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Definitions of incremental stability for hybrid systems

R. Postoyan, J.J.B. Biemond, W.P.M.H. Heemels, N. van dewVou

Abstract— The analysis of incremental stability properties
typically involves measuring the distance between any pair
of solutions of a given dynamical system, corresponding to
different initial conditions, at the same time instant. This
approach is not directly applicable for hybrid systems in
general. Indeed, hybrid systems generate solutions that ar
defined with respect to hybrid times, which consist of both
the continuous time elapsed and the discrete time, that is th
number of jumps the solution has experienced. Two solutions
of a hybrid system do not a priori have the same time
domain, and we may therefore not be able to compare them
at the same hybrid time instant. To overcome this issue, we
invoke graphical closeness concepts. We present definition
for incremental stability depending on whether incrementd
asymptotic stability properties hold with respect to the hybrid
time, the continuous time, or the discrete time, respectivg.
Examples are provided throughout the paper to illustrate these
definitions, and the relations between these three increméal
stability notions are investigated. The definitions are shan
to be consistent with those available in the literature for
continuous-time and discrete-time systems.

I. INTRODUCTION

The majority of the literature on incremental stability
(and related stability notions) focuses on smooth dynamica
systems either in continuous time or in discrete time. Some
works addressing such stability properties for classeoof n
smooth systems can be found in [16], [17], [21], [22], [23],
[25]. Results on incremental stability for hybrid dynantica
systems are rare. An exception is the recent work in [11],
where incremental stability is studied for a class of hybrid
systems in the formalism of [8]. Results on convergence for
a class of measure differential inclusions can be found]in [9

The study of incremental stability involves comparing (the
distance between) two solutions associated with different
initial conditions at a certain time instant. The analysis o
incremental stability for hybrid systems in the formalisin o
[8] is challenging for two reasons (both associated with the
hybrid nature of the dynamics). Firstly, in [8], solutiors t
hybrid systems are defined for hybrid time instants, whieh ar
the pairs consisting of the ordinary continuous time and of
the discrete time, which is the number of jumps experienced
by the solution so far. As any two solutions to the same

In the literature, a dynamical system is said to be Inhybrid system do not necessarily have identical hybrid time

crementally asymptotically stable when all its solutioms a domains, we cannot directly use available definitions of in-

asymptotically .stable,. see eg., [1], [,7]’ [18], [24], [25] cremental stability for continuous- and discrete-timeeys
Loosely speaklng, th|_s means that: (i) th? statfas of aArdr hybrid systems, as it is not a priori clear at which hybrid
two solut|0n_s, )/vhose’ initial conditions are CIOS?. to _eaCI}ime instants solutions should be compared. Secondlyeearl
q_ther, remain ‘close’ to each other_ for all positive time, . iy [2], [6] (although in the scope of tracking control
(i) that the states of any two solutions converge t_owardgnd not in the scope of incremental stability) have showh tha
each other as time proceeds. Related stability notions Hife fact that close solutions may exhibit jumps at (closg but
those of convergent systems (e.g., [4], [15]) and_ conwact yigiinct time instants implies that a conventional Eudide
(e.g., [5], [12]). In the current paper, the focus is on nOvegistance function is not suitable for generic hybrid system

definition_s of increm_e ntal asymptotic stability_for hybrio_lwith state-triggered jumps. Both issues need to be addiesse
systems in the formalism of [8], although we project thas thi

work will also support further developments on establighin

sufficient conditions for contraction and novel definitiasfs
convergence for hybrid systems.

carefully when proposing definitions for incremental sligibi
of hybrid systems.

The authors of [11] have presented a definition of in-
cremental stability in which solutions are compared at the
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hat cannot be extended) have an unbounded domain in the
continuous time direction and that they cannot jump several
times instantaneously. Like in [1], an extended systemas th
proposed and Lyapunov-based conditions are given.

In this paper, we present different definitions of incremen-
tal stability for hybrid systems compared to [11]. We start
by recalling the concept of-closeness of hybrid arcs (see
[8]), which provides a notion of closeness for two solutions



with possibly different time domains. We then propose aherex € R™ is the state,F' is the flow map,G is the
definition of (pre-)incremental stability, which esseliyia jump map,C is the flow set andD is the jump set. We
says that for any two (maximal) solutions, with ‘close’ iait assume that system (1) satisfies tybrid basic conditions
conditions, we have that their state evolutions and theieti (see Assumption 6.5 in [8]), i.e. the following holds: @)
domains remain ‘close’ for all time and converge to eacland D are closed subsets @&"; (i) F': R™ = R" is outer
other when time progresses. Contrary to the definition afemicontinuousand locally boundedrelative toC, C C
e-closeness of hybrid arcs, we use a generic mapping tomF, and F'(z) is convex for each: € C; (i) G : R" =
evaluate the distance between the states of the solutinds, &" is outer semicontinuous and locally bounded relative to
not necessarily the Euclidean distance. This is justifiethby D, andD c domG. These conditions ensure that system (1)
fact that the latter may be restrictive in the context of @cr is well-posed see Chapter 6 in [8] for more detalils.
mental stability as demonstrated in [24], [25] for continge We recall some definitions related to [8]. A subdetC
time systems and in [2] for hybrid systems. Moreover, iR>qxZ>( is ahybrid time domairf for all (7', .J) € E, EN
has been shown in [24] that incremental stability is not[0,7] x {0,...,J}) = U ([tj,tj+1], ) for some
a coordinate-invariant property for continuous-time sgsé  _ . . Je{0,1,...,J—1} .
when exclusively considering the Euclidean distance. finite sequinf:e of t|m_e@: t9 = t% S-S .t"'.A funct|oq
We also introduce the weaker notion @bw uniform ¢ @ £ — R™is ahybrid arcif £ is a hybrid time domain
(pre-)incremental asymptotic stabilityo denote systems and _'f for eachj € Zxo, t = #(t,j) is locally "’_‘bso'“‘e'y
which verify uniform incremental asymptotic stability pro  cONtinuous fr_ﬂﬂ = {t : (t,j) € E}. The hybrid arco :
erties with respect to the continuous time. The idea is aimil O!_Om¢ - R, IS asolutlo'n to (1) if: g) ¢(O.,O) €CU D
to Definition 3.1 in [19] and [11]. It consists of evaluating(”) forany j € Z>o, ¢(t,j) € C and 56(t, j) € F(o(t,))
the distance between two solutions at ‘close’ continuod" @imost allt € 17; (iii) for every (¢, j) € dom¢ such that
times, while tolerating an offset between the discrete sime.»/ +1) € dome, 6(t, j) € D ando(t, j+1) € G(4(t, j)).
at which the two solutions are compared. This definitiorﬁa‘ _SOIUt'On¢ to (1) ismaximalif it cannot be extended, and

generalizes the one in [11], as it relaxes the assumptiétn's completeif dom¢ is unbounded. Note that a solution

on the maximal solutions mentioned above. Furthermorg?ay be maximal but not Comp'?te- For a sQIutmno 1),
dome¢ := sup{t € R>¢ : 3j € Z>¢ (t,j) € domg}

we use more generic mappings to evaluate the distantePt : ,
between two solutions and we tolerate a mismatch betwe8d 5up; dome := sup{j € Zzo : 3t € Rxo (1)) €
the continuous times at which the solutions are compare om
which provides more flexibility. Additionally, we define the |||, FrRoM GRAPHICAL CLOSENESS TO INCREMENTAL
symmetric notion ofump uniform (pre-)incremental asymp- ASYMPTOTIC STABILITY
totic stability for hybrid systems which exhibit incremental
stability properties with respect to the discrete time.sThi
definition is relevant for systems for which the discreteetim
is dominant.

Examples are provided throughout the paper to illust
the definitions. Moreover, the relations between the thede
initions are investigated. We finally show that, if we embe

a uniformly incrementally asymptotically stable contimse L e .

time (respectively, discrete-time) system as a hybridesyst the definitions we propose below are |p§p|red by.the ”0“0’.‘ of

it is uniformly incrementally asymptotically stable acdiorg fs—clolsinssts T;\hygnd a(ljrcsf:f ?et Def|n|ktJ|otn 4.11tlr? (8], WE'Ch f

to our definitions, thereby showing the consistency of oyp fe'ated 1o the Hausdorf distance between the graphs o
the hybrid arcs and which we recall below.

definitions with existing ‘classical’ ones. The proofs are L - .
omitted for the sake of brevity, Definition 1: Givene > 0, two hybrid arcsp; and¢, are

To define incremental stability for hybrid systems, we need
to evaluate the distance between any two solutions of system
(2). A feature of this system is that two solutions do not
ratI%ave the same hybrid time domain in general (examples are
d provided below). As a consequence, we may not be able to
§ompare them at the same (hybrid) time instant. To avoid that
issue, we resort to graphical closeness concepts. In plattic

e-close if:
Il. PRELIMINARIES (i) for all (t,5) € dom¢, there existss such thats, j) €
Let R := (-o0,00), Ry := [0,00), Z := domgs, |t — s| < e and|o1(t, ) — da2(s,7)] < e.
{0 =2,-1,0,1,2,...}, Z>o = {0,1,2,...}, Z>o = (i) forall (¢,5) € domg, there exists such that(s, j) €
{1,2,...}. For (z,y) € R"*™, (x,y) stands for[z™, y*]T. domey, |t —s| < e and|pa(t, j) — é1(s,j)| <e. O
A function v : R>¢ — R>( is of classK if it is continuous, In Definition 1, the hybrid arcg); and ¢, are not com-

zero at zero and strictly increasing. A continuous functiopared at the same hybrid time instgntj) but at (¢, j) for
v:RY, — R is of classKL if for eacht € R>o, 7(-,t)  one and(s, j) for the other, with|t — s| < ¢. In that way,

is of classKC, and, for eachs € R>¢, (s, -) is decreasing dom¢; and domp, do not need to be equal, they only need
to zero. Letz € R, [x] := min{a € Z : x < a}. For a to be ‘close’ enough so that for ar{y, j) € dom¢; there
set-valued mapping’ : R" = R™, the domain ofF" is the  exists an appropriate pais, j) € domg, and vice-versa.
set domF := {z € R" : F(x) # 0}.

We study hybrid systems of the form [8] 1The set-valued mapping’ : R = R™ is outer semicontinuous if its
graph{(y,z) : y € R", z € F(y)} is closed, see Lemma 5.10 in [8].

TeF(x) zeC, xt €G(x) ze€D, 1) 2See Definition 5.14 in [8].



Definition 1 may therefore be used to compare two solutions Definition 2 not only requires the states of any two
to (1) at any time instant, even though these do not have sam@utions to remain close and to converge to each other, it
hybrid time domain. also requires their hybrid time domains to be close and to
The distance between two hybrid arcs is evaluated usin@nverge to each other, which is a strong requirement as
the Euclidean distance in Definition 1, which may be restriceonfirmed by the proposition below.
tive in the context of incremental stability as discussed in Proposition 1: Consider system (1) and suppose itjis
the introduction. Inspired by [20], we use a generic positivUIS for a givend € D. Then, one of the following properties
function, which we denoté, instead of the Euclidean dis- holds: (i) domp = R>o x {0} for any maximal solutionp;
tance, to compare the states of two hybrid solutions and w#) dom¢ = {0} x Z>( for any maximal solutionp. O
will talk of incremental stability properties with respeota Proposition 1 implies that, if system (1)dsUIS (whatever
certaind, which also allows for ‘output’ incremental stability 6 € D), it is either a purely continuous-time system or a
(as opposed to incremental stability for the full state). Weurely discrete-time system, which is clearly restrictile
concentrate on mappings : R?® — R, which belong the next sections, we present alternative definitions ta-cha
to the setD of continuous mappings that verify for any acterize hybrid systems which exhibit incremental stgpbili
(r1,22) € R?™: (i) §(x1,22) = 6(x2,21); (i) 1 = 12 =  properties with respect to the continuous time, or the discr
d(z1,22) = 0. The first condition means thatis symmetric time, respectively.
and the second one states thatanishes when:; = z». In
that way, the functions if® are general enough to encompass
the metrics considered in [2], [24], [25] as particular Gase The definition below is relevant for systems for which
and to accommodate the features of hybrid systems for whiéhe cont.inuous time is considered dominant over the discret
it may be restrictive to ask thaf(z1,z5) = 0 implies (ump)time. _ .
21 = 2. In this manner, we can consider distance functions Definition 3: Given 4 € D, system (1) isflow uniformly
where the se{(z1,22) : §(z1,22) = 0} is larger than the pre—mcrgmentally afsymptouc_:glly stable with respect t@-
diagonal{(z1,22) : 21 = 22}, but still corresponds to a FUPIS)if the following conditions hold:
behaviour that is desired in applications, see [2] forinstéa (i) foranye > 0, there exists > 0 such that for any pair of
In view of Definition 1 and the discussion above, we maximal solutiong ¢y, ¢2) with §(41(0,0), ¢2(0,0)) <
propose the following definition of incremental asymptotic s it holds that, for all (t,j) € dome¢,, there ex-

IV. FLOW INCREMENTAL ASYMPTOTIC STABILITY

stability. ists (¢/,7') € domgy with |t — /| < e such that
Definition 2: Given § € D, system (1) isuniformly pre- 0(p1(t, 4), p2(t',5")) < &
incrementally asymptotically stable with respect doin (i) for any ¢ > 0 andr > 0, there existsI" > 0 such
graphical sensedtUplS)if the following conditions hold: that for any pair of maximal solution&p;, ¢2) with
(@) foranye > 0, there exists > 0 such that for any pair of 5(41(0,0), ¢2(0,0)) < r it holds that, for all(¢,j) €
maximal solutiong 1, ¢2) with §(¢1(0,0), $2(0,0)) < dom¢, with ¢ > T, there existgt’, j) € domg, with
s it holds that, for all (t,j) € dome¢,, there ex- |t —t'| < e such thatd(¢1(t, j), p2(t',5')) < e.
ists (¢/,j) € domgy with |t — /| < e such that System (1) isflow uniformly incrementally asymptotically
S(pi(t,5), d2(t',5)) <&, stable with respect t&d (5-FUIS) when, in addition, any

(i) for any ¢ > 0 andr > 0, there exists© > 0 such maximal solution¢ to (1) is such thatup, dom¢ = .
that for any pair of maximal solution&p, ¢2) with [

0(¢1(0,0),¢=2(0,0)) < r it holds that, for all(¢,j) € Item (i) of Definition 3 is a uniform global stability
dome¢; with ¢t + j > O, there existqt,j) € dom¢>  property. It implies that any two solutions and ¢-, which
with |t — ¢'| < e such thaty (¢ (¢, 7), p2(t', 7)) < e. are initialized close to each other (where used to evaluate

System (1) isuniformly incrementally asymptotically stable the distance between the initial conditions) remain clase t

with respect tod in graphical senseUIS) when it isd-  each other at some close continuous times, while discarding

UplS and any maximal solution to (1) is complete. [ the numbers of jumps the solutions have experienced. It
Iltem (i) of Definition 2 is a uniform global stability also implies thatup, dom¢, and sup, dom¢, are ‘close’

property of all maximal solutions. It means that for any(otherwise there may not exiét’, j/) € dome¢. such that

e > 0, there existss > 0 such that any two maximal |t—¢| < e in item (i) of Definition 3). Item (ii) is a uniform

solutions¢; and ¢, aree-close (in the distance functiod)  global attractivity property of every solution, as the dams$

as long a9 (¢1(0,0), ¢2(0,0)) < s. Item (ii) of Definition 2 T is the same for all maximal solutions; and ¢» with

is a uniform global attractivity property of all the maximald(¢4(0,0),$2(0,0)) < r, givene,r > 0. It can be noted

solutions. It requires that for any r > 0 there exist®® > 0 that the time mismatch— ¢’ of the solutions in Definition 3

such that any two maximal solutiong and ¢ such that reminds of Zhukovsky stability for continuous-time sysgem

5(41(0,0), ¢2(0,0)) < s arees-close (in the distance function see e.g., Chapter 8.4 in [10]. #fis the Euclidean distance,

9) after a uniform amount of ‘time®. Notice that we do this small time mismatch—¢' does not allow for the ‘peaking

not explicitly state symmetric statements as in Definitign Iphenomenon’ of the errof(¢1(¢,5), ¢2(t,j')) to occur as

as items (i) and (ii) of Definition 2 hold foany pair of described in e.g., [2], [6], [9], [13]. Still, systems exlibg

maximal solutions. the peaking phenomenon can be FU(p)IS in another



Loosely speaking, Definition 3 consists of projecting the o if 21(0,7) # 1(0,0), necessarilyz:(0,5) = 1,
state trajectories on the hyperplafter) and evaluating the j > 1andxz:(0,0) > 1. If 22(0,0) > 1, (0,1) €
distance between two solutions on this hyperplane. domgs, x2(0,1) = 1 and |z1(0,5) — 22(0,1)] = 0.

Remark 1:Definition 3 differs from the definitions in If 22(0,0) < 1, |21(0,5) — 22(0,0)] = x1(0,5) —

[11] on several points. First, a solution may experience  22(0,0) < |21(0,0) — 22(0,0)| < s = €.

two consecutive jumps (see Example 1 for instance) an§hent > 0, in view of (3) and the observation that maximal
the maximal solutions to system (1) are not required tgo|ytions to (2) have hybrid time domains that are unbounded
be complete in the-direction in the definition 08-FUPIS, i t.direction, for any(¢,j) € domg; with ¢ > 0, there
which relaxes Assumption 3.1 in [11]. Second, the solutiongyists ;' ¢ 7., such that(t, ;') € domg, and |21 (¢, j) —

¢1 and ¢, in Definition 3 are not compared at the samey, (¢, /)| = e~ | min{z1(0,0), 1} — min{z2(0,0),1}|. Not-
continuous timet but at two (potentially) distinct times  ing that| min{z, (0, 0), 1} — min{z2(0,0), 1}| < |1 (0, 0) —

and ¢" with [t —#'| < ¢, which provides more flexibility. .., 0)|, we have|z;(t,5) — 22(t,j')| < e *|z1(0,0) —
Third, the functions is not constrained to be the Euclideanx2(070)| < s = e. Hence item (i) of Definition 3 is verified.

distance. o - U Note thatt’ = ¢ here.
We derive from Definition 3 that, when there exists a pair | ot - > 0 and ¢1, ¢ be two maximal solutions to (2)

of maximal solutionsg; and ¢ with sup,dom¢; = oo g ch thatd (¢ (0, 0), ¢2(0,0)) = |1 (0,0) — 22(0,0)| < 7.
and sup, domg, < oo, the system can never beFUPIS  kor gl (¢, ) € domg, with ¢ > T and T > max{0, In(%)},
for any § € D, as item (i) of Definition 3 can never be ihare existsj’ € Zso with (t,j) € domg, and |z (¢, 5) —

satisfied. Hence, either all maximal solutions should hav&(tjj/” = e~|min{z,(0,0),1} — min{z»(0,0),1}| <
an unbounded domain in thedirection or all should have -7,."~_ tem (ii) of Definition 3 is guaranteed with = .
a bounded one for the system to bé=UplS. In the first \yie nave proved that system (2)dsFUIS. n
case,0-FUpIS would immediately becomgFUIS. We also

remark that whersup, dom¢ < 7" < oo for all maximal V. JUMP INCREMENTAL ASYMPTOTIC STABILITY

solutions¢ to (1), with 77 > 0, then item (ii) of Definition
3 trivially holds by takingl = T".
A simple example of &-FUIS hybrid system is provided

Similar to flow incremental asymptotic stability, we define
below the symmetric notion of jump incremental asymptotic

below. stability.
Example 1:[A §-FUIS system] Consider the system Definition 4: Given ¢ € D, system (1) igump uniformly
. pre-incrementally asymptotically stable with respect t@-
( i € [O_j)] ) (z,0) € C JUplS)if the following conditions hold:
x " _ min{x, 1} @ (i) foranye > 0, there exists > 0 such that for any pair of
< ot ) = o1 ) (z,0) €D, maximal solutiong 1, ¢2) With 3(¢1 (0,0), é(0,0)) <
where C = {(z,0) : 2 €[0,1] ando € [0,N]}, D = s it holds that, for all(t,j) € domeg,, there exists
{(x,0) : z €[1,00) ando € [1,N]}, p >0 and N € Z-y. (t',j) € domgy such thatd(¢i (¢, j), ¢=(t', 7)) <e;

The o-subsystem is an average dwell-time automaton (sédl) for any ¢ > 0 andr > 0, there exists/ > 0 such
[3], [6]) which is used to rule out solutions which jump that for any pair of maximal solutiongp:, ¢2) with
infinitely many times when: = 1. The parameterg and 6(¢1(0,0),$2(0,0)) < r it holds that, for all(t,j) €
N are arbitrarily selected. Hence, any maximal solution has ~ domé: with j > J, there exists’, j) € domg, such
an unbounded domain in the continuous time direction. It ~ thatd(éu(t, ), ¢2(t', 7)) <e.

can be noted that the (maximal) solutions to (2) do not 8&ystem (1) isjump uniformly incrementally asymptotically
priori have the same hybrid time domain. Take for instancstable with respect t@ (5-JUIS) when, in addition, any
$1 : (£,0) — (e 'z1(0,0),0) with z1(0,0) € [0,1) and maximal solution¢ to (1) is such thatup; dom¢ = co.
$2(0,0) = (2,1) and gz (t,1) = (e~ *,0) for t > 0. We have [

dom¢; = R>ox{0} # ({0} x{0})U(R>ox{1}) = dome,. In item (i) of Definition 4, the distance between two
Let ¢ = (z,0) be a maximal solution to (2). For any solutions is evaluated at the discrete tifnavithout imposing

(t,j) € domg with ¢ > 0, any conditions on the continuous times by opposition to
2(t,j) = e~tmin{x(0,0),1}. 3) Definition 3. It has to be noted that the solutions and

¢o in items (i) and (ii) of Definition 4 are evaluated at the
We are going to use this expression to prove that system (2ame discrete timg, and not atj andj’, respectively, with
is 0-FUIS whered : R* — R and§ : (z1,01,22,02) — |j—j'| < e as we might expect. That is justified by the fact
|z — x2|. We first verify that item (i) of Definition 3 holds. that whene < 1, |j — j/| < ¢ implies thatj = j’ since
Lete >0, s =¢ and¢; = (z1,01), g2 = (v2,02) be two  j i’ € Zs(. Since the satisfaction of items (i) and (i) of
maximal solutions to (2) such that¢;(0,0),$2(0,0)) = Definition 4 for anys € (0,1) implies its satisfaction for
|1(0,0) — x2(0,0)| < s. Let (t,5) € dom¢g,. Whent =0, anye > 1, there is no loss of generality in evaluatiag
o if 21(0,7) = 21(0,0) soj = 0 or z1(0,0) € [0,1], andg¢, at the same discrete tinje We emphasize again that
and in both case$r(0,5) — 22(0,0)] = |21(0,0) — item (ii) of Definition 4 is a uniform attractivity propertgas
22(0,0)] < s =¢; the constant/ is the same for all maximal solutions and



@2 With 6(¢1(0,0), 2(0,0)) < r, givene,r > 0. Compared 0(¢1(0,0),¢=2(0,0)) < r. For anyj > 0, it holds that
to Definition 3, Definition 4 somehow consists of projectingp; (t,j) = 3> min{¢;(0,0),1} for (¢,j) € domg;, i €
the state trajectories on the hyperpldger) (and not(t,«))  {1,2}. Hence, for any(t,j) € dom¢; with j > 0, there
and evaluating the distance between two solutions on théxists (¢/,j) € dome¢. such thatd(éq (¢, ), p2(t', 7)) =
hyperplane. %|min{¢1(01, 0),1} — min{¢2(0,0),1}| < 5|¢1(0,0) —

Similar observations as for Definition 3 can be madep,(0,0)| < 5;7. We obtain the desired result by selecting

For instance, when there exists a pair of maximal solutiong — [lln(g))w_ As a conclusion, we have shown that system
(¢1, ¢2) with sup; dom¢, = co andsup; dom¢s < oo, the  (4) js JleS with respect to the Euclidean distance. M
system can never b&JUplS for anyd € D, which implies

that all maximal solutions either have an unbounded domain V|- RELATIONS BETWEEN THE DEFINITIONS
in the j-direction or a bounded one for the system todbe A system which is)-FU(p)IS is not necessarily-JU(p)IS
JUpIS. An example of a hybrid system which is JUIS withand vice versa, as demonstrated by the following examples.

respect to the Euclidean distance is provided below. Example 3 §-FUIS but nots-JUpIS): System (2) has
Example 2 (A%-JUIS system):Consider the system been shown to be-FUIS with § : (z1,01,22,02) —
L b1 |z1 — xz2]. Nonetheless, it cannot bé&-JUplS as some
¢=-1 z €[l c0), et =gv ze[01] ) maximal solutions have an unbounded domain in the

We note that any maximal solution has an unbounded domairdirection (consider those for which = £ for instance)

in the discrete time direction, as they all reach in finitetnd some have a bounded domain in this direction (when
continuous time the seD = [0,1] and then they jump remains constant on flows). As a consequence, item (i) of
infinitely many times. We také to be the Euclidean distance. Definition 4 does not hold. [ |
Lete > 0, s = € and ¢1, ¢, be two maximal solutions to ~ Example 4 §-JUIS but nots-FUpIS): Consider system
(4) such thats(¢1(0,0), ¢2(0,0)) < s. We distinguish four (4) and suppose, in order to attain a contradiction, that
cases to study item (i) in Definition 4. it is FUpIS with respect to the Euclidean distance. As
Case 1:(¢1(0,0), ¢2(0,0)) € D% a consequence, for > 1 ande € (0,%), there exists
We have that dom; = domg, = {0} x Z>o. Let (0,5) € T > 0 such that the statement in item (i) of Definition
{0} x Zso, then 6(¢1(0,5),2(0,5)) = o[41(0,0) — 3 holds. Let ¢ and ¢, be two maximal solutions

$2(0,0)] < s =e. with ¢1(0,0) = (o + 2)r and ¢2(0,0) = ar where
Case 2:(¢1(0,0), $2(0,0)) € C. a > 1 is a parameter we are free to select. We see that
We have dong; = ([0,6:(0,0) —1] x {0}) U [¢1(0,0) — ¢2(0,0)] = § < r. Moreover, sincenr > 1,

({6:(0,0) =1} x Zsg) for i e {1,2}. Consider domg; = ([0,¢:(0,0) — 1] x {0})U({¢:(0,0) — 1} x Z=o)
(t,0) € dome¢;. If (t,00 € domg,, then for i € {1,2}. We selecta sufficiently large such
3(¢1(t,0), ¢(t,0)) = [¢1(0,0) —t—(¢2(0,0)—#)| < s =e. that ¢,(0,0) — 1 = (o + 5r —1 > T. Let

If (t,0) ¢ domg., that means that > ¢,(0,0) — 1, t=¢1(0,0)—1and;j € Z>o be such thatt, j) € dom¢;.
but ¢t < ¢1(0,0) — 1, therefore ¢»(0,0) < ¢1(0,0). According to item (i) of Definition 3, there exists
If ¢1(t,0) > ¢2(0,0), then |¢(t,0) — ¢2(0,0)] = (¥,5') € domgy such that|t — ¢'| < e. Note that
B1(t,0) — $2(0,0) < ¢1(0,0) — $2(0,0) < s = e. ' < ¢2(0,0) — 1 by definition of domp,. Consequently,
Finally, if ¢1(¢,0) < ¢2(0,0), by continuity of ¢o(-,0) on [t —t'| = $1(0,0) =1 —t" > $1(0,0) — $2(0,0). We deduce
[0, $2(0,0) — 1), there exists(t’,0) € domg, such that thatf = ¢1(0,0) — #2(0,0) < |t —'| < e. This contradicts
$1(t,0) = ¢o(t',0) andd (¢ (t,0), ¢2(t',0)) = 0. Letj >0  the fact that € (0, 5). As a consequence, system (8) is not
and (¢, j) € domg;, then we observey (t,j) = 5. There FUpIS with respect to the Euclidean distance, although it is

exists (¢',j) € domg, such thatg,(t',j) = 5. Hence, JUIS with respect to this distance. [ |
§(d1(t, ), d2(t', 7)) = 0. On the other hand, a system can be b&hRU(p)IS and
Case 3:(¢1(0,0),$2(0,0)) € D x C. 0-JU(p)IS; examples are mentioned in Section VII.

Let (t,7) € domg,. If j = 0, necessarilyt, j) = (0,0) and The proposition below shows the connections between
the desired result holds. Jf> 0, ¢1(0, ) = 2¢1(0,0) and  Definition 2 and Definitions 3-4.

there existt’, j) € domg, such thai(t', j) = 5. Hence, Proposition 2: Let § € D. The following statements hold.
§(61(0,4), d2(t',§)) = 5 (1 — ¢1(0,0)) < 5(¢2(0,0) — (i) If system (1) is§-UplS, then it is boths-FUpIS and
$1(0,0)) <s=e. 9-JUplS.

Case 4:(¢1(0,0),¢2(0,0)) € C x D. (i) If system (1) iss-UIS, then it is eithe-FUIS or 6-
Let (t,j) € domgy. If j = 0, ¢1(¢,0) = ¢1(0,0) — ¢ for JUIS.

(t,0) € domey. Hence|pq (¢,0) — ¢2(0,0)] = ¢1(0,0)—t— (i) If system (1) is bothé-FUpIS andd-JUplS, it is not
$2(0,0) < ¢1(0,0) — ¢2(0,0) < s =e. If j >0, p1(t,4) = necessarilys-UplS. O

% andes (0, j) = 2¢2(0,0). Hence 5(¢1(t, 5), $2(0,4)) < Item (iii) of Proposition 2 is due to the fact that the hybrid
s = ¢ in view of the arguments at the end of Case 3. Wi#ime domains of the solutions play a very important role for
have proved that item (i) of Definition 4 holds. 0-UIS. Indeed, a system may very well be batiUplS

We now study item (ii) of Definition 4. Lets,» > andJ-JUpIS, and not-UplS (for somed € D), because
0 and ¢;, ¢ be two maximal solutions to (4) with two (maximal) solutions, which have close initial conditso



0-FUpIS = 6-JUpIS
0-JUpIS = J-FUpIS

Z 6-FUpIS ands-JUplS

5-UplS
§-FUIS or 6-JUIS

(1]

Fig. 1. 2]

Relations between Definitions 2, 3, and 4.

according to the distancg do not have ‘close’ hybrid time
domains. A summary of the relations between Definitions 2,3
3, and 4 is provided in Figure 1.

(4]

(5]
The proposition below shows that the proposed definitions
are consistent with the definitions of incremental stapbilit [
available in the literature for continuous-time systems.
Proposition 3: Consider the continuous-time systeime
f(z), wherez € R", and f : R®™ = R™ is outer
semicontinuous and locally bounded &, and f(z) is
convex for eachr € R". Suppose that any maximal solution
is complete and that there exi§te D and 5 € KL such
that any pair of maximal solutiong;,x2) verifies for all

VII. CONSISTENCY WITH DEFINITIONS FOR
CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

(7]

(8]

t>0,d0(x1(t), z2(t)) < B(6(x1(0),22(0)),¢). Then, hybrid [10]
system (1) withF(z) = f(z), C = R", G(z) = {z} and [11]
D =0, for x € R, is 6-FUIS andé-UIS. O

Proposition 3 states that if a continuous-time system
is uniformly incrementally asymptotically stable, theristh (12]
property is preserved when this system is embedded ps]
a hybrid system of the form (1). Note that the choice
of G in Proposition 3 has no impact on the result. Th?m]
following proposition states an equivalent result for dite-
time systems. Incremental stability of discrete-time eyt
is investigated in e.g., [12], [14].

Proposition 4: Consider the discrete-time systent <
g(x), wherexz € R", g : R® = R" is outer semicontinuous [16]
and locally bounded o™, and nonempty for alk: € R™.
Suppose that this system is incrementally asymptotically7)
stable with respect té6 € D, in the sense that there exists
B € KL such that for any pair of maximal solutiofis;, z2) (18]
and k& € Zzo, 5(1‘1(k),1‘2(k)) < ﬁ(é(xl(O),xg(O)),k)

[15]

Then, hybrid system (1) with#(z) = {z} , C = 0, [9
G(z) = g(x) and D = R", for z € R", is §-JUIS and
0-UIS. 0

[20]

VIII. CONCLUSION

We have proposed a definition of incremental stability fof,q;
hybrid systems based on the notionse€loseness of hybrid
arcs. This definition was proved to be rather restrictive, d$?!
it only covers the case of purely continuous-time or purely
discrete-time systems (when all the maximal solutions to
the system are complete). This motivated us to pursue th??’]
alternative definitions, which are relevant in situatiorteve
either the continuous time is dominant and the number of
jumps the solutions have encountered is irrelevant, or tHé
opposite, where the number of jumps of the solutions igs,
dominant and the amount of time the solutions have flowed
is not important. The relations between these definitions

6] F. Forni, A.R. Teel, and L. Zaccarian.

have been investigated and we have shown that the proposed
definitions are consistent with those existing in the litiera
for purely continuous-time and discrete-time systems.
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