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Triggering mechanism using freely selected sensors for linear
time-invariant systems

Romain Postoyan and Antoine Girard

Abstract— Existing event-triggering sampling techniques for
state feedback controllers generally use full state information.
This may be a source of important computational and com-
munication costs, particularly if sensors are numerous and/or
distributed, as the triggering condition needs to be continuously
evaluated. We propose an approach to redesign triggering
mechanisms for linear time-invariant systems based on limited
sensors information, which we freely select, and an internal
scalar dynamic variable. We prove that the resulting closedloop
system ensures a uniform global exponential stability property
and that a uniform minimal inter-execution time is guaranteed.
Besides stabilizability, no additional assumption on the system
is needed. Guidelines are provided to derive the redesigned
triggering conditions using linear matrix inequalities. We show
on an academic example that, using a suitable choice of sensors
and parameters, inter-execution times using our approach are
comparable to those using triggering mechanisms that monitor
the full state of the system.

I. I NTRODUCTION

Event-triggered control is a sampling paradigm, which
consists in closing the feedback loop at time instants deter-
mined by a state-dependent criterion. The underlying idea
is to sample only when this is needed in view of the
control objectives. This alternative to periodic samplingis
relevant for networked control systems, as it may allow
to significantly reduce the controller bandwidth usage, as
well as for embedded systems, as it may limit the number
controller executions and thus reduce the computational cost
associated with the control task. Numerous strategies have
been developed in the literature since the pioneering works
of [4], [5], [20], see for instance [12], [18] and the references
therein. Most of these works concentrate on state-feedback
control. In this case, the triggering condition requires tocon-
tinuously monitor all the states of the system. This may be
computationally demanding, in particular when the number
of state variables is large. In this case, it would be relevant
instead to only consider a subset of the state variables,
possibly few of them, and to trigger transmissions only based
on these. Such a triggering policy would also be useful
for plants with distributed sensors. The implementation ofa
triggering condition based on the full state vector requires, in
this scenario, to resort to a central unit, which continuously
collects all the measurements and evaluates the triggering
rule, which may be hard to realize in practice. The setup
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would be significantly simplified if the triggering mechanism
would only work with some output, as it could then be
collocated with the associated sensor(s). There is therefore a
need for triggering strategies that work with limited sensors
information. The purpose of this paper is to address this
problem for linear time-invariant systems.

We first design a state-feedback event-triggered controller,
thus assuming that the full state can be measured. The
technique in [20] can be used at this step, but others can
be applied. Afterwards, we select some of the states of the
plant to form an output vector. We are free to select this
output as we wish: no detectability condition is needed. In
practice, we would typically take a small number of sensors
compared to the dimension of the state in order to reduce
the computation complexity of the triggering mechanism, or
we would select sensors which are co-located, to facilitate
the implementation. We thenredesign the original triggering
condition so that it only depends on the selected output,
as well as on the value of the full state vector at the last
transmission instant, and an additional scalar variable. The
latter is introduced by design, and is easy to implement.
To use an auxiliary variable to define the triggering rule
is also done in [6], [9], [18] in different contexts. The
control input is still given by the state-feedback law but the
triggering condition is nowoutput-based. The setup works
as follows. The triggering mechanism is collocated with the
selected sensors, and it continuously evaluates the redesigned
triggering condition. When the triggering rule is violated, a
request is sent toall the sensors to transmit their current
data to the controller and to the triggering mechanism. The
updated control input is then sent to the actuators. We
ignore the possible time-delay between the time at which
the triggering mechanism requests the value of the whole
state vector and the time at which the updated control input
is applied to the plant; noting that this delay can be analysed
by following similar lines as in [20].

We assume that the original state-feedback event-triggered
controller ensures both a uniform global exponential stabil-
ity property and the existence of a global uniform lower
bound on the inter-transmission times (thus ruling out Zeno
phenomenon). We prove that these two properties still hold
with the redesigned triggering rule. We also explain how to
tune the triggering parameters using linear matrix inequalities
to reduce its potential conservatism. Simulation results are
provided for the academic example considered in [20]. We
show that the proposed redesigned technique generates a
similar amount of transmissions compared to the state-
feedback event-triggered controller of [20], while it only



continuously monitors a single state variable.
The proposed strategy is related to works on output-

feedback event-triggered control (see e.g., [1], [7], [21])
and on distributed event-triggered control (see e.g., [13],
[16], [17], [22]). However, it differs from these studies,
as the control input is given by a state-feedback law and
the triggering condition depends on the value of the full
state at the last transmission, which is excluded in the
aforementioned studies. In that way, it is expected to generate
less transmissions as if the feedback law would be output-
based or distributed, as done in the aforementioned works.
Furthermore, contrary to observer-based solutions, we do not
resort to state estimates to define the triggering condition,
which helps reducing the computational complexity of the
scheme.

The paper is organised as follows. Preliminaries are given
in Section II, and the problem is stated in Section III. The
redesign of the triggering condition and its analysis are
respectively presented in Sections IV and V. Simulations
results on a numerical example are provided in Section VII,
and Section VIII concludes the paper. The proofs are omitted
for the sake of brevity.

II. PRELIMINARIES

LetR := (−∞,∞), R≥0 := [0,∞), Z≥0 := {0, 1, 2, . . .},
and Z>0 := {1, 2, . . .}. A function γ : R≥0 → R≥0 is
of class K∞ if it is continuous, strictly increasing, zero
at zero and unbounded. Let(x, y) ∈ R

n+m, (x, y) stands
for [xT, yT]T. The notationI denotes the identity matrix,
whose dimensions depend on the context. In matrices, the
symbol ⋆ stands for the symmetric block component. Let
P ∈ R

n×n be a real, symmetric matrix, we respectively
denote its maximum and minimum eigenvalues byλmax(P )
and λmin(P ). We denote the trace of a square matrixA
by tr(A). The lemma below is used several times in the
forthcoming developments.

Lemma 1: For any vectorsv, w and any symmetric, pos-
itive definite matrixE, 2vTw ≤ vTEv + wTE−1w. �

We study hybrid systems of the form below [10]
{

x ∈ C ẋ = F (x)
x ∈ D x+ = G(x),

(1)

wherex ∈ R
n is the state,F is the flow map,G is the jump

map, C is the flow set andD is the jump set. We assume
that system (1) satisfies thehybrid basic conditions (see
Assumption 6.5 in [10]), which will be the case in the fol-
lowing. We recall some definitions related to [10]. A subset
E ⊂ R≥0×Z≥0 is ahybrid time domain if for all (T, J) ∈ E,
E ∩ ([0, T ] × {0, . . . , J}) =

⋃
j∈{0,1,...,J−1}

([tj , tj+1], j) for

some finite sequence of times0 = t0 ≤ t1 ≤ . . . ≤ tJ .
A function φ : E → R

n is a hybrid arc if E is a hybrid
time domain and if for eachj ∈ Z≥0, t 7→ φ(t, j) is locally
absolutely continuous on{t : (t, j) ∈ E}. The hybrid arc
φ : domφ → R

n is a solution to (1) if: (i) φ(0, 0) ∈ C ∪ D;
(ii) for any j ∈ Z≥0, φ(t, j) ∈ C and d

dt
φ(t, j) = F (φ(t, j))

for almost allt ∈ Ij := {t : (t, j) ∈ domφ}; (iii) for every

(t, j) ∈ domφ such that(t, j +1) ∈ domφ, φ(t, j) ∈ D and
φ(t, j + 1) = G(φ(t, j)). A solutionφ to (1) is:

• nontrivial if domφ contains at least two points;
• maximal if it cannot be extended;
• complete if domφ is unbounded.

Note that a solution may be maximal but not complete.

III. PROBLEM STATEMENT

Consider the linear time-invariant system

ẋ = Ax+Bu (2)

wherex ∈ R
nx is the state,u ∈ R

nu is the control input,
A andB are real matrices of appropriate dimensions such
that the pair(A,B) is stabilizable, andnx, nu ∈ Z>0. We
design a state-feedback law of the form

u = Kx (3)

whereK is a real matrix such thatA + BK is Hurwitz.
In that way, the origin of the closed-loop system (2)-(3) is
uniformly globally exponentially stable.

We investigate the scenario where controller (3) is imple-
mented on a digital platform using zero-order-hold devices.
As a consequence, the closed-loop system becomes

ẋ = Ax+BKx̂ (4)

wherex̂ is defined as, for anyi ∈ I ⊆ Z≥0,

x̂(t) = x(ti) for almost allt ∈ [ti, ti+1] (5)

andti, i ∈ I, denotes the sequence of time instants at which
the control input is updated. We focus on the case where the
sequenceti, i ∈ I, is determined by an event-triggering
condition. We introduce the sampling-induced errore :=
x̂ − x ∈ R

nx and we model the overall dynamics as a
hybrid system using the formalism of [10] for which a jump
corresponds to an update of the control input (like in e.g.,
[7], [8], [18], [19])

[
ẋ

ė

]
=

[
A+BK BK

−A−BK −BK

] [
x

e

]
for (x, e) ∈ C,

[
x+

e+

]
=

[
x

0

]
for (x, e) ∈ D.

(6)

The flow setC and the jump setD are defined according to the
triggering condition. Solutions to (6) flows when(x, e) ∈ C
and a jump occurs when they enter inD, which corresponds
to the region of the state space where the triggering condition
is violated1.

Various techniques are available in the literature to design
the triggering condition (i.e. the setsC andD) so that stability
is preserved under sampling. For instance in Section II.B
in [12], the triggering rule is constructed as follows. Let
P,Q be real, symmetric, positive definite matrices such that
(A+BK)TP + P (A+BK) = −Q (such matrices always
exist sinceA+BK is Hurwitz, see Theorem 4.6 in [14]) and

1When(x, e) ∈ C ∩D, the solution can either jump or flow, the latter is
only possible if flowing keeps(x, e) in C.



defineV (x) := xTPx for any x ∈ R
nx . For any(x, e) ∈

R
2nx ,

〈∇V (x), (A +BK)x+BKe〉 = −xTQx+ 2xTPBKe.

(7)
Consequently, when

2xTPBKe ≤ σxTQx, (8)

with σ ∈ (0, 1),

〈∇V (x), Ax +BKx̂〉 ≤ −(1− σ)xTQx, (9)

and the strict decrease of the Lyapunov functionV along the
solutions to thex-system (outside the origin) is preserved.
In this case, the setsC andD in (6) are given by

C = {(x, e) : 2xTPBKe ≤ σxTQx},
D = {(x, e) : 2xTPBKe ≥ σxTQx}.

(10)

The condition in (8) has a quadratic form, and we can rewrite
it as (see (8) in [12])

[
e

x

]T [
0 ⋆

PBK −σQ

] [
e

x

]
≤ 0. (11)

This is a particular type of quadratic event-triggering condi-
tion, others are possible, see Section II.B in [11]. In this note,
we thus concentrate on triggering conditions of the general
form

C =

{
(x, e) ∈ R

2nx :

[
e

x

]T
S

[
e

x

]
≤ 0

}

D =

{
(x, e) ∈ R

2nx :

[
e

x

]T
S

[
e

x

]
≥ 0

}
,

(12)
where S is a real matrix, which we write as

S =

[
S1 ⋆

S2 −S3

]
with S3 ∈ R

nx×nx . We assume

that the matrixS is designed in such a way that following
assumption is verified.

Assumption 1: The following holds.

(i) The matrixS3 is symmetric and positive definite.
(ii) There exist a real, symmetric, and positive definite

matrix P ∈ R
nx×nx and α > 0 such that, for any

(x, e) ∈ R
2nx ,

(x, e) ∈ C
⇒ 〈∇V (x), (A +BK)x+BKe〉 ≤ −α|x|2,

(13)
whereV (x) = xTPx for anyx ∈ R

nx . �

Item (i) of Assumption 1 is justified by the following
arguments. First, we can always writeS in (12) such that
S3 is symmetric. Second,S3 must be positive definite to
avoid Zeno phenomenon (outside the origin). Indeed, after a

jump,

[
e+

x+

]T
S

[
e+

x+

]
=

[
0
x

]T
S

[
0
x

]
= −xTS3x

according to (6). IfS3 would not be positive definite, there
would existx∗ ∈ R

nx\{0} such that−xT
∗ S3x∗ ≥ 0, which

implies that(x∗, 0) ∈ D in view of (12). As a consequence,
any solution reaching(x∗, 0) may then jump instantaneously

infinitely many times. To haveS3 positive definite avoids
this issue. We will show later that item (i) of Assumption
1 not only prevents Zeno phenomenon but it also ensures
the existence of a uniform dwell-time outside the origin2.
Item (ii) of Assumption 1 means that the triggering condition
is designed to ensure the strict decrease of a quadratic
Lyapunov functionV . Examples of matricesS, which fulfill
Assumption 1, include the one in (11) (in which caseS3 =
σQ, P is given above (7) andα = (1− σ)λmin(Q)), others
possibilities can be found in Section II.B in [11].

The objective of this work is to redesign the triggering
rule in (12) so that it no longer depends on the full state of
the system but only on a given output, which we are free to
select, the value of the state vector at the last transmission
instant, i.e.̂x, and an auxiliary scalar variable we will design.

IV. REDESIGN OF THE TRIGGERING CONDITION

A. Principle

As a preliminary step, we rewrite the quadratic term in
(12) in terms of(e, x̂) (instead of(e, x)). We use for that
purpose the fact thatx = x̂− e,
[
e

x̂

]T [
I 0
−I I

]T
S

[
I 0
−I I

] [
e

x̂

]
=

[
e

x̂

]T
Ŝ

[
e

x̂

]
, (14)

with

Ŝ :=

[
I 0
−I I

]T
S

[
I 0
−I I

]
. (15)

We introducey = Cx to denote the output of system (2)
we choose to continuously monitor. The real matrixC is
designed and can be arbitrarily selected (it does not have to
be such that the pair(A,C) is detectable). Since we assume
that we know the value ofy at any time instant, we also
know ey := Ce at any time instant. We then propose to
upper bound (14) as follows

[
e

x̂

]T
Ŝ

[
e

x̂

]
≤

[
Ce

x̂

]T
M

[
Ce

x̂

]
+ eTRe,

(16)

whereM =

[
M1 ⋆

M2 −M3

]
is a real, symmetric matrix

with M3 ∈ R
nx×nx positive definite, andR is a real,

symmetric, and positive definite matrix. Note that (16) can
always be guaranteed according to the lemma below.

Lemma 2: If item (i) of Assumption 1 holds, then there
exist real, symmetric matricesM and R such that (16) is
verified withM3 andR positive definite. �

The first term on the right hand-side of (16) depends on
Ce, which we continuously monitor, and on̂x, which is
available as it corresponds to the value of the state at the
last transmission instant. On the other hand, we do not want
the new triggering condition to depend on the termeTRe in
(16). We thus propose to upper-boundeTRe by a variable
p ∈ R, whose dynamics is designed in the sequel. In that
way, we aim at enforcing the condition below on flows

[
Ce

x̂

]T
M

[
Ce

x̂

]
+ p ≤ 0. (17)

2See Remark 4 in Section V-A.



We model the obtained system as follows

ẋ = (A+ BK)x+BKe

ė = −(A+BK)x−BKe

ṗ = f(p, x̂, y)



 (x, e, p) ∈ Ĉ

x+ = x

e+ = 0
p+ = g(p, x̂, y)



 (x, e, p) ∈ D̂,

(18)

where f and g have to be designed and the flow and the
jump sets are defined in (19), whereW (e) := eTRe for any
e ∈ R

nx .
The fact thatp upper-boundsW (e), i.e.eTRe, is somehow

enforced by the definitions of̂C and D̂ in (19). However,
this condition does not need to be implemented in practice
because of the way we construct the dynamics ofp in the
following. Indeed, we will show that the variablep always
upper-boundsW (e) along the solutions to (18), except,
possibly, at the initial time, which justifies the definitions
of Ĉ and D̂ in (19) that enforce the ‘right’ initialization of
p.

B. Design

1) Matrix R: We select the matrixR in (16) such that
there exist real matricesL, R with R symmetric and positive
semi-definite, and a constantλ ∈ R, which verify

(A− LC)TR+R(A− LC) ≤ λR − CTRC. (20)

This condition is always satisfied by selectingλ sufficiently
large and settingR = 0 for instance. Inequality (20) is
used to construct the dynamics of the variablep on flows
(namelyf in (18)).

2) Dynamics of p: We rewrite the dynamics of thee-
variable on flows as, usingx = x̂− e,

ė = −(A+BK)x−BKe = Dx̂+Ae, (21)

whereD := −A−BK. Consequently, for any(x, e) ∈ R
2nx ,

〈∇W (e), Ae+Dx̂〉 = 〈∇W (e), (A− LC)e+Dx̂+ LCe〉
= 〈∇W (e), (A− LC)e+Dx̂+ Ley〉

(22)
whereL comes from (20), and recall thatey = Ce. Thus,
using (20) and Lemma 1 withv = Re, w = Dx̂+ Ley and
E = αR−1 whereα > 0,

〈∇W (e), Ae+Dx̂〉 ≤ λW (e)−eTyRey+2eTR(Dx̂+ Ley)

≤ λW (e)− eTyRey + αeTRe

+ 1

α
(Dx̂+ Ley)

TR(Dx̂+ Ley)
= (λ+ α)W (e)− eTyRey

+ 1

α
(Dx̂+ Ley)

TR(Dx̂+ Ley).
(23)

In view of (18) and (23), we define the flow map and the
jump map for the variablep in (18) as

f(p, x̂, y) := (λ+ α)p− eTyRey
+ 1

α
(Dx̂+ Ley)

TR(Dx̂+ Ley)
g(p, x̂, y) := 0.

(24)

The dynamics ofp only involve p, ey and x̂, which are all
continuously available to the triggering mechanism.

Remark 1: The construction of the dynamics ofp on flows
is inspired by works on norm-estimators, in particular [15].
However, thep-system cannot be considered as a norm-
estimator of thee-system as it does not a priori satisfy the
input-to-state stability property stated in item (i) of Definition
2.4 in [15]. This comes from the fact thatλ in (20) is not
necessarily strictly negative (in which case the pair(A,C)
would need to be detectable). We can relax the requirement
thatλ is strictly negative because that is not needed to upper-
boundW (e) and because we know the value ofW (e) after
each jump instant (it is equal to zero according to (18)). We
therefore tolerate thep-system to have unstable dynamics
on flows. This instability is compensated by the reset ofp

at 0 at each jump. We will show in Theorem 1 that thep-
component of the solutions are bounded, more precisely, we
will guarantee that(x, e, p) = 0 is uniformly globally stable
(see Definition 3.6 in [10]). �

Remark 2: The non-positive term−CTRC in (20) may
be useful to reduce the conservatism of the upper-bound of
W (e) given byp. �

Remark 3: WhenR = 0, L = 0, M1 = 0, M2 = 0, the
triggering condition in (19) is independent ofey. In this case,
we do not need to continuously monitor the outputy, as only
the value of̂x is needed to decide the next triggering instant:
we have a self-triggered-like policy (see e.g., [2], [3], [23],
[24]). �

V. A NALYSIS

A. Existence of a uniform dwell-time

The following proposition states that the triggering con-
dition defined in (19) guarantees the existence of a uniform
minimum amount of (ordinary) time between two successive
transmissions (outside the origin).

Proposition 1: Consider system (18), (19) and suppose
item (i) of Assumption 1 holds. There existsθ > 0 such that
for any solution(x, e, p) and any(s, i), (t, j) ∈ dom(x, e, p)
with s + i ≤ t + j, (x(t, j), e(t, j), p(t, j)) 6= 0 implies

j − i ≤
t− s

θ
+ 1. �

The constantθ in Proposition 1 is a uniform global lower
bound on the inter-transmissions intervals. The existence
of this dwell-time is not ensured at the origin for system
(18), (19) in Proposition 1. Nevertheless, when a solution
is at the origin, it can either keep flowing forever, keep
instantaneously jumping infinitely many times, or do any
intermediate behaviour as it lies in the intersection of the
flow and the jump set and flowing keeps the solution inĈ.
This means that we can transmit whenever we want in this
case in practice, and the existence of dwell-time can therefore
be enforced. A similar observation is made in Section IV.B
in [18].

Remark 4: The redesigned triggering conditions upper-
bounds the one in (12) in view of (16) and the fact that
W (e) ≤ p. We deduce that the existence of a global uniform
dwell-time (outside the origin) for system (18), (19) ensures
the existence of such a time for system (6), (12). �



Ĉ =

{
(x, e, p) :

[
Ce

x̂

]T
M

[
Ce

x̂

]
+ p ≤ 0 andW (e) ≤ p

}

D̂ =

{
(x, e, p) :

[
Ce

x̂

]T
M

[
Ce

x̂

]
+ p ≥ 0 andW (e) ≤ p

}
.

(19)

B. Stability

The theorem below shows that stability is preserved with
the redesigned triggering condition.

Theorem 1: Consider system (18), (19) and suppose As-
sumption 1 is verified. The following holds.

(i) There existc1 ≥ 1 and c2 > 0 such that for any
solution,|x(t, j)| ≤ c1 exp(−c2(t+j))|x(0, 0)| for any
(t, j) in the domain of the solution.

(ii) There exists ρ ∈ K∞ such that for
any solution, |(x(t, j), e(t, j), p(t, j))| ≤
exp(−c2j)ρ(|(x(0, 0), e(0, 0), p(0, 0))|) for any
(t, j) in the domain of the solution.

(iii) Any maximal solution is complete. �

Item (i) of Theorem 1 means that the uniform global
exponential stability property of system (6), (12), guaranteed
through the satisfaction of item (ii) of Assumption 1, is
preserved with the redesigned triggering rule. Item (ii) of
Theorem 1 implies that(x, e, p) = 0 is uniformly globally
stable (see Definition 3.6 in [10]), and that this stability
property becomes asymptotic when the maximal solutions
have an unbounded time domain inj, which may not be the
case in general. Item (iii) of Theorem 1 confirms thatp is
an appropriate upper-bound ofW (e); if it would not be the
case, some maximal solutions would not be complete.

VI. GUIDELINES

The approach described in Section IV consists in suitably
upper-bounding the original triggering condition in (12).To
this purpose, we first use the inequality in (16) and we then
construct the dynamics of the variablep to upper-bound
eTRe, see Section IV-B.2. In this section, we explain how to
optimize the selection of the triggering condition parameters
to reduce the potential conservatism induced by these two
steps. We first treat them separately, and we then present the
overall optimization problem.

A. Inequality (16)

Given the matrixC, we select the real, symmetric matrices
M andR with M3 andR positive definite, such that they
minimize

tr

([
CT 0
0 I

]
M

[
C 0
0 I

]
+

[
R 0
0 0

]
− Ŝ

)
, (25)

which is equivalent to minimizing

tr

([
CT 0
0 I

]
M

[
C 0
0 I

]
+

[
R 0
0 0

])
. (26)

This problem can be efficiently solved using standard linear
matrix inequalities (LMI) solvers.

B. Dynamics of p

There are two possible sources of conservatism in Section
IV-B.2, and the first one is (20). One way to limit it is to
construct the matricesR,R,L with R symmetric and positive
semi-definite, to minimize

tr
(
λR− CTRC − (A− LC)TR−R(A− LC)

)
. (27)

This problem is linear in the variablesR, R andZ = RL

for givenC andλ, and it can therefore be solved using LMI
solvers.

On the other hand, the developments in (23) may also be
a source of conservatism. To vary the value ofα may be
helpful here.

C. Optimization problem

There are two criteria to minimize, namely (26) and (27).
We choose to formulate this multi-objective problem using
a weighted sum. In that way, for givenC, λ ∈ R≥0, α > 0
and weighthsχ1, χ2 ≥ 0, we aim at solving

minχ1tr
([

CT 0
0 I

]
M

[
C 0
0 I

]
+
[

R 0
0 0

])

+χ2tr
(
λR− CTRC − (A− LC)TR−R(A− LC)

)

subject to (16), (20) and



M = MT with M3 > 0
R = RT > 0

R = R
T
≥ 0.

(28)
The scalarsλ, α, χ1, χ2 need to be fixed to solve the problem
above. A heuristic line search can be done off-line, as we did
in Section VII on a numerical example. Another important
question is how to select the matrixC and thus the states that
we continuously monitor. First, we may be constrained by
practical requirements. If several options are possible, there
are always a finite number of these and we may test all of
them off-line, as done on an example in Section VII.

VII. I LLUSTRATIVE EXAMPLE

We consider the example studied in Section V in [20],
namely

[
ẋ1

ẋ2

]
=

[
0 1
2 3

] [
x1

x2

]
+

[
0
1

]
u, (29)

which we stabilize using the feedback lawu = x1 − 4x2.
We design the triggering condition (12) withS as in (11),

whereP =

[
1 1

4
1

4
1

]
, Q =

[
1

2

1

4
1

4

3

2

]
andσ = 0.5.

We then apply the method described in Section IV to
obtain the desired redesigned triggering condition. We do
this for both y = x1 and y = x2. In each case, we



(11) y = x1 y = x2

(χ1, χ2) = (1, 0) (χ1, χ2) = ( 1
2
, 1

2
) (χ1, χ2) = (0, 1) (χ1, χ2) = (1, 0) (χ1, χ2) = ( 1

2
, 1

2
) (χ1, χ2) = (0, 1)

λ = 10 λ = 10 λ = 10 λ = −5 λ = 0 λ = −10
τavg 0.4683 0.0376 0.0900 0.0530 0.4892 0.4137 0.4386
τmin 0.1895 0.0137 0.0474 0.0226 0.1263 0.1764 0.0717

TABLE I

VALUES OFτAVG AND τmin.

synthesize the matricesM , R, R, L by solving (28) for
fixed values ofλ, α, χ1, χ2. We have run simulations for
10 values of(x1(0, 0), x2(0, 0)) uniformly distributed along
the unit disk of R2, (e(0, 0), p(0, 0)) = 0 and for 10
seconds. We have selectedα = 10 and we have variedλ
within {−15,−10,−5, 0, 5, 10, 15}. Note that we can take
λ < 0 as the system is detectable with respect to each
output. The values of the average inter-transmission times,
denotedτavg and which serves to evaluate the amount of
transmissions, and of the minimum inter-transmission times,
denotedτmin, over all simulations are provided in Table I
(only the values ofλ, for which the largest value ofτavg

was observed, are reproduced in this table for each pair
(χ1, χ2)). Comparable values ofτavg and ofτmin are obtained
with the original event-triggering condition (11) and with
the proposed redesigned policy fory = x2. We even have
a larger value ofτavg with the redesigned technique when
y = x2, (χ1, χ2) = (1, 0) and λ = −5. Starting from
the same initial condition, the first inter-transmission interval
will be larger with (11) than with the redesigned triggering
rule. However, afterwards, each strategy generates different
solutions, which evolve in different regions of the state space.
It may therefore be the case that the solutions given by the
redesigned policy enter in a region where less transmissions
are generated. On the other hand, to takey = x1 generates
much more transmissions, which indicates that the choice
of the monitored output is important when redesigning the
triggering condition.

VIII. C ONCLUSIONS

We have presented a method to design a triggering condi-
tion which works with limited sensors information for linear
time-invariant systems. The idea is to start from a known
state-feedback event-triggered controller and to redesign its
triggering rule so that it no longer depends on the full
state vector. In future work, we will show that the method
applies to other types of triggering conditions, such as those
involving timers (see e.g., [1], [8], [21]) and for systems
affected by exogenous disturbances.
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