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ABSTRACT 

Project risks have never been so present. First, projects are dealing with bigger stakes and facing 

stronger constraints. Moreover, projects must cope with an ever-growing complexity. Risks have then 

increased in number and criticality. Lists of identified project risks thus need to be decomposed, for 

smaller clusters are more manageable. Existing techniques are mainly mono-criteria, based on risks 

parameters such as nature or criticality value. Limits have appeared since project risk interactions are 

not properly considered. Project interdependent risks are indeed often managed as if they were 

independent. We thus propose an interactions-based clustering methodology with associated tools and 

algorithms. Our objective is to group risks, so that the interaction rate is maximal inside clusters and 

minimal outside. The final objective is to facilitate the coordination of complex projects by reducing 

interfaces when dealing with risks. We first model project risk interactions through binary matrix and 

numerical matrix representation. Then we define our objective function. A linear programming 

algorithm and two approximate iterative ones are then presented. Possible refinement through the 

concept of interactions similarity is also proposed. A case study in the entertainment industry is finally 

presented, providing us information and points of comparison for global conclusions and perspectives. 

 

1 INTRODUCTION 

A project is a temporary and unique endeavor undertaken to deliver a result, which generally 

corresponds to the creation of a unique product or service which brings about beneficial 

change or added value (PMI, 2004). A new organization within the firm is then needed to 

perform a project: new processes which must answer project finalities and objectives in terms 

of values creation must be set up. These new processes are performed thanks to resources 

(notably project actors) which belong to the created project organizational system. A project 

is in essence unique, which means that the project organizational system is to be conceived 



  

for each project within a firm (as it is specific to a project). Project organizations are thus in 

essence temporary organizations. They coexist with permanent organizations which exist 

within the firm. This coexistence (involving interfaces and dependencies) makes project and 

project management all the more complex. Moreover, the conception of the project 

organizational system follows the steps of project phases’ identification and analysis, 

planning and monitoring.  

Therefore, when thinking at projects in terms of systems following several phases, many 

dependencies and interdependencies between phases, sub-systems and other entities can be 

identified. This can lead to communication and coordination issues when facing decision-

making situations. Namely, project complexity, described notably in (Baccarini, 1996), 

(Edmonds, 1999), (Laurikkala and al., 2001) involves issues in decision-making under 

complex situations (Phelan, 1995), (Earl and al., 2001), (Vidal and al., 2010). Then, as well as 

the uncertainty and instability which are inherent to projects, complexity appears to be one of 

the main risk drivers. Moreover, complexity reduces the awareness of decision-makers and 

thus the efficiency of their decisions. 

As a consequence, this paper proposes an innovative method and its associated tool to assist 

project risk management under complex contexts by focusing on project risk 

interdependencies. Our research objective is to group risks into clusters in order to catch 

inside of them most of project interactions. This is notably to facilitate the coordination 

among actors involved in the project risk management process. 

2 THE NEED FOR A BETTER CONSIDERATION OF PROJECT RISK 

INTERACTIONS 

Project systems are in essence risky, as they are unique, constrained, subject to uncertainty 

and to complexity. They are composed of many interrelated objects of different natures and 

must reach many objectives which may be interdependent or even contradictory. This 



  

involves two things in terms of risk management. First, there are many risks of different 

natures, and it is even impossible to be completely exhaustive when identifying them. It is 

then mandatory to group risks into smaller and thus more manageable groups, which is 

detailed in 2.1. Second, these risks are interrelated, meaning that they are not independent 

events. This causes some issues in decision-making in project risk management, when 

decisions are to be made about the prioritization of risks and the risk mitigation actions. These 

issues are not well addressed by traditional approaches as shown in 2.2. Paragraph 2.3 sets the 

resulting problem and methodology of this paper. 

2.1 Classifying project risks by nature and/or by value 

Project risk management is classically decomposed into four successive major steps: risk 

identification, risk analysis, risk response planning and risk monitoring (PMI, 2004). 

Risk identification is the process of determining events which, may they occur, could impact 

positively or negatively project objectives. Risk identification methods are classified 

according two different families: direct or indirect risk identification (Raz and Hillson, 2005). 

The number of risks in the generated list may vary from some tens to some hundreds. It is 

then mandatory to decompose it into subgroups in order to have more manageable items. This 

list is a priori (included in the methodology) or a posteriori classified according to the nature 

of the risks (financial, human, technical, schedule, etc…). This process is called clustering by 

nature. 

During risk analysis, risks are prioritized, essentially according to their probability and 

impact. Risk evaluation scales are often defined in terms of criticality, which is generally a 

function of probability and impact. The main output of risk analysis is a list or graph, which 

enables decision-makers to categorize risks as high, medium or low in terms of the chosen 

indicator (criticality whatever its formulation, or other indexes). This is another kind of 

clustering, called by value. 



  

Next steps are risk response planning and monitoring. We argue that these steps should be 

performed after an innovative project risk analysis based on risk interactions since current 

methods have shown their limits. 

2.2 Limits of traditional approaches 

The initial goal of risk clustering processes is to facilitate the management of risks in terms of 

decision-making. In the case of clustering by nature, the main objective is to facilitate the 

identification of risk owners, whether individual or entities (due to their skills and 

competencies), and then to facilitate the allocation of additional or contingency resources. In 

the case of clustering by value, the main objective is to prioritize risks in order to make 

decisions about the future mitigation plan and the resulting resource allocation. As they are 

classifying risks based on one of their characteristics, those methods do not include their 

possible interactions. Therefore, in both cases, there are lots of interactions between clusters. 

This can result in a lack of coordination between actors when making decisions, due to the 

lack of awareness of the global impact of one’s decision, mainly outside the considered 

cluster. 

Actually, whatever the criteria used for the decomposition of an initial risk list, and whatever 

the rigor and detail level used, there will always be interactions between risks which do not 

belong to the same cluster (Marle, 2002). This can notably be underlined when looking at 

projects through systems thinking (Simon, 1981), (Le Moigne, 1990). 

Project management current techniques include classical principles underpinning scientific 

management: the fragmentation of work and the maximization of visibility and accountability. 

We can argue that today projects are generally managed with single-link trees (Work 

Breakdown Structure, PERT, Organizational Breakdown Structure, risk lists) and not as 

networks (Vidal and al., 2009). In the case of risk management, most of the methods use lists, 

screening or sorting risks, as seen before. The problem with current methodologies is that 



  

project risk interactions are not clearly included, e.g. in Figure 1, where some links are 

existing though not managed (dotted lines). Risks are indeed interrelated with complex links. 

 

Insert Figure 1 

 

A previous study we had conducted about 23 risk analysis methodologies enabled to identify 

complexity-related issues (Marle, 2008). For instance, there may be propagation from one 

« upstream » risk to numerous « downstream » risks, the climax of this phenomenon being the 

famous dangers of the domino effect. Traditional methodologies are mainly single-risk 

oriented, analyzing their multiple causes and multiple consequences. However, some works 

have been done to model more complex interdependencies between risks. Bayesian Networks 

for instance link several risks, from multiple inputs to multiple outputs, but they have specific 

validity conditions: links must be oriented, and they are more adapted to acyclic networks. 

However, loops are a great danger during projects and are all the more complicated to 

understand since risks which exist within a loop are likely to be heterogeneous (of different 

natures). It is possible to tackle this issue using dynamic Bayesian Networks but the effort 

required to gather conditional probabilities and to run dynamic networks for the huge number 

of possible loops makes them unsuitable to real project environments.  

There is thus crucial need for better awareness, consideration and management of project 

risks, knowing they are intertwined. We propose in this article such a methodology. Our 

ambition is not to give “exact” results: we want to assist day-do-day project risk management 

thanks to our method. This one is notably not based on the mathematics of probabilities. It can 

thus take into account easily the existence of loops and non-linear couplings for instance. 



  

2.3 Problem setting and methodology 

As shown by the former paragraphs, risks are managed thanks to the elaboration of smaller 

clusters. At this stage, a management issue arises, since decisions may be blocked, slowed 

down or ineffective if interactions are poorly taken into account. Our research problematic is 

thus to propose a new additional clustering methodology, which could take into account 

interactions between risks, in terms of existence and strength. First, we identify possible risk 

interactions. The whole is synthesized thanks to binary matrix representation. The matrix is 

then transformed to be a numerical one thanks to the use of the principles of the AHP 

(Analytic Hierarchy Process, a multi-criteria decision-making methodology) (Saaty 1980). 

These numerical data permit us to develop a linear programming and two approximate 

iterative algorithms. We then express how these results can still be refined thanks to the 

introduction of a distance measure and similarity identification process. All the obtained 

results are then compared to classical decompositions, notably thanks to a case study in the 

entertainment industry. We then propose some conclusions and call for future perspectives of 

research around this issue, after studying the implications of our works on day-to-day 

management. 

3 CATCHING PROJECT RISKS INTERACTIONS THROUGH MATRIX 

REPRESENTATION 

3.1 Building up the Risk Structure Matrix (RSM) 

3.1.1. The Design Structure Matrix approach 

The Design Structure Matrix (DSM) represents relations and dependencies among objects. 

The same objects are both in the rows and columns of the square matrix, which is square. The 

DSM was introduced by Steward (Steward, 1981) with tasks and was initially used basically 

for planning issues (Eppinger and al., 1994). Since, it has been widely used with other objects, 

like product components, projects or people (Eppinger and Salminen, 2001), (Sosa and al., 



  

2004), (Danilovic and Browning, 2007), (Sosa, 2008). As for us, we propose to use the 

concept of DSM for other conceptual objects, which are risks, in the context of project 

management. As tasks, projects and people, project risks are (or can at least be supposed as): 

 in a finite number (since a project is in essence temporary, with finite resources, 

objectives, means, etc., i.e. a finite number of elements),  

 managed during the project management process,  

 interrelated, (notably because of project and project management complexity factors 

(Vidal and Marle, 2008)) which justifies the use of a methodology for complex 

interactions management. 

We define risk interaction in terms of the existence of a possible precedence relationship 

between two risks Ri and Rj. We then define the binary Risk Structure Matrix (RSM). It 

corresponds to the square matrix with RSMij=1 (else 0) when there is an interaction from Rj to 

Ri. The main advantage of this approach is to overcome the display issue of complex network 

and to permit easier calculations which are inherent to the matrix format (eigenvalues, 

matrices product, matrix transposition, etc…). The combination of several individual 

interactions may form loops in the risk network (for instance, if RSMij=RSMjk=RSMki=1, 

then we have a loop including the three risks Ri, Rj and Rk). 

3.1.2. Building up the RSM 

In order to build the RSM, we have to identify the interactions which exist between project 

risks. The iterative procedure we use is notably addressed in ongoing publications. 

Classically, the DSM is re-ordered in a way which permits to show first-level blocks, thanks 

to the well-established partitioning process (Eppinger and al., 1994). This one applied to the 

RSM gives three types of information:  

 the dependent risks: they are engaged in a potential precedence relationship, 

 the interdependent risks: they are engaged in mutually dependent relation, directly or 



  

with a bigger loop, 

 the independent risks: the risks are basically non-related. 

The aim of this process is basically to obtain a lower block-triangular matrix. Partitioning 

enables to isolate interdependent risks, but our purpose is different. We aim at grouping risks 

in clusters with maximal internal interactions and minimal inter-clusters interactions.  

In order to do so, we firstly use an AHP-based evaluation to transform the RSM into a 

numerical matrix which is to catch the strength of local interactions. Indeed, fieldwork proves 

us that such assessment of interactions is hard to do directly. On the contrary, it can be 

observed that people find it easier to say that a cause C1 is more likely to produce an effect E 

(first level neighbor) than another cause C2, or similarly, that an effect E1 is more likely to be 

the consequence of a cause C than another effect E2. That is why we claim for the use of the 

principle of pair wise comparisons to assess project risk interactions. 

3.2 Methodology 

Five steps are necessary to carry out our methodology. Figure 2 shows this process with an 

example for risk R4 : 

Step 1: Decomposing individual sub-problems 

The presence of a 1 in the binary RSM expresses the existence of a possible precedence 

relationship between risks Ri and Rj. RSMij=1 implies two possible ways to address the 

situation. If there is a cause-effect relationship between Ri and Rj, then it is equivalent to 

consider Ri as a cause of Rj or Rj as an effect of Ri. Similarly as in (Chen & Lin, 2003) for 

design tasks, we combine these visions. Two stages must thus be performed. For each Ri, we 

isolate the risks which are related with Ri in column (possible effects) and in row (possible 

causes). This permits a sanity check because each relationship has to be expressed two times. 

This identification enables to generate the Binary Cause or Effect Vectors, which are relative 

to one risk Ri (respectively BCV|Ri and BEV|Ri). 



  

Step 2: Evaluating the strength of interactions 

We build up two matrices regarding the risk Ri based on the two previously isolated sets of 

risks (in rows and in columns), which constitute the set of alternatives. They are called Cause 

or Effect Comparison Matrices and are both relative to one risk Ri (CCM|Ri and ECM|Ri). 

Given the AHP numerous applications in the field of project management and project risk 

management (Gourc, 2006), we claim for the use of the AHP-based principle of pair wise 

comparisons to assess project risk interactions (as we define them in this article). The 

Analytic Hierarchy Process was developed by Thomas Saaty (Saaty, 1977), (Saaty, 1980). It 

is a multi-criteria decision-making method. It permits the relative assessment and 

prioritization of alternatives. The AHP is based on the use of pair wise comparisons, which 

lead to the elaboration of a ratio scale. The AHP models the problem as a hierarchy, 

consisting of an overall goal, a group of alternatives, and a group of criteria which link the 

alternatives to the goal. Pair wise comparisons are carried out by asking how more valuable 

an alternative A is to criterion C than another alternative B. Pair wise comparisons finally 

constitute square matrices, the values of which are between 1/9 and 9, and the diagonal 

elements of which are equal to 1 while the other elements verify two conditions: 

 The i-j
th

 element is equal to the comparison between i and j regarding the considered 

criterion.  

 For i different from j, the i-j
th

 element is equal to the inverse of the j-i
th

 element.  

This piece of information is processed mathematically, in order to transform the qualitative 

user information into a mathematical one. Priorities are then determined thanks to these 

matrices and a global consistency test can be performed to evaluate the coherence of the 

judgments. The final result is a table which gives a global evaluation of each alternative for 

the objective and for each criterion. 

In our case, we have two parallel pair wise comparison processes to run. The first one consists 

in the ranking in rows for each project risk. Given the risk Rk, the set of alternatives are all the 



  

non-zero elements of risks other than the diagonal element in row k. The criterion on which 

the alternatives are evaluated is the contribution to Rk in terms of risk input: in other terms, 

for every pair of risks which are compared, Ri and Rj (thus following RSMki=RSMkj=1), the 

user should assess which one is more important to risk Rk in terms of probability to be a risk 

input (i.e., a cause) for risk Rk. Numerical values express these assessments thanks to the use 

of the traditional AHP scales. The second one is the ranking in columns, according to the 

same principles. 

Step 3: Consolidating the results 

Eigenvectors of each matrix ECM|Ri and CCM|Ri are now to be calculated. It enables to find 

the principal eigenvectors, relative to the maximal eigenvalue. They are called the Numerical 

Cause or Effect Vectors and are relative to one risk Ri (NCVi and NEVi). Consistency of the 

results should be tested thanks to the AHP consistency index. 

Step 4: Aggregating the results  

For each risk Ri, Numerical Cause or Effect vectors are respectively aggregated into 

Numerical Cause / Effect Matrices (NCM and NEM). The i-th row of NEM corresponds to 

the eigenvector of CCM|Ri, which is associated to its maximum eigenvalue. The j-th column 

of NCM corresponds to the eigenvector of ECM|Rj, which is associated to its maximum 

eigenvalue.  

Step 5: Compiling the results 

The two previous matrices are aggregated into a single Risk Numerical Matrix (RNM), the 

values of which assess the relative strength of local interactions. The RNM is defined by a 

geometrical weighting operation (based on the possible assumption that both estimations can 

be considered as equivalent). We choose the geometrical mean instead of the arithmetic mean 

because it tends to favor balanced values (between the two assessments). 

),(),(),( jiNEMjiNCMjiRNM 
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The RNM thus permits to synthesize the existence and strength of local precedence 

relationships between risks as it combines the cause-oriented vision and the consequence-

oriented vision of an interaction. Combining these two visions is therefore interesting to avoid 

any bias or misevaluation which can happen when looking at the problem with only one 

vision. 

Similarly as when performing risk identification and analysis, the identification and 

evaluation of interactions should be updated during the project. 

 

Insert Figure 2 

 

4  PROPOSED CLUSTERING ALGORITHMS AND REFINEMENTS 

4.1 Overall problem definition 

We want to cluster risks in order to maximize intra-cluster interactions thanks to the use of the 

RNM. We do insist on the fact that the values of the RNM are local judgements, which 

implies that risk interactions assessments are in essence relative. However, we do argue that 

this first clustering is useful, since it permits to focus on the most significant local risk 

interactions. In order to define our clustering approach, we carried out a literature review on 

clustering and graph partitioning approaches, notably thanks to the works of Schaeffer 

(Schaeffer, 2007). There are mainly two approaches for clustering operations: vertex 

similarity-based methodologies and cluster fitness measures-based methodologies. 

4.1.1. Vertex similarity-based criteria and methodologies 

On one hand, there are several clustering algorithms which are based on similarities between 

the vertices. These methods are based on the assumption that the higher the vertex similarity, 



  

the stronger the need to cluster the vertices together. These measures are mainly based on 

additional properties of vertices which permit to compute a similarity matrix. 

Rather than defining similarity measures, dissimilarity measures such as distance measures 

are usually defined, for instance the traditional Euclidean and Manhattan distances (Ben-

Arieh and Sreenivasan, 1999), (Hennig and Hausdorf, 2006). More advanced distance such as 

Jaccard distance (Dong and al., 2006) or the Levenshtein distance (Gusfield, 1997) can be 

used to answer this issue. Some other coefficients can also be calculated to evaluate vertex 

similarity and perform the corresponding clustering process: for instance there exists angle 

measures such as the cosine similarity (Lakroum and al., 2005). Some important works even 

try to compare such similarity measures and their impact on clustering operations (Hartigan, 

1975), (Yin and Yasuda, 2006). As noticed by (Schaeffer, 2007), “in some applications, the 

vertices lack additional properties and there is nothing in the vertices themselves that would 

allow the computation of a similarity matrix”. In this case, vertex similarity measures are 

often defined thanks to the structural characteristics of the graph. For instance, some measures 

based on the correlation of the adjacency matrix can be used, such as the Pearson correlation 

(Rodgers and Nicewander, 1988) or the Mahalanobis distance (Mahalanobis, 1936). 

4.1.2. Cluster fitness measures-based criteria and methodologies 

On the other hand, some clustering processes are based on cluster fitness measures, that is to 

say functions which assess the overall quality and relevance of a given cluster or of a given 

global clustering solution. The global objective of these methodologies is to identify 

clustering solutions which directly fulfil a certain property. For instance, methodologies based 

on graph density measures have been developed in order to partition the initial graph into 

subgraphs, the density of which should be inferior and/or superior to chosen values (Karp, 

1977), (Kim, 2003), (Zotteri and al., 2005). But other cluster fitness measures are used as a 

criterion for graph partitioning. 



  

Indeed, as noticed by (Schaeffer, 2007), “one measure that helps to evaluate the sparsity of 

connections from the cluster to the rest of the graph is the cut size. The smaller the cut size, 

the better isolated the cluster”. Indeed, cutsize-based measures undoubtedly permit to quantify 

the relative independence of a subgraph to the rest of the graph and have been used in many 

clustering processes (Shi and Malik, 2000), (Kannan and al., 2004). Finding the partition 

which minimises cut-sizes (with restriction conditions on the orders of the subgraphs) permits 

to maximise the sum of the edges weights which are internal to the clusters. This cut-based 

measure seems very interesting in our case. In order to facilitate complex project risk 

management, one is likely to want to reduce interfaces in terms of number, and above all 

strength. Reducing interfaces is thus very similar to this problem of graph partitioning which 

aims at minimising the global cut size (since risk interactions are modelled and assessed 

thanks to edges and their weights). 

4.1.3. Broad definition of the interactions-based project risk clustering problem 

Indeed, let us consider a set of project risks (R1, R2, …,RN). This set of risks is in essence a 

complex one, since interactions do exist between risks. Let us suppose we know the RNM of 

this set of risks (the former steps to build the RNM should have been followed by the user). 

Let K be the number of clusters of the optimal clustering solution, which maximises intra-

cluster global interactions value. INTRA value is defined by the sum of the values of all 

interactions between risks which belong to a same cluster. INTER (Inter-cluster global 

interactions) value is defined by the sum of the values of all interactions between risks which 

are not paired inside a same cluster. The sum of INTRA and INTER values corresponds to the 

sum of all risk interactions values, which is constant. As a consequence, maximizing INTRA 

is equivalent to minimizing INTER.  

K is not known in advance, but we know some constraints about it. Namely, the goal is to 

assign project members to clusters in order to manage more properly the risks which belong 

to a same cluster, i.e. which are strongly interdependent. It is known that people have a 



  

limited capacity to manage simultaneously numerous objects. Indeed, the number of factors 

that most decision-makers can handle simultaneously cannot be higher than 7 to 9 (Miller 

1956). We follow this hypothesis and in the end the maximum size of a cluster should be 9. 

We choose to leave some margin compared to the classical empirical rule of 7 objects to be 

managed simultaneously. This permits us to know a lower bound of K, which is 

1)
9

1
(

min





N
INTK , where INT is the integer part of a real number. This problem 

corresponds to the K-graph partitioning / clustering problem (Schaeffer, 2007) and we define 

it more precisely in the following of this article. 

4.2 Formulating a linear programming problem to answer this question 

Here is the corresponding quadratic integer programming problem formulation. This problem 

is to be solved for each value of K which is superior to Kmin. We first introduce the following 

decision variables: 

1,1,,1, 
ik

xKkkNii if risk Ri belongs to cluster Ck. 

The objective function, which is to be maximized, is as following in equation 2 
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Problem constraints are the following (equations 3 and 4). 
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as we argue for clusters disjunction in order to permit easier management in practice. 
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since we want the maximum size of clusters to be 9 risks. 



  

This problem is not linear but we can make it easily linear thanks to the introduction of new 

decision variables (equation 5) and new constraints (equation 6).  

ijk
yKkkNijNii ,1,,1,,1,  is a binary variable                (5) 

We define yijk by adding the constraints:  

1,1,,1,,1, 
jkikijk

xxyKkkNijNii  (6) 

This equation forces yijk to be equal to 0 if xik and xjk are not both equal to 1, i.e. if Ri and Rj 

do not belong to the same cluster. All other constraints are kept for problem formulation. The 

objective function can then be re-written thanks to these new decision variables, in equation 7. 
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We use OPL (Optimization Programming Language) to solve this problem. However, its 

complexity is high (2
N-1

), and problems over 20-21 risks appear to be critical when testing 

them. We presently work on developing some heuristics to assist problem solving in the 

software and reduce processing time by avoiding trivial non-solutions. Meanwhile, we have 

developed some approximate iterative algorithms, which permit us to approximate the optimal 

solution of the problem. 

4.3 Using simple heuristics to solve this problem 

Both of these heuristics are iterative construction algorithms, but they use two different values 

for clustering conditions, as described in equations 8 and 9. The first iterative algorithm IA1 is 

based on the maximum value between two separate clusters. The second one IA2 is based on 

global interactions value between two separate clusters. In the two cases, these values are to 

be maximized at each step. 
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At the initial step, all risks are isolated: every initial cluster is a singleton. The maximum 

value is obtained for two isolated risks Ri0 and Rj0, which are grouped into a first cluster C1. 

Then, the maximum value for the second step may be obtained for two isolated risks or for 

cluster C1 and an isolated risk: in the first case, this forms another cluster C2 and in the second 

case, C1 is updated with the third element. Step by step, clusters are formed with singletons or 

by expanding (adding one singleton to an existing cluster) or by merging (two existing 

clusters). At each step, the previously defined value (Value1 or Value2) is maximized. In the 

case the maximum size of a cluster is reached, the second maximum value is identified and 

the clustering operation is done on the corresponding interaction if it does respect the 

formulated constraints. This procedure is repeated iteratively until reaching a solution which 

respects all the constraints. 

4.4 Developing indicators to compare solutions 

In order to compare different possible clustering solutions, we introduce some numerical 

indicators. Given a problem with N risks, the first two indicators we introduce are: 

 MPT = Mean Processing Time, which is the mean time to obtain the solution of the 

problem. 
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where A and B are two solutions and INTRA is the value of the intra-cluster global 

interactions value. These indicators permit to assess the overall performance of each method 

(in terms of time and capture of interactions inside clusters). 



  

Given a possible solution thanks to a clustering method, we can build a K × N matrix (Mki), 

so that Mki=1 if risk Ri belongs to cluster Ck in the final solution. If 
T
(Mki) is the transpose of 

this matrix, then: 

 H=(Mki).
T
(Mki) is a K × K matrix, the diagonal terms of which correspond to the 

number of risks which are clustered in cluster K. MCS = Mean Cluster Size is then the 

average of the diagonal values of this matrix. 

 L=
T
(Mki).(Mki) is a N × N matrix, the i-j

th
 term of which is equal to 1 if Ri and Rj 

belong to a same cluster. As a consequence, the calculation of ),( BAM  which is the 

difference of the two matrices L(A) and L(B), obtained thanks to the clustering 

methods A and B, permits to identify the similarity between two clustering solutions. 

Let N0 be the number of non-zero values in the ),( BAM  matrix. We build up the 

following indicator (Eq. 11) which is a dissimilarity measure when comparing 

solutions. Note that MCS is taken into account, since, if given a clustering solution, if 

one risk Ri is taken out of the cluster it belongs to, then MCS non-zero values are 

likely to appear (mean value) in the dissimilarity matrix for this risk Ri. 
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These other indicators permit to compare the structure of two solutions proposed by different methods. 

4.5 Refinement of the obtained solutions 

Our goal here is to refine our results by identifying within clusters similar situations in terms 

of causes and effects, i.e. the less distant risks. Many distances (i.e. similarity functions) can 

be proposed in order to assess the proximity of two risks as seen in 4.1.1. To define them, we 

build up a symmetrical matrix, the Risk Interaction Matrix (RIM), the i-j
th

 term of which is 

given by equation 12 : 
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At this stage, note that any metric can be used in order to define this distance. As for us, we 

claim for the use of the Mahalanobis distance (Mahalanobis, 1936), which corresponds to a 

weighted Euclidian distance (the weights being determined by the covariance matrix ∑), as 

shown in equation 13. 

 (13) 

Where Vi is the i-th column of RIM. 

We then use a classical average-linkage clustering algorithm (Murtagh, 1983) to identify 

similar situations inside clusters. Such identifications of similar risks (in terms of interactions) 

within the clusters obtained in 4.2 and 4.3 permit to give information to the person in charge 

of the management of the cluster: indeed, two similar risks may be handled with similar 

managing techniques and/or even the same preventive/curative actions. 

5 CASE STUDY 

5.1 Introduction of the case study 

In order to test the proposals and results of our theoretical study, we carried out a case study 

in the entertainment industry: the chosen project is the production of a family stage musical in 

Paris. The project notably encompasses stage, costume, lightning and sound design, casting 

management, rehearsal management, fund raising and overall project management support 

activities, etc… Project duration is 6 months before the 9 months staging. Overall budget is 

around 60000€ without salaries. The project team is composed of 18 people. The case study 

we present here is based on fieldwork and interviews which were conducted with 1 cast 

member, 2 creatives, and 1 production team member. We introduce below the initial list of 

risks in table 1. 

 



  

Insert Table 1 

 

5.2 Results of the case study  

With the previously introduced data, we built up the RNM. In order to do so, a preliminary 

interview (which last about 1 hour and a half) was realised with the production team member 

so he could perform the required pairwise comparisons. Before a meeting with all the 

participants was organised, the study was presented to them and preliminary qualitative 

interviews were conducted with them in order to have a general idea of the points which 

would not make consensus. During the meeting, the evaluations of the production team 

member were exposed and discussed by all the participants. Some changes occurred while 

discussing and consensus was reached after the meeting, which last about 3 hours. As a 

whole, 3 weeks were needed to build up the RNM. 

We then processed the algorithms which were presented previously. Their results can be seen 

next page in Figure 3. They only represent two graphs, since in this case the second iterative 

algorithm (IA2) gave the same result as the linear programming (LP) algorithm. In this figure, 

they are compared to the two classical clustering results. A general observation is that there 

are less arcs (risk interactions) outside the clusters in IA1 or LP than in the traditional 

approaches. Moreover, it appears that the arcs which remain outside the clusters in IA1 or LP 

tend to be weighted with low values (low strength of risk interactions) compared to the mean 

value of interactions. 

 

Insert Figure 3 

 

Indeed, as shown afterwards in Figure 4 (synthetic indicators), it must be noted that 

interactions-based clustering give here much more efficient results in terms of interactions 

values within clusters, as expressed by the values of INTRA . The linear programming and 



  

iterative algorithms we developed give very interesting results and perspectives for project 

risk management since in all cases, more than 70% of the interactions values are kept inside 

the obtained risk clusters (nearly 5 times best than by nature, and 2 times best than by values). 

 

Insert Figure 4 

 

Practical implications on project management are the following ones. Since the formed 

clusters are more independent (due to a lower level of interactions between clusters), it seems 

interesting to propose a complementary organisation. For a given cluster C, the nomination of 

a risk cluster owner RO(C) seems interesting. This person would then assure the global 

coordination of the management of the risks which are inside cluster C. Since within cluster 

C, risks tend to be strongly linked, this person has more easily a global view of the possible 

implications (propagation effects) of any decisions made for a risk which is inside cluster C. 

In this case, the process to nominate the risk cluster owner was discussed: the participants 

proposed to organise a meeting for each cluster C with the initial risk owners which are 

present in cluster C and ask them to nominate the risk cluster owner.  

In this specific case, one of the decisions was notably to make one cast member (a female 

performer) the prime interlocutor with the production team members. This corresponded to 

assign her to the cluster which grouped notably R10 (low team communication) and R17 (low 

team motivation). She was then responsible for the identification of triggering events of risks 

within this cluster and its communication to the production team. She was also a relay 

between the production team and the cast to avoid miscommunication. This organisation 

permitted to create a better ambience and motivation than in former projects which had been 

carried out by the firm. Discontent was notably detected earlier, before it implied a decrease 

of motivation and thus a decrease of quality for the show. In other terms, instead of focusing 



  

on the project results, thanks to this approach, some root causes of project risks were better 

addressed than before. 

Moreover, these results were refined. Indeed, the risks R11 (Bad scenic, lightning and sound 

design) and R12 (Bad costume design) were analysed as very similar thanks to the 

Mahalanobis distance-based clustering method we use. The person in charge of the 

corresponding cluster was informed of this similarity. He then decided to group some 

management actions of these two risks. For instance, a common monitoring and control 

process was defined for R11 and R12 (identical frequency of milestones during the project, 

simultaneous check of the risks and their consequences,…).  

Finally, in this case, IA2 and LP gave exactly the same result. IA1 gave a slightly different 

result in terms of risks regrouping and intra-cluster interactions value. As a consequence, the 

issue of algorithm performance compared to MPT is to be addressed, since results do not 

differ much, whereas MPT can vary of around 275%. In order to answer it more properly and 

validate even more this overall approach and its practical implications on project 

management, new tests are to be carried out on several projects (it is presently being tested on 

a large infrastructure project). 

 

6 IMPLICATIONS ON PROJECT MANAGEMENT 

Some works in the literature show that, in the context of decision-making within some 

specific environments, project managers tend to deny, avoid, ignore and/or delay dealing with 

risks (Kutsch and Hall, 2005). For all practical purposes, the gap between expected and real 

risk management implementation is significant. Our methodology permits greater 

communication on project risks and better confidence in risk management activities thanks to 

two aspects.  



  

First, the evaluation of risk interactions which is performed when building up the RNM 

implies a two-step process (looking in terms of causes, and then of effects). Information can 

thus be checked and refined since one interaction should be listed twice (from cause to effect, 

and from effect to cause): this checking process permits a better confidence in risk 

identification and risk interaction identification. Even if theory is sometimes difficult to 

implement in real projects, we argue that the theoretical background of our models can easily 

be implemented and understood at a reasonable level. The fact that it relies on expert 

judgements, mainly qualitative judgements, makes it a user-friendly and easily computable 

tool. The case study indeed proved us that, even in project contexts where project members 

are not used to work with tools built from design engineering and industrial engineering 

theories, the whole approach is globally understood. 

Second, clustering risks in order to maximize the global intra-cluster interactions value 

permits to facilitate the coordination of risk management activities. Namely, it underlines the 

need for cooperation and transversal communication within the project team, especially 

within the current structure of the project or the organization. It permits greater 

communication between people, since it does not seek the identification of ownership, 

responsibility and/or accountability, but the identification of risk interdependencies. After the 

clustering process, coordination is made by the person who is assigned to the cluster, but 

communication has been facilitated before, meaning we have less defensive phenomena. 

However, this implies that the assignment of a cluster to a team member should be done 

carefully, as they need to manage risks which are of different natures. They must have enough 

background, enough global overview of the different components of the project and enough 

authority to be able to manage people from different entities with different interests. Such 

project team members should then be able to facilitate communication and group decision-

making. They should also show great adaptability since people may not be used to work 

together, if they were traditionally managing risks by nature (mainly the same entity). The 



  

question is finally to assign the cluster to one of the owners of one or more risks which are 

inside this cluster, or to assign it to someone who may have a global view and enough 

authority on most of the risks which are inside the cluster. In some cases, the best assignment 

is for the most experimented team member or the one who has the highest hierarchical level. 

In other cases, the best assignment is for the person who is the owner of most of the risks (in 

terms of number or global gravity).  

As a whole, since our work changes the way risks are grouped together, it changes the way 

decisions are made. Indeed, with our approach, decisions are made less locally since potential 

implications and propagation phenomena are handled more easily. 

 

7 CONCLUSIONS AND PERSPECTIVES 

In this study, we made a comparison between several possibilities for grouping risks in a 

project. Our aim is not to criticize the use of classical approaches, because they may have 

slightly different objectives: we refer to them as points of comparison. Our objective is the 

improvement of coordination through the better recognition and handling of risks interactions. 

Our works and case study shows potential significant improvements regarding this specific 

objective.  

They also underline the need for a shift in the way project risk management should be 

approached. Regrouping risks in clusters which maximize the values of risk interactions 

inside them appears to be a promising approach to handle project risks. Indeed, such clusters 

are generally to be assigned to project team members. Each person in charge of a cluster can 

thus manage risks which are closely related in terms of possible causes or consequences. As a 

whole, this means that complexity-related possible effects can be caught more easily and as a 

consequence managed more effectively and efficiently. Project coordination is undoubtedly 



  

facilitated with this approach since interface problems are considerably reduced (for inter-

clusters links global value is lowered).  

This new approach is thus a complementary one to traditional project risk management 

techniques. For instance, classifying risks by criticality value is still useful for prioritization 

and resource allocation, and can be performed within the formed clusters. But the fact that a 

risk with a low criticality value may involve a chain of more dangerous consequences could 

change the decision of treating this risk or not. The identification of clusters then enables to 

treat risks whether individually or collectively. Sometimes, it will be more efficient to treat a 

risk which could be a cause of the rest of the cluster in order to dramatically reduce the 

probability of propagation. In other cases, the mitigation actions should impact the complete 

cluster, because of its global criticality and its very interrelated nature. 

Lots of aspects of this work and its results may however be discussed. We identify several of 

them hereinafter. 

 Trying to integrate more project dynamics in this (quite static) methodology, that is to 

say trying to integrate the time interval which exists between a given cause and each 

of its effects. 

 Consolidating the constitution of the binary interaction matrix. For the moment, we 

have essentially focused on the triggering effect of the cause and effect relationships 

between risks, but others do exist (such as changing the gravity of a consequence 

knowing that a given cause has occurred or not). It would then be particularly 

interesting to create a typology of possible interactions between risk parameters 

(probability, gravity, criticality, non detection, influence capacity,…). This could 

facilitate the evaluation of the strength of interactions in the RNM. 

 Exploring the sensitivity of this methodology since the evaluation of risk interactions 

is at the basis of this approach. As defined presently in our methodology, this 

evaluation is in essence subjective. Therefore, the use of fuzzy methods such as the 



  

fuzzy AHP needs to be explored in order to reduce the subjectivity of the users’ 

judgements. 

 More generally, evaluating with more reliability the relative weights of risk 

interactions. Formally, the AHP has notably received some criticisms which need to 

be studied for this issue. Other multi-criteria methods should also be explored (such as 

MACBETH or ELECTRE) and their results should then be compared to the ones 

obtained with the AHP. 

Future research works are thus to be carried out in order to explore these aspects and develop 

future implications for project complexity and risk management. 
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Figure 1. Classification of projects risks by nature and/or by value 



  

 

 

Figure 2. How to build the Risk Numerical Matrix (RNM) 

 



  

 

Table 1 : description of the initial list of risks for the entertainment project 

 



  

 

Figure 3. Results of the clustering algorithms 



  

 

Figure 4. Performance of the clustering methods – Case study 

 


