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Triggering mechanism using freely selected sensors for lear
time-invariant systems

Romain Postoyan and Antoine Girard

Abstract— Existing event-triggering sampling techniques for would be significantly simplified if the triggering mechamis
state feedback controllers generally use full state inforration.  would only work with some output, as it could then be
This may be a source of important computational and com- ) 15cated with the associated sensor(s). There is therefo

munication costs, particularly if sensors are numerous anfbr d for tri . trategies that K with limited
distributed, as the triggering condition needs to be contimously need for tnggering strategies that work with imited Sesso

evaluated. We propose an approach to redesign triggering information. The purpose of this paper is to address this
mechanisms for linear time-invariant systems based on liméd  problem for linear time-invariant systems.

sensors information, which we freely select, and an interfa e first design a state-feedback event-triggered controlle
scalar dynamic variable. We prove that the resulting closedoop thus assuming that the full state can be measured. The

system ensures a uniform global exponential stability proprty . . .
and that a uniform minimal inter-execution time is guaranteed. technique in [20] can be used at this step, but others can

Besides stabilizability, no additional assumption on theystem be applied. Afterwards, we select some of the states of the
is needed. Guidelines are provided to derive the redesigned plant to form an output vector. We are free to select this
triggering conditions using linear matrix inequalities. We show  output as we wish: no detectability condition is needed. In
on an academic example that, using a suitable choice of semso practice, we would typically take a small number of sensors

and parameters, inter-execution times using our approach @ d to the di . f the state | der t d
comparable to those using triggering mechanisms that monar compared fo the dimension of the state In order o reduce

the full state of the system. the computation complexity of the triggering mechanism, or
we would select sensors which are co-located, to facilitate
. INTRODUCTION the implementation. We theredesign the original triggering

Event-triggered control is a sampling paradigm, whicltondition so that it only depends on the selected output,
consists in closing the feedback loop at time instants detesis well as on the value of the full state vector at the last
mined by a state-dependent criterion. The underlying idggansmission instant, and an additional scalar variabte T
is to sample only when this is needed in view of thdatter is introduced by design, and is easy to implement.
control objectives. This alternative to periodic samplisg To use an auxiliary variable to define the triggering rule
relevant for networked control systems, as it may allovis also done in [6], [9], [18] in different contexts. The
to significantly reduce the controller bandwidth usage, asontrol input is still given by the state-feedback law bug th
well as for embedded systems, as it may limit the numberiggering condition is nowoutput-based. The setup works
controller executions and thus reduce the computatiorsil caas follows. The triggering mechanism is collocated with the
associated with the control task. Numerous strategies hagelected sensors, and it continuously evaluates the gpobi
been developed in the literature since the pioneering worksggering condition. When the triggering rule is violated
of [4], [5], [20], see for instance [12], [18] and the refeces request is sent tall the sensors to transmit their current
therein. Most of these works concentrate on state-feedbaghkita to the controller and to the triggering mechanism. The
control. In this case, the triggering condition requires@o- updated control input is then sent to the actuators. We
tinuously monitor all the states of the system. This may bigjnore the possible time-delay between the time at which
computationally demanding, in particular when the numbehe triggering mechanism requests the value of the whole
of state variables is large. In this case, it would be relevastate vector and the time at which the updated control input
instead to only consider a subset of the state variables,applied to the plant; noting that this delay can be analyse
possibly few of them, and to trigger transmissions only Haseby following similar lines as in [20].
on these. Such a triggering policy would also be useful We assume that the original state-feedback event-triggere
for plants with distributed sensors. The implementatio of controller ensures both a uniform global exponential $tabi
triggering condition based on the full state vector recgjine ity property and the existence of a global uniform lower
this scenario, to resort to a central unit, which continlyous bound on the inter-transmission times (thus ruling out Zeno
collects all the measurements and evaluates the triggerippenomenon). We prove that these two properties still hold
rule, which may be hard to realize in practice. The setupith the redesigned triggering rule. We also explain how to

. . N _ tune the triggering parameters using linear matrix indtjaal
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continuously monitors a single state variable. (t,7) € dom¢ such that(t, 7 + 1) € dom¢, ¢(t,5) € D and
The proposed strategy is related to works on outputs(t,j + 1) = G(¢(¢,7)). A solution¢ to (1) is:

feedback event-triggered control (see e.g., [1], [7], J21] . nontrivial if dom¢ contains at least two points;

and on distributed event-triggered control (see e.g.,,[13] . maximal if it cannot be extended:

[16], [17], [22]). However, it differs from these studies, , complete if dom¢ is unbounded.

as th_e control inpu_t_is given by a state-feedback law anﬂote that a solution may be maximal but not complete.

the triggering condition depends on the value of the full

state at the last transmission, which is excluded in the I1l. PROBLEM STATEMENT

aforementioned studies. In that way, it is expected to geaer

less transmissions as if the feedback law would be output-

based or distributed, as done in the aforementioned works. t = Ax+ Bu (2

Furthermore, contrary to observer-based solutions, weotlo n ) ) )

resort to state estimates to define the triggering conditio}nere« € R"+ is the stateu € R™ is the control input,

which helps reducing the computational complexity of the! @nd B are real matrices of appropriate dimensions such

scheme. that the pair(A, B) is stabilizable, andi,, n, € Z~o. We
The paper is organised as follows. Preliminaries are givé{fSign a state-feedback law of the form

in Section 11, and the problem is stated in Section Ill. The v = Kz 3)

redesign of the triggering condition and its analysis are

respectively presented in Sections IV and V. Simulationghere K is a real matrix such thatl + BK is Hurwitz.

results on a numerical example are provided in Section VIIn that way, the origin of the closed-loop system (2)-(3) is

and Section VIII concludes the paper. The proofs are omittaghiformly globally exponentially stable.

Consider the linear time-invariant system

for the sake of brevity. We investigate the scenario where controller (3) is imple-
mented on a digital platform using zero-order-hold devices
[l. PRELIMINARIES As a consequence, the closed-loop system becomes

LetR := (—o0,00), R>g := [0,00), Z>¢ := {0, 1,2,...},
and Z-o = {1,2,...}. A function v : R>g — R is
of class K if it is continuous, strictly increasing, zero wherez is defined as, for anye Z C Z>,,
at zero and unbounded. Lét,y) € R"™™, (z,y) stands )
for [T, yT]T. The notationl denotes the identity matrix, &(t) =z(t;)  foramostallt € [t; tits]  (5)

whose dimensions depend on the context. In matrices, @, ; ¢ 7, denotes the sequence of time instants at which
symbol « stands for the symmetric block component. Lethe control input is updated. We focus on the case where the
P e R"*" be a real, symmetric matrix, we respectivelysequence;, i € 7, is determined by an event-triggering
denote its maximum and minimum eigenvaluesy.«(P)  condition. We introduce the sampling-induced error=

and Ain(P). We denote the trace of a square matix 5 _ , ¢ Rn: and we model the overall dynamics as a
by tr(A). The lemma below is used several times in theyypriq system using the formalism of [10] for which a jump

forthcoming developments. _ corresponds to an update of the control input (like in e.g.,
Lemma 1. For any vectors),w and any symmetric, pos- [7], [g], [18], [19])
O

itive definite matrixE, 2vTw < vTEv + wTE~ w.

i = Ax+ BK# @)

We study hybrid systems of the form below [10] I _ | A+BK BK ||z for (z,¢) € C,
é —A—-—BK —BK | |e ©)
rel &t = Fl(x) zt+ -
{ reD zt = G(x), @) [e+ = 0} for (z,e) € D.

wherex € R" is the state[" is the flow map( is the jump The flow seC and the jump seb are defined according to the
map, C is the flow set andD is the jump set. We assume triggering condition. Solutions to (6) flows whém, ¢) € C
that system (1) satisfies thieybrid basic conditions (see and a jump occurs when they enterfm which corresponds
Assumption 6.5 in [10]), which will be the case in the fol-to the region of the state space where the triggering camditi
lowing. We recall some definitions related to [10]. A subsefs violated.

E C R>xZ>q is ahybrid time domainif for all (7', J) € E, Various techniques are available in the literature to desig
En(0,7] x{0,....J}) = U ([t;,tj+1],4) for  the triggering condition (i.e. the sefsandD) so that stability
7€{0,1,....J—1} is preserved under sampling. For instance in Section I1.B

some finite sequence of timés= t;) < t; < ... < t.

A function ¢ : E — R" is a hybrid arc if F is a hybrid
time domain and if for each € Zxo, t — ¢(t, j) is locally
absolutely continuous ofit : (t,j) € E}. The hybrid arc
¢ : dom¢ — R™ is asolution to (1) if: (i) #(0,0) € CUD;

(ii) for any j € ZZOj ¢(t,j) € C and % (t,j) = F(¢(t73)) When (z,e) € CND, the solution can either jump or flow, the latter is
for almost allt € IV := {t : (t,j) € dom¢}; (iii) for every  only possible if flowing keepgz, e) in C.

in [12], the triggering rule is constructed as follows. Let
P, @ be real, symmetric, positive definite matrices such that
(A+ BK)TP+ P(A+ BK) = —Q (such matrices always
exist sinced+ BK is Hurwitz, see Theorem 4.6 in [14]) and



defineV(z) := 2T Pz for any x € R"=. For any(x,e) € infinitely many times. To haveSs; positive definite avoids
R27=, this issue. We will show later that item (i) of Assumption
1 not only prevents Zeno phenomenon but it also ensures
(VV(2),(A+ BK)x + BKe) = —2' Qe + 20T PBKe. 0 ovisience of a uniform dwell-time outside the orfgin
) Item (ii) of Assumption 1 means that the triggering conditio
is designed to ensure the strict decrease of a quadratic
2¢:TPBKe < o27Qu, (8) Lyapunov functionl’. Examples of matrice§, which fulffill
_ Assumption 1, include the one in (11) (in which casg=
with o € (0,1), oQ, P is given above (7) and = (1 — o) \nin(Q)), others
(VV(z), Az + BK#) < —(1-0)2TQz, (9) Possibilities can be found in Section II.B in [11]. .
The objective of this work is to redesign the triggering
and the strict decrease of the Lyapunov functiomlong the  rule in (12) so that it no longer depends on the full state of
solutions to thez-system (outside the origin) is preservedihe system but only on a given output, which we are free to

Consequently, when

In this case, the sets andD in (6) are given by select, the value of the state vector at the last transmissio
C = {(z,e) : 22TPBKe < 02TQu} instant, i.ez, and an auxiliary scalar variable we will design.
L Z ’ 10
D = {(z,e):22TPBKe > o2TQu}. (10) IV. REDESIGN OF THE TRIGGERING CONDITION
The condition in (8) has a quadratic form, and we can rewritd. Principle
it as (see (8) in [12]) As a preliminary step, we rewrite the quadratic term in
e 17 0 N . (12) in terms of(e, &) (instead of(e,x)). We use for that
11 =4 —
[x] [PBK —UQ:| [x} < 0 (11) purpose the fact that = & — e,

T T T
This is a particular type of quadratic event-triggering dien [e} { H]I g] S [ ]I]I H [‘f} = [‘f} S [e} )
tion, others are possible, see Section II.B in [11]. In thogen t N N t t t
we thus concentrate on triggering conditions of the generaith

a T 0] [T 0
form i § = {_]1 11} S[_H H]. (15)
C = (r,e) € R™e { ; } S [ ; ] <0 We introducey = Cx to denote the output of system (2)
. we choose to continuously monitor. The real matrik' is
D = {(ne)eRM : { e } g [ e ] >0 designed and can be arbitrarily selected (it does not have to
’ ’ B be such that the pai4, C) is detectable). Since we assume

(12) that we know the value of; at any time instant, we also
where S is a real matrix, which we write as know e, := Ce at any time instant. We then propose to

g - gl g with S5 € RP*n:. We assume upper bound (14) as follows
2 T3

T T
that the matrixS is designed in such a way that following [ ¢ ] §{ ¢ } < { C:e ] M { Ce ] +eTRe
T - 3

assumption is verified. z z

(16)

. . M . . .
Assumption 1. The following holds. where M = { M; _;[3 is a real, symmetric matrix
(i) The matrix.S3 is symmetric and positive definite. with M; € Rm=xne positive definite, andR is a real,

(i) There exist a reXaL symmetric, and positive definitesymmetric, and positive definite matrix. Note that (16) can
matrix P € R"=*"+ and o > 0 such that, for any gways be guaranteed according to the lemma below.

(z,e) € R, Lemma 2: If item (i) of Assumption 1 holds, then there
(z,e) €C exist real, symmetric matriced/ and R such that (16) is
= (VV(2),(A+ BK)z + BKe) < —alz|?, verified with M3 and R positive definite. O

(13) The first term on the right hand-side of (16) depends on
whereV (z) = 2T Pz for any z € R™=. 0 Ce, which we continuously monitor, and of, which is

Item (i) of Assumption 1 is justified by the following available as it corresponds to the value of the state at the
arguments. First, we can always wrifein (12) such that last transmission instant. On the other hand, we do not want
S, is symmetric. SecondS; must be positive definite to the new triggering condition to depend on the terhfze in
avoid Zeno phenomenon (outside the origin). Indeed, after(36). We thus propose to upper-bouatiRe by a variable

_ et et 01" 0 " p € R, whose dynamics is designed in the sequel. In that
jump, [ o o } i » | = ~% 5% way, we aim at enforcing the condition below on flows
according to (6). £S5 would not be positive definite, there ce 17 Ce

would existz, € R™=\{0} such that-27 S3z, > 0, which [ 5 } M { - ] +p < 0. 17)

implies that(z.,0) € D in view of (12). As a consequence,
any solution reachingz., 0) may then jump instantaneously 2See Remark 4 in Section V-A.



We model the obtained system as follows

t = (A+BK)r+ BKe } R
¢ = —(A+BK)r— BKe (x,e,p) €C
et = 0 (x,e,p) €D,
Pt = gp.2,y)

where f

jump sets are defined in (19), whelié(e) := e Re for any
e € R,

The fact thap upper-boundsV (e), i.e. ¢! Re, is somehow
enforced by the definitions of and D in (19). However,

Remark 1: The construction of the dynamics pbn flows
is inspired by works on norm-estimators, in particular [15]
However, thep-system cannot be considered as a norm-
estimator of thee-system as it does not a priori satisfy the
input-to-state stability property stated in item (i) of Defion
2.4 in [15]. This comes from the fact thatin (20) is not
necessarily strictly negative (in which case the pgair C)
would need to be detectable). We can relax the requirement

and g have to be designed and the flow and thenat ) is strictly negative because that is not needed to upper-

boundW (e) and because we know the valueldf(e) after
each jump instant (it is equal to zero according to (18)). We
therefore tolerate the-system to have unstable dynamics
on flows. This instability is compensated by the resep of

this condition does not need to be implemented in practicg o at each jump. We will show in Theorem 1 that the

because of the way we construct the dynamice af the
following. Indeed, we will show that the variablealways

upper-boundsiV(e) along the solutions to (18), except, (see Definition 3.6 in [10]).
possibly, at the initial time, which justifies the definiten

of C andD in (19) that enforce the ‘right’ initialization of
p-.
B. Design

1) Matrix R: We select the matri@ in (16) such that

there exist real matrices, R with R symmetric and positive
semi-definite, and a constaikte R, which verify

(A—LCYTR+R(A—-LC) < AR—-CTRC.  (20)

This condition is always satisfied by selectingsufficiently
large and settingR = 0 for instance. Inequality (20) is
used to construct the dynamics of the variaplen flows
(namely f in (18)).

2) Dynamics of p: We rewrite the dynamics of the-
variable on flows as, using = & — e,

—(A+ BK)z — BKe (21)
whereD := —A— BK. Consequently, for anyz, e) € R?"=,

(VW (e), Ae + Dz) = (VW (e),(A — LC)e + D& + LCe)
= (VW(e),(A— LC)e+ Dz + Le,)
(22)
where L comes from (20), and recall that, = Ce. Thus,
using (20) and Lemma 1 with = Re, w = Dz + Le, and
E = aR~! wherea > 0,

(VW (e), Ae + Di) < )\W(e)—eg}_f_ey—i-ZeTR(D:E + Ley)
< AW (e) — e, Rey + e’ Re
+1(Di + Le,)"R(Di + Ley)
=A+a)W(e) — egﬁey

+1(Dz + Ley)"R(Di + Ley).

é = =

Dz + Ae,

component of the solutions are bounded, more precisely, we

will guarantee thatx, e, p) = 0 is uniformly globally stable

O
Remark 2. The non-positive term-C7T RC in (20) may

be useful to reduce the conservatism of the upper-bound of

W (e) given by p. O
Remark 3: WhenR =0, L = 0, M; = 0, My = 0, the

triggering condition in (19) is independentajf. In this case,

we do not need to continuously monitor the outpués only

the value oft is needed to decide the next triggering instant:

we have a self-triggered-like policy (see e.qg., [2], [3]3]2

[24]). O

V. ANALYSIS

A. Existence of a uniform dwell-time

The following proposition states that the triggering con-
dition defined in (19) guarantees the existence of a uniform
minimum amount of (ordinary) time between two successive
transmissions (outside the origin).

Proposition 1: Consider system (18), (19) and suppose
item (i) of Assumption 1 holds. There exists> 0 such that
for any solution(z, e, p) and any(s, 1), (¢, 7) € dom(z, e, p)
with s +i < ¢t + 4, (z(t,7),e(t,5),p(t,j5)) # 0 implies
j—i< TS 1. 0

The constan® in Proposition 1 is a uniform global lower
bound on the inter-transmissions intervals. The existence
of this dwell-time is not ensured at the origin for system
(18), (19) in Proposition 1. Nevertheless, when a solution
is at the origin, it can either keep flowing forever, keep
instantaneously jumping infinitely many times, or do any
intermediate behaviour as it lies in the intersection of the
flow and the jump set and flowing keeps the solutiorCin
This means that we can transmit whenever we want in this

In view of (18) and (23), we define the flow map and th&ase in practice, and the existence of dwell-time can thezef

jump map for the variable in (18) as

fp,2,y) = (A\+a)p—eyRe,
+1(Di + Ley)"R(D% + Le,)  (24)
glp,z,y) = 0.

The dynamics of only involve p, e, and Z, which are all
continuously available to the triggering mechanism.

be enforced. A similar observation is made in Section IV.B
in [18].

Remark 4: The redesigned triggering conditions upper-
bounds the one in (12) in view of (16) and the fact that
W (e) < p. We deduce that the existence of a global uniform
dwell-time (outside the origin) for system (18), (19) eresur
the existence of such a time for system (6), (12). O
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B. Sability B. Dynamics of p

The theorem below shows that stability is preserved with There are two possible sources of conservatism in Section
the redesigned triggering condition. IV-B.2, and the first one is (20). One way to limit it is to

Theorem 1: Consider system (18), (19) and suppose Aseonstruct the matriceB, R, L with R symmetric and positive
sumption 1 is verified. The following holds. semi-definite, to minimize

() Therg existcll > 1landey > 0 §uch that for any (AR — CTRC — (A— LO)'R— R(A— LC)) . (27)
solution, |x(t, j)| < ¢1 exp(—c2(t+7))]2(0,0)| for any

(t,7) in the domain of the solution. This problem is linear in the variableB, R and Z = RL

(i) There exists p S Ko such that for for givenC and\, and it can therefore be solved using LMI
any  solution, [(z(t,7),e(t,7),p(t,7))] < solvers.
exp(—c24)p(|(2(0,0),€(0,0),p(0,0))|) for any On the other hand, the developments in (23) may also be
(t,7) in the domain of the solution. a source of conservatism. To vary the valuecoinay be

(i) Any maximal solution is complete. O  helpful here.

Iltem (i) of Theorem 1 means that the uniform global L
exponential stability property of system (6), (12), guagad C- OPtimization problem
through the satisfaction of item (ii) of Assumption 1, is There are two criteria to minimize, namely (26) and (27).
preserved with the redesigned triggering rule. ltem (ii) ofMe choose to formulate this multi-objective problem using
Theorem 1 implies thatz, e, p) = 0 is uniformly globally a weighted sum. In that way, for give®i, A € R>p, o > 0
stable (see Definition 3.6 in [10]), and that this stabilityand weighthsy1, xy2 > 0, we aim at solving

property becomes asymptotic when the maximal solutions cT o c o R 0
have an unbounded time domainjinwhich may not be the ~ minxitr ({ 0 I }M{ 0 I } + { 0 0 D
case in general. Item (iii) of Theorem 1 confirms tipais +xatr (AR — CTRC — (A— LC)TR — R(A - LO))
an appropriate upper-bound f (e); if it would not be the  subject to (16), (20) and
case, some maximal solutions would not be complete. M = MT with M3 >0
R=RT">0
VI. GUIDELINES = =T
_ ) _ o ) R=R >0.
The approach described in Section IV consists in suitably (28)

upper-bounding the original triggering condition in (1Z»  The scalars\, o, x1, x2 need to be fixed to solve the problem
this purpose, we first use the inequality in (16) and we thesbove. A heuristic line search can be done off-line, as we did
construct the dynamics of the variableto upper-bound in Section VII on a numerical example. Another important
¢’ Re, see Section IV-B.2. In this section, we explain how tayuestion is how to select the matiixand thus the states that
optimize the selection of the triggering condition para@net we continuously monitor. First, we may be constrained by
to reduce the potential conservatism induced by these twpactical requirements. If several options are possibleret
steps. We first treat them separately, and we then present #ye always a finite number of these and we may test all of
overall optimization problem. them off-line, as done on an example in Section VII.

A. Inequality (16) VII. | LLUSTRATIVE EXAMPLE
Given the matrixC, we select the real, symmetric matrices We consider the example studied in Section V in [20],

M and R with M3 and R positive definite, such that they namely
minimize . 01 0
I Ty
IINE a] = Bl ] e
O R R I B O B R
S . T which we stabilize using the feedback law= z; — 4x5.
which is equivalent to minimizing We design the triggering condition (12) with as in (11),

T 1 3 5 7
([ 9w ]S 0]+[R0]) e wherer = | | ;l,gz[i 1 | ando —0s.
We then apply the methoé described in Section IV to

This problem can be efficiently solved using standard linearbtain the desired redesigned triggering condition. We do
matrix inequalities (LMI) solvers. this for bothy = 21 andy = 5. In each case, we



(11) y=z1 Yy = x2
(x1,x2) = (1,0) (X17X2):(%7%) (x1,x2) =(0,1) (x1,x2) = (1,0) (X17X2):(%7%) (x1,x2) = (0,1)
A=10 A=10 A=10 A=-—5H A=0 A=-10
Tavg 0.4683 ‘ 0.0376 0.0900 0.0530 ‘ 0.4892 0.4137 0.4386
Tmin | 0.1895 0.0137 0.0474 0.0226 0.1263 0.1764 0.0717
TABLE |

VALUES OF Tavg AND Tiin -

synthesize the matriced/, R, R, L by solving (28) for

fixed values of\, a, x1, x2. We have run simulations for
10 values of(z1(0,0), z2(0,0)) uniformly distributed along

the unit disk of R?, (e(0,0),p(0,0)) = 0 and for 10
seconds. We have selected= 10 and we have variec

within {—15,-10,—5,0,5,10,15}. Note that we can take

(4]

(5]

[6]

A < 0 as the system is detectable with respect to each
output. The values of the average inter-transmission times

denotedrayg and which serves to evaluate the amount of[7
transmissions, and of the minimum inter-transmission $ime
denotedr,;,, over all simulations are provided in Table |

(only the values of), for which the largest value ofayg

[8]

was observed, are reproduced in this table for each pair

(x1, x2)). Comparable values ofyq and ofr,;, are obtained

with the original event-triggering condition (11) and with (9]
the proposed redesigned policy fgr= x5. We even have [10]

a larger value ofra,g with the redesigned technique when

y = x2, (x1,x2) = (1,0) and A = —5. Starting from
the same initial condition, the first inter-transmissiotemal

[11]

will be larger with (11) than with the redesigned triggering12]

rule. However, afterwards, each strategy generates éliffer

solutions, which evolve in different regions of the statacp

(23]

It may therefore be the case that the solutions given by the

redesigned policy enter in a region where less transmissio
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are generated. On the other hand, to tagke =, generates [15]
much more transmissions, which indicates that the choice
of the monitored output is important when redesigning thﬁ_e]

triggering condition.

VIII. CONCLUSIONS

[17]

We have presented a method to design a triggering condi-

tion which works with limited sensors information for lirea
time-invariant systems. The idea is to start from a known

state-feedback event-triggered controller and to redeissy

triggering rule so that it no longer depends on the ful

i)

state vector. In future work, we will show that the method
applies to other types of triggering conditions, such aseho [20]
involving timers (see e.g., [1], [8], [21]) and for systems

affected by exogenous disturbances.
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