estimation scheme to work. It has to be noted that the idea to use multiple versions of the same observer initialized at different values reminds of nonlinear filtering techniques, such as particle filters ( [START_REF] Ristic | Beyond the Kalman filter: Particle filters for tracking applications[END_REF]) or unscented Kalman filters ( [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]) for instance, which are often applied in applications, but for which there is no convergence guarantee in general.

The paper is organised as follows. The estimation scheme is presented in Section II and the convergence guarantees are stated in Section III. We explain how to apply the approach to a class of nonlinear systems in Section IV, and we present simulations results for a Wilson-Cowan model [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF] in Section V. Section VI concludes the paper. The proofs are omitted for space reasons.

Notation. Let R := (-∞, ∞), R ≥0 := [0, ∞ ), R >0 := (0, ∞), Z := {. . . , -2, -1, 0, 1, 2, . . .}, and Z >0 := {1, 2, . . .}. For (x, y) ∈ R n+m , (x, y) stands for [x T , y T ] T .
The notation L pc ∞ denotes the set of piecewise continuous functions f :

R ≥0 → R n , n ∈ Z >0 , such that f ∞ := sup τ ≥0 |f (τ )| < r, with r ∈ R ≥0 . Let x ∈ R nx , |x| and |x| ∞
respectively stand for the Euclidean norm and the infinity norm of x. We use ⌈x⌉ to denote min{n ∈ Z : x ≤ n} for x ∈ R. Let P ∈ R n×n be a real, symmetric matrix, we respectively denote its maximum and minimum eigenvalues by λ max (P ) and λ min (P ). The notation I denotes the identity matrix, whose dimensions depend on the context. Let A be a real matrix, |A| is the spectral norm of A, i.e. |A| := λ max (A T A). A function γ : R ≥0 → R ≥0 is of class K if it is continuous, zero at zero and strictly increasing, and it is of class

K ∞ , if, in addition, it is unbounded. A continuous function γ : R 2 ≥0 -→ R ≥0 is of class KL if for each t ∈ R ≥0 , γ(•, t) is of class K, and, for each s ∈ R ≥0 , γ(s, •) is decreasing to zero.

II. ESTIMATION SCHEME

The estimation scheme is inspired by works on supervisory control (e.g., [START_REF] Hespanha | Hysteresis-based switching algorithms for supervisory control of uncertain systems[END_REF], [START_REF] Liberzon | Switching in systems and control[END_REF], [START_REF] Morse | Supervisory control of families of linear set-point controllers -Part I. Exact matching[END_REF], [START_REF] De Persis | Supervisory control with state-dependent dwell-time logic and constraints[END_REF]). It consists of a bank of local observers, called multi-observer, and a supervisor, as depicted in Figure 1. We present each of these components in this section. 

A. Local observer

Consider the system

ẋ = f (x, u) y = h(x), (1) 
where x ∈ R nx is the state, u ∈ R nu is a vector of known inputs, y ∈ R ny is the measured output, and n x , n u , n y ∈ Z >0 . The objective is to estimate the state x. We require for this purpose that system (1) verifies the conditions below. Assumption 1: The following holds.

(i) The initial condition to (1) lies in a known compact set H. (ii) For any initial condition x 0 ∈ H, and any input u ∈ L pc ∞ , system (1) generates a unique solution, which is defined for all positive times.

(iii) The mapping h is continuous.

Item (i) of Assumption 1 requires some prior knowledge of the initial condition of system (1), which is the case for all stochastic Kalman filtering techniques for instance. It has to be emphasized that there is no restriction on the 'size' of the set H, as it can be taken arbitrarily large. That implies that, when the solutions to (1) are known to take value in a compact operating region, we can define H as being this region for example. Items (ii)-(iii) of Assumption 1 are reasonable as these hold for many physical and biological systems.

We assume that we know a local observer for system (1) of the form

ẋ = f (x, u, y) ŷ = h(x), (2) 
where x ∈ R nx is the estimated state, ŷ ∈ R ny is the estimated output. In particular, we make the following assumption.

Assumption 2: The following holds. (i) There exists a neighborhood B of the origin of R nx such that for any initial conditions x 0 ∈ H and x0 ∈ R nx of, respectively, systems ( 1) and ( 2), for any u ∈ L pc ∞ , if x 0 -x0 ∈ B, then the corresponding solutions to (1) and ( 2) are such that |x(t)-x(t)| → 0 as t → ∞. (ii) For any initial condition x0 ∈ R nx , for any u, y ∈ L pc ∞ , the corresponding solution to ( 2) is unique and is defined for all positive times. Item (i) of Assumption 2 means that the state of a solution to system (2) converges to the state of the solution to system (1) provided their initial conditions are sufficiently close to each other. There exists several methods in the literature to design local observers, i.e. to ensure Assumption 2, see e.g., [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF], [START_REF] Hammouri | Local observer for infinitesimally observable nonlinear systems[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], [START_REF] Sundarapandian | Local observer design for nonlinear systems[END_REF], [START_REF] Xia | On exponential observers for nonlinear systems[END_REF]. We can use any of these methods to construct system (2) at this step. Item (ii) of Assumption 2 is a global property of existence and uniqueness of solutions for system (2).

B. Multi-observer

System (2) is guaranteed to provide 'good' estimates of the state x only when the initial state estimation error is sufficiently small. The problem is that we do not know the initial condition of system (1), which we denote x 0 . However, we know that x 0 ∈ H according to item (i) of Assumption 1. The idea is to sample the set H with N points and to initialize N local observers (2) at each of these points. We thus obtain a bank of N observers, which forms the multiobserver. We denote the state of the i th observer as xi and its output as ŷi , i ∈ {1, . . . , N }.

We suppose that the sampling of the set H is such that the distance between x 0 and the closest sampled point tends to zero as N tends to infinity. In other words, denoting xi 0 the initial condition of the i th observer, for i ∈ {1, . . . , N },

min i∈{1,...,N } |x 0 -xi 0 | → 0 as N → ∞. (3) 
Property (3) can always be ensured by uniformly sampling H. In that way, by selecting N sufficiently large, we are sure that, at least, one observer will be initialized nearby x 0 and that its state will converge to the state of the solution to (1), according to Assumption 2. It is possible to provide an estimate of the required number of observers N when we have prior knowledge on the basin of attraction of the origin for the estimation error system, i.e. the set B in Assumption 2, as stated in the lemma below.

Lemma 1: Suppose the following holds.

(i) Item (i) of Assumption 1 is verified with H an hypercube of edge length Ω > 0. (ii) There exists

B := {x ∈ R nx : |x| ∞ ≤ ℓ}, with known ℓ > 0, such that B ⊆ B.
Consider a uniform sampling of

H with step δ = Ω⌈ Ω 2ℓ ⌉ -1 .
There

exists i ∈ {1, . . . , N } such that x 0 -xi 0 ∈ B and N = ( Ω δ + 1) nx .
The compact set H in item (i) of Assumption 1 can always be taken as an hypercube (since we assume that x 0 lies in a known compact set, see item (i) of Assumption 1), so that item (i) of Lemma 1 holds. Item (ii) of Lemma 1 requires the knowledge of an estimate of the basin of attraction of the origin for the estimation error system, namely B. The latter is typically obtained from the analysis used to prove that system (2) is local observer for system (1) (see for instance Proposition 3 in [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF]). Once the constants Ω and ℓ are derived, we deduce the number of local observers N by using the formula in Lemma 1.

C. Supervisor

Now that we have designed the multi-observer, we need a criterion to select one of the local observers at any time instant. To this purpose, we introduce the monitoring signals µ i ∈ R, i ∈ {1, . . . , N }, whose dynamics are given by (like in e.g., [START_REF] Chong | Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework[END_REF], [START_REF] Vu | Supervisory control of uncertain linear timevarying systems[END_REF])

μi = -λµ i + γ(y, ŷi ) µ i (0) = 0, (4) 
where λ > 0 is a design parameter, and γ : R 2ny → R ≥0 is a continuous function such that γ(y, y) = 0 for any y ∈ R ny , which we design in the sequel. The idea is to filter γ(y, ŷi ) and to use the obtained signal to select one of the local observers. The selection variable σ ∈ {1, . . . , N } is defined as

σ(t) := argmin µ i (t) ∀t ≥ 0. (5) 
At any time t ≥ 0, the supervisor selects the local observer with the smallest monitoring signal (if several observers provide the same minimal value of µ i , an arbitrary prefixed order is used). In that way, the state estimate is given by xσ . The signal σ may experience rapid switches, but these do not affect the dynamics of the local observers. If that is an issue for the implementation, hysteresis based switching ( [START_REF] Hespanha | Multiple model adaptive control. Part 2: switching[END_REF]) can be used on top of ( 5) to avoid it. The results derived hereafter only require minor modifications to apply in this case.

III. CONVERGENCE ANALYSIS

A. A detectability assumption

By taking N sufficiently large, we know from (3) that at least one local observer, whose index is denoted by i ⋆ ∈ {1, . . . , N }, will be such that x 0 -x i ⋆ 0 ∈ B. Consequently, the state estimation error x-xi ⋆ will converge to zero (according to Assumption 2), and so will y -ŷi ⋆ by continuity of h (see item (iii) of Assumption 1). The latter implies that µ i ⋆ converges to zero, in view of (4). We would therefore expect that σ selects observer i ⋆ after some time. The issue is that other observers may generate output estimation errors converging to zero (and so, monitoring signals converging to zero), while the state estimation errors do not, see the example below. We may then not be able to distinguish these observers from the 'right' observers.

Example 1: Consider the system ẋ1 = x 2 , ẋ2 = -x 2 -2(x 3 1x 1 ) and y = x 2 . This system has three equilibrium points: (0, 0), which is unstable, and (-1, 0) and (1, 0), which are both locally exponentially stable. We denote the basin of attraction of the latter by A (-1,0) and A (1,0) , respectively. Assume that the initial condition x 0 lies in a compact set H ⊂ A (1,0) . Consequently, Assumption 1 holds. A copy of the system is a local observer in this case, and Assumption 2 is verified with B = {x ∈ R 2 : |x| ≤ ε} for ε > 0 sufficiently small such that x 0 ∈ H and x 0 -x0 ∈ B implies x0 ∈ A (1,0) . Take the initial condition of the local observer x0 in A (-1,0) . The output estimation error ỹ = x 2 -x2 converges to zero as so do x 2 and x2 because x 0 ∈ A (1,0) and x0 ∈ A (-1,0) , respectively. However, the state estimation error x := x -x does not converge to zero because x 1 and x1 respectively converge to 1 and -1.

We need an additional condition to guarantee that, if y -ŷi converges to zero, then so does x -xi , for i ∈ {1, . . . , N }. This is the purpose of the assumption below.

Assumption 3: There exist a continuously differentiable function V : R 2nx → R ≥0 , α V , α V ∈ K ∞ , θ > 0, a continuous function γ : R 2ny → R ≥0 with γ(y, y) = 0 for any y ∈ R ny , such that for any x,

x ∈ R nx α V (|x -x|) ≤ V (x, x) ≤ α V (|x -x|), (6) 
and for any x,

x ∈ R nx and u ∈ R nu ∇V (x, x), (f (x, u), f (x, u, h(x))) ≤ -θV (x, x) + γ(h(x), h(x)). ( 7 
)
Assumption 3 is a global detectability property of the estimation error system (and not of system (1)) with respect to the output y -ŷ. It covers the situation where the estimation error system is output-to-state stable ( [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF]) as a special case for which γ(h(x), h(x)) = χ(|h(x)-h(x)|) with χ ∈ K ∞ . It is the function γ in (7) that is implemented in (4) to generate the monitoring signals. In Section IV, we explain how to verify Assumption 3 for a class of nonlinear systems. The example below shows that the system in Example 1 satisfies Assumption 3 when it is equipped with a different output map.

Example 2: Consider the same system as in Example 1 but with 1 y = x 1 (and not y = x 2 ). The local observer ( 2) is still given by a copy of the plant's dynamics. Let V (x, x) =

1 2 (x 1 -x1 ) 2 + 1 2 (x 2 -x2 ) 2 for x 1 , x 2 , x1 , x2 ∈ R, hence (6) holds with α V (s) = α V (s) = 1 2 s 2 for s ∈ R ≥0 . For any x 1 , x 2 , x1 , x2 ∈ R, ∇V (x, x), F (x, u, x) = -x 2 2 + 3x 1 x2 -2x 2 (x 3 1 -x3 1 ), ( 8 
) where F (x, u, x) = (x 2 , -x 2 -2(x 3 1 -x 1 ), x1 , -x 2 -2(x 3 1 - x1 )), x1 = x 1 -x1 , and x2 = x 2 -x2 . Using 2 3x 1 x2 ≤ 9x 2 1 + 1 4 x2 2 and 2x 2 (x 3 1 -x3 1 ) ≤ 1 2 x2 2 + 2(x 3 1 -x3 1 ) 2 , we derive ∇V (x, x), F (x, u, x) ≤ -1 4 x2 2 + 9x 2 1 + 2(x 3 1 -x3 1 ) 2 = -1 4 x2 2 + 9x 2 1 + 2(x 3 1 -x3 1 ) 2 -1 4 x2 1 + 1 4 x2 1 . (9) 
Consequently, ( 7) is verified with θ = 1 2 and γ(x

1 , x1 ) = 2(x 3 1 -x3 1 ) 2 + (9 + 1 4 )(x 1 -x1 ) 2
, which verifies the required properties.

B. Main result

We are ready to state the main result. Theorem 1: Consider system (1), the estimation scheme described in Section II, and suppose Assumptions 1-3 hold. There exists N ⋆ ∈ Z >0 such that for any N ≥ N ⋆ , λ ≤ θ where θ comes from Assumption 3,

x 0 ∈ H, u ∈ L pc ∞ , |x(t) -xσ(t) (t)| → 0 as t → ∞.
Theorem 1 ensures that x-xσ converges to zero when the number of local observers N is sufficiently large. We recall that Lemma 1 provides an estimate of N ⋆ , when an estimate of the basin of attraction B in Assumption 2 is available. The influence of λ on the convergence of |x -xσ | is studied in simulations in Section V.

C. Discussions

The proposed estimation scheme may be computationally demanding when N ⋆ is large in Theorem 1. When we have prior quantitative knowledge on the convergence of y -ŷi for the local observers which are initialized nearby x 0 , we can use this information to reduce the number of local observers in the multi-observer, and thus reduce the computational cost. To be more precise, suppose that there exists a known function β ∈ KL such that for any local observer with x 0 -xi 0 ∈ B, and u ∈ L pc ∞ , the corresponding solutions to (1) and (2) verify

|x(t) -xi (t)| ≤ β(|x 0 -xi 0 |, t) ∀t ≥ 0. (10) 
When y = Cx, with C is real matrix, this implies |y(t)ŷi (t)| ≤ |C|β(|x 0 -xi 0 |, t) for any t ≥ 0. Suppose that we know an estimate of the basin of attraction B in Assumption 2 of the form B ′ = {x ∈ R nx : |x| ≤ ℓ ′ } with ℓ ′ > 0. By taking N ⋆ sufficiently large, there exists i ⋆ ∈ {1, . . . , N }, 1 In this case, it is easy to construct a global observer since the system is linear up to an output injection term. Nevertheless, the objective of this example is only to demonstrate that Assumption 3 holds. 2 These inequalities are obtained by applying the formula 2ab

≤ ǫa 2 + 1 ǫ b 2 for any a, b ∈ R and ǫ ∈ R >0 .
with any N ≥ N ⋆ , such that x 0 -xi ⋆ 0 ∈ B ′ in view of (3). Hence, we only have to run the local observers i ∈ {1, . . . , N }, which verify

|y(t) -ŷi (t)| ≤ |C|β(ℓ ′ , t) ∀t ≥ 0, (11) 
and not the others. Condition ( 11) can be evaluated on-line as it only depends on known quantities.

IV. APPLICATION

We study the case where system (1) has the form below

ẋ = Ax + φ(x, u) y = Cx, (12) 
where A and C are real matrices, and φ is globally Lipschitz and differentiable on R nx+nu . The local observer ( 2) is taken as

ẋ = Ax + φ(x, u) + K(x, u)C x, (13) 
where K(x, u) is a correction matrix, and x = x -x. We assume that K(x, u) is designed such that the condition below holds. Assumption 4: There exist real, symmetric, positive definite matrices P and Q such that, for any x ∈ R nx and u ∈ R nu ,

(A(x, u) -K(x, u)C) T P + P (A(x, u) -K(x, u)C) ≤ -Q, (14) where A 
(x, u) := A + dφ(x,u) dx x.
In addition, item (ii) of Assumption 2 is verified.

The inequality ( 14) is a priori difficult to verify as it needs to hold for any x ∈ R nx and u ∈ R nu . To overcome this issue, linear matrix inequalities have been proposed in3 [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF], which may allow designing the nonlinear gain K(x, u) so that ( 14) holds. We note that the gain K(x, u) constructed in [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF] is such that item (ii) of Assumption 2 is verified. We will see below that the assumptions made so far ensure the satisfaction of Assumptions 1-2 (only item (i) of Assumption 1 will need to be explicitly assumed).

We need to introduce some notations before stating the main result of this section. Let x, x ∈ R nx and u ∈ R nu , we first write dφ(x,u) dx x

-dφ(x,u) dx x x as dφ(x,u) dx x -dφ(x,u) dx x x = φ 1 (x, x, u)x +φ 2 (x, x, u)C x, (15) 
where φ 1 and φ 2 are such that |φ i (x, x, u)| ≤ m i with m i ≥ 0 for any x, x, u and i ∈ {1, 2}. This is always possible as we can take φ 1 (x, x, u) = dφ(x,u) dx x -dφ(x,u) dx x and φ 2 (x, x, u) = 0, noting that φ 1 is bounded since φ is globally Lipschitz (and differentiable). We further write φ 1 (x, x, u) as

φ 1 (x, x, u) = M ∆(x, x, u)R, (16) 
with ∆(x, x, u) diagonal and |∆(x, x, u)| ≤ 1, which is always possible since φ 1 is bounded.

The proposition below provides conditions tailored to systems ( 12) and ( 13) under which the results of Sections II-III can be applied.

Proposition 1: Consider systems ( 12) and ( 13) and suppose the following holds.

(i) Item (i) of Assumption 1 is verified.

(ii) Assumption 4 is verified.

(iii) There exist η > 0 and ν ≥ 0 such that

-Q + ηR T R -νC T C P M M T P -ηI < 0, (17) 
where P and Q come from Assumption 4, and M and R are defined in [START_REF] Sundarapandian | Local observer design for nonlinear systems[END_REF]. Then Assumptions 1-3 hold and the conclusion of Theorem 1 applies.

V. ILLUSTRATIVE EXAMPLE

In this section, we apply the results of Section IV to the following Wilson-Cowan oscillator

ẋ1 = -d 1 x 1 -d 2 x 2 + S(C 1 x 1 + C 2 x 2 + u) ẋ2 = -d 3 x 2 -d 4 x 1 ẋ3 = -f 0 x 3 + x 1 y = -f 0 x 3 + x 1 , (18) 
where

x 1 , x 2 , x 3 ∈ R is the state, u ∈ R is the input, y ∈ R is the output, d 1 , d 2 , d 3 , d 4 , f 0 > 0, d 4 < 0 and C 1 , C 2 ∈ R are parameters.
The function S is a sigmoid, which we define as S(z) = arctan(z) + π 2 for z ∈ R. The (x 1 , x 2 )-system is similar to system (1) in [START_REF] Sauer | Data assimilation for heterogeneous networks: the consensus set[END_REF] for instance. Wilson-Cowan oscillators are commonly used in computational neurosciences to investigate neurophysiological phenomena. The x 3 -system is introduced to generate an output signal y, which is centered at 0. This is justified by the fact that the electrophysiological signals recorded in practice often have a zero offset; this is usually the case with electroencephalography for example (see Section II in [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF]).

System (18) can be written as [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF] with

A =   -d 1 -d 2 0 -d 4 -d 3 0 1 0 -f 0   φ(x, u) = [S(C 1 x 1 + C 2 x 2 + u) 0 0] T C = [1 0 -f 0 ] . (19) 
We note that φ is globally Lipschitz and differentiable as required.

We consider the local observer [START_REF] Ristic | Beyond the Kalman filter: Particle filters for tracking applications[END_REF]. We design the gain K(x, u) by applying the technique in [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF]. We have taken the following parameters values:

d 1 = d 2 = d 3 = d 4 = 10, C 1 = 100, C 2 = -100, f 0 = 10. The obtained gain is, for x, u ∈ R, K(x, u) = 1 2 (1 -S ′ (C 1 x1 + C 2 x2 + u)) K 1 + 1 2 (1 + S ′ (C 1 x1 + C 2 x2 + u)) K 2 , (20) 
where S ′ (z) = 

To evaluate [START_REF] Vu | Supervisory control of uncertain linear timevarying systems[END_REF], we need to know R and M . For this purpose, we define the functions φ 1 and φ 2 in (15) as [START_REF] Sundarapandian | Local observer design for nonlinear systems[END_REF]. We have verified that LMI ( 17) holds and we have obtained θ = 0.11 in [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]. We assume that the initial condition x 0 to system [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF] lies in H = [-10, 10] 3 . Hence, all the conditions of Proposition 1 are satisfied.

φ 1 (x, x, u) =   0 C 2 ∆(x, x, u) C 1 f 0 ∆(x, x, u) 0 0 0 0 0 0   and φ 2 (x, x, u) =   C 1 ∆(x, x, u) 0 0   where ∆(x, x, u) = S ′ (C 1 x 1 + C 2 x 2 + u) -S ′ (C 1 x1 + C 2 x2 + u), (23) 
with x, x, u ∈ R. We derive that M = [1 0 0] T and R = [0 C 2 C 1 f 0 ] in ( 
We have uniformly sampled the hyperrectangle H with N = 27 points. The input u is given by a continuous Gaussian signal with mean 3 and variance 10, and the initial condition to ( 18) is x 0 = (-5, 5, 9). The value of λ is set to 0.1. Figure 2 confirms that xσ converges to the state of system [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF]. The signal σ is plotted in Figure 3, which shows that the switches only occur during the first instants and a single observer is selected afterwards. Simulations have revealed that no significant difference appears when taking smaller values of λ.

VI. CONCLUSIONS

We have presented an estimation scheme for nonlinear systems, which consists of a bank of N identical local observers initialized at different values, and a supervisor which selects one of these observers at any time instant. The convergence of the estimated state to the true state of the plant is guaranteed for N sufficiently large, provided a detectability condition holds. An explicit lower bound on N is provided when we know an estimate of the basin of attraction of the origin for the estimation error system. It is also explained how to reduce the potential computation burden of the scheme.

In future work, we will extend the presented results to nonlinear systems affected by exogenous disturbances and measurement noises. The multi-observer approach adopted in this paper might also be useful to improve the performance of existing observers in terms of speed of convergence, in the same spirit as what is done for the control of nonlinear systems with the united controllers technique, see [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF] for instance. Contrary to the control problem, we can directly initialize one observer nearby the plant by sufficiently sampling the set where the plant initial condition is. The challenge is then to find an appropriate criterion to select this observer (or one which is initialized nearby), as it is expected to converge faster than those initialized further. Arguments like those invoked in Section III-C should probably be used to solve this problem.
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 2 Fig. 2. State x (solid black line) and xσ (dashed blue lines).
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 3 Fig. 3. Variations of σ.

  1 1+z 2 for z ∈ R, and K 1 := [433.32 -87.00 -7.06] K 2 := [424.33 -89.04 -7.30].

					(21)
	Thus, Assumption 4 holds with	
			0.0184	-0.0035 -0.0976	
	P =		-0.0035	1.1741 -11.7681	 .
			-11.7681 -0.0976 122.2508	

The results in[START_REF] Hamid | Local observers design for a class of neural mass models[END_REF] are written for systems of the form of[START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF] with φ which only depends on x. They also apply when φ depends on both x and u.
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