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A simple three-wave Approximate Riemann Solver

for the Saint-Venant–Exner equations

E. Audusse ∗ C. Chalons † P. Ung ‡

May 22, 2015

Abstract

The Saint-Venant–Exner equations are widely used in the literature and industrial codes to
model the bedload sediment transport. In industrial codes, the resolution of this system of equa-
tions is mostly approached by a splitting method which allows a weak coupling between the
hydraulic and morphodynamic models but may suffer from stability issues. In recent works, many
authors proposed alternative finite volume methods based on a strong coupling to cure this prob-
lem. This work pursues two objectives : first we propose a numerical scheme to approximate the
solution of the coupled model with a Godunov-type method based on a three-wave Approximate
Riemann Solver (ARS) and, second, we extend the purpose to exhibit what is the minimal cou-
pling that ensures the stability of the global numerical process when dealing with collocated finite
volume schemes.

Key words. shallow-water equations, Exner equation, splitting method, non-splitting method,
approximate Riemann solver, finite volume method, positivity preserving, well-balanced scheme.

Introduction.

The Saint-Venant–Exner system is widely used to model bedload sediment transport phenomenon
that occurs in large time and space scales in river hydraulics or coastal studies. It takes the form
of a system of three equations where the first two ones are nothing but the shallow water equations
with topography and friction source terms whereas the last equation is a simple conservation law that
refers to the evolution in time of the topography due to the action of the fluid. Eventually the full
system writes















∂th+ ∂xhu = 0, (1a)

∂thu+ ∂x

(

hu2 +
gh2

2

)

= −gh (∂xb+ Tf ) , (1b)

(1− Φ) ∂tb+ ∂xqs = 0, (1c)
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where the unknowns are the water height h(t, x), the flow velocity u(t, x) and the bottom topography
b(t, x). The parameters are the gravitational acceleration g and the porosity of the sediment layer Φ
that will be set to zero hereafter. We also introduce the fluid discharge q(t, x) := h(t, x)u(t, x). The
friction term Tf and the sediment flux qs are fundamental ingredients of the model since they ensure
the coupling between the fluid and the solid parts. They are defined by semi-empirical formulae
discussed hereafter.

The friction term Tf is usually defined by semi-empirical formulae. One of the most popular is
the Manning-Strickler formula

Tf =
|q| q

K2
s h

2 R
4/3
h

, (2)

with Ks the Strickler coefficient and Rh the hydraulic radius such that

Rh =
l h

l + 2h
,

where l is the width of a rectangular channel. As previously mentioned, this term models the answer
of the fluid to the presence of the solid part and is therefore a fundamental ingredient of the coupled
model. Note that it will still be neglected in some of the numerical tests to compare the results of
the presented scheme with those of the existing literature.

The sediment flux formula qs is also computed by semi-empirical formulae and is in general a
function of the fluid quantities (h, u) only. The number of formulae proposed in the literature is huge
and the range of applications of any of them is far from being universal, depending on the nature of
the fluid flow and the characteristics of the solid bed. One can exhibit two main categories depending
on whether a threshold value is used or not for the sediment transport to start. We will use in the
numerical applications the Grass [20] formula

qs(t, x) = Ag|u|m−1u (3)

and the Meyer-Peter-Müller formula

qs(t, x) = Am (τ∗ − τ∗c )
3/2 (4)

where τ∗ refers to a non-dimensional friction term that is weighted by the buoyancy of the sediment
particles

τ∗ =
ρwhTf

(ρs − ρw)d

that is known as the Shields parameter, where ρw, ρs are the density of the water and solid phase
respectively and d the mean granular diameter.

As for the classical shallow water model (with fixed topography), some important stability prop-
erties have to be satisfied by a numerical method to approximate correctly the solutions of system
(1). In particular, the numerical scheme has to ensure the positivity of the water height and the
well-balanced property especially characterized here by the preservation of the lake at rest defined by,

{

∂x(h+ b) = 0 , (5a)

u = 0 . (5b)

Note that, unlike the shallow water model, the Saint-Venant–Exner equations do not admit any as-
sociated energy inequality that could be used to ensure another stability criterion. A last important
property is to be able to identify the behavior of the numerical scheme when the sediment transport
vanishes since we would like to recover a relevant scheme for the classical shallow water model.
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In general, the flux formula qs makes the morphodynamic equation on b strongly coupled with
the hydraulic part of the Saint-Venant–Exner model. As a consequence, the model turns out to be
strongly non linear and the eigenvalues and eigenvectors of the corresponding flux Jacobian matrix
have no closed algebraic form which makes particularly challenging the design of simple (and coupled)
numerical approximation.

Most of the industrial codes [1, 2, 3, 4] are based on this model to perform numerical simulations
for sediment transport problems. The core of these software suites is the resolution of hydraulic prob-
lems. To take into account the sedimentary aspect, they call sediment modules that are able to solve
the Exner equation. The two codes can then run with different numerical parameters such as the
time step, the space step or the numerical scheme. They only communicate by exchanging particular
data at some given time steps. Such a splitting method works well in particular cases but fails when
considering fast flow and introduce numerical instabilities [23, 15, 5].

Another approach was popularized in the early 2000s and consists in solving the Saint-Venant
equations and updating the bed topography at the same time steps in order to treat the full sys-
tem. It will be called non-splitting method thereafter. Following the pioneering work of Hudson and
Sweby [23], which proposes a suitable coupled method has been the source of a lot of studies. Let us
cite the principal ones. Extending the approach developed in [23, 22] where the authors deal with the
classical Roe method [31], a lot of works are based on the computation of an approximate Jacobian
matrix related to the system (1). Among them, some authors choose to extend classical solvers to
systems with source terms, see for example [8] where the authors developed a finite volume non ho-
mogeneous Riemann solver (called SRNHS) that is an extension of the VF-Roe scheme, or also [33]
where an approximation of the eigenvalues associated to the Jacobian matrix permits to introduce
a Riemann solver for (1) based on the HLLC solver. Some other works extend the definition of the
Jacobian matrix to the whole system by considering the source term as a non conservative product.
This can be done with help of the definition of a family of paths in the plane phase, see [13, 12]. It
is also possible to directly derive algebraic conditions to obtain a non-conservative well-balanced Roe
solver, see [32, 27]. Some numerical methods have been proposed that avoid the computation of exact
Jacobian or Roe matrix. In particular, Delis and coauthors proposed in a serie of papers [16, 26] a
scheme that is based on the use of a relaxation model for the Saint-Venant–Exner system (1), which
extended the idea introduced in [25]. The relaxation approach has also been studied in [5]. This
approach appears quite attractive since it relies on linearized problems that preserve stability prop-
erties of the original model and can be used for general sediment flux formulae since the linearized
Riemann problem is solved for an homogeneous system that does not involve neither the friction
term nor the sediment flux formula, both being treated in a separate step. However its resolution
may not be so trivial in practice and the related scheme appears to be more diffusive than other
choices. Note that most of these works have been extended to two-dimensional versions of system (1),
see [24, 14, 8, 27, 11, 7], including comparisons with industrial software in realistic geometries [26].

The issue concerning the choice between splitting and non-splitting methods is of main interest
and was discussed a lot in the last decade. In their early work [23], Hudson and Sweby already jus-
tified the introduction of the non-splitted method by opposing some variants of these two strategies
to approximate the system (1) (called steady and unsteady approaches). The first assumption leads
to a decoupled system in which the hydraulic part is solved first (until an equilibrium is reached)
and then the bed topography is updated with help of the previous hydraulic variables. The second
idea consists in evaluating simultaneously the water flow and the river bed at the same time step
by defining a Roe-type solver based on an approximate Jacobian matrix of the whole system. It
appears that the steady approach only works well in situation involving weak interaction between
the hydraulic and morphodynamic parts. In general, the unsteady approach does not present this
limitation and well behaves for all situations. In [22], the authors extended their analysis to the issue
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1 NUMERICAL SCHEME.

of the choice between splitting and non-splitting approaches, including the case where second order
accurate Lax-Wendroff scheme is used to improve the accuracy of the solution (with the help of flux-
limiters to avoid spurious oscillations introduced by the higher order scheme they considered). They
suggest that for weak values of Froude number, it is preferable to use the splitting approach whereas
the non-splitting one is more adapted to high values of Froude number. Cordier et al. bring a further
contribution to the discussion in [15] and permit to establish a condition for the hyperbolicity of the
model which can be lost at least theoretically for some choice of the sediment flux qs. Under these
assumptions, it appears that for some cases, the numerical instabilities initially observed for splitting
methods can be avoided in some cases by a strong limitation on the time step but still not vanish in
general. In that context, the authors also suggest to solve the full system with a coupled numerical
scheme rather than approximating the solution by a splitting method.

In this work we try to address both aspects. First we propose and analyze a positive and well-
balanced three-wave approximate Riemann solver (denoted ARS in the following) that is able to
approximate the system (1) and to degenerate to the well-balanced and positive solver introduced in [6]
when the sediment flux vanishes (classical Saint-Venant equations). The ARS scheme is introduced
as a non-splitting method but does not need the computation of a Jacobian matrix of the full system
and then can be used for general sediment flux formula. The ARS scheme is then proved to be at
the frontier between the splitting and non-splitting strategies previously introduced as it borrows
its philosophy both from the splitting approach for the decoupled calculations of the hydraulic and
morphodynamic parts and the non-splitting one for the evaluation of the wave velocities related to
the system (1). It allows us to discuss in the last part of the paper what is the minimal quantity
of coupling that should be added in industrial codes (in an as less as possible intrusive manner)
to stabilize the splitting approach. Numerical tests are presented to exhibit the ability of the ARS
scheme to deal with different situations and to enforce our conclusions on the splitting approach.

1 Numerical scheme.

1.1 Generalities on Approximate Riemann Solvers

We describe a Godunov-type finite volume scheme for (1) when the friction term is neglected; its
treatment will be described in section 1.9,















∂th+ ∂xhu = 0, (1.1a)

∂thu+ ∂x

(

hu2 +
gh2

2

)

= −gh∂xb, (1.1b)

∂tb+ ∂xqs = 0, (1.1c)

Let us first introduce some notations. We consider a sequence of points xi+1/2 such that

xi−1/2 < xi+1/2 , ∀i ∈ Z ,

and we define the cells Ci and space steps ∆xi = ∆x, such that

Ci =
]

xi−1/2, xi+1/2

[

, ∆x = xi+1/2 − xi−1/2 .

In addition, we set xi =
(

xi−1/2 + xi+1/2

)

/2.

We also introduce a time step ∆t > 0 that allows to define a sequence of intermediate times tn by

tn+1 = tn +∆t .
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1.1 Generalities on Approximate Riemann Solvers

Hereafter, Xn
i will denote the approximate cell average of X on the cell Ci × [ti, ti+1) for all X =

h, hu, b. At each time tn and interface xi+1/2, one thus faces a Riemann problem between two
constant states associated with the cells Ci and Ci+1.

Starting from a given piecewise constant approximate solution at time tn, Godunov-type methods
propose to advance the solution at time tn+1 in two steps:

– first, to build an approximate solution of the Riemann problem at each interface xi+1/2,
– second, to obtain the new solution by evaluating the average value of the juxtaposition of these

solutions in each cell Ci at time tn+1.
As an approximate Riemann solution associated with initial data

(w(0, x), b(0, x))T =

{

(wL, bL)
T , x < 0 , (1.2)

(wR, bR)
T , x > 0 , (1.3)

with two given states wL = (hL, hLuL)
T and wR = (hR, hRuR)

T , we will consider here a simple
approximate Riemann solver composed by three waves propagating with velocities λL < 0, λ0 = 0
and λR > 0 as shown on the fig. 1,

x

t

λ0

λRλL
w⋆
R

b⋆R

w⋆
L
b⋆L

wRbR
wL bL

Figure 1: Local Riemann solver.

λL 6 0 6 λR.

The key point will be the definition of the intermediate states w⋆
L, b⋆L, w⋆

R, b⋆R. It is known that
such an approximate Riemann solver is consistent in the integral sense with (1) [18, 19, 21] provided
that the intermediate states satisfy the following consistency relations:

f(wR)− f(wL)− s (wL, wR, bL, bR) = λL(w
∗
L − wL) + λR(wR − w∗

R) , (1.4)

with
f(w) = (fh(w), f q(w), f b(w))T = (hu, hu2 + gh2/2, qs(w))

T , (1.5)

and s(wL, wR, bL, bR) is an approximation of the source term in (1), consistent with (0, −gh∆b, 0)T

since it satisfies:

lim
wL, wR → w

∆x → 0

1

∆x
s (wL, wR, bL, bR) =





0
−gh∂xb

0



 . (1.6)

Then, it is also well-known that the associated Godunov-type scheme is equivalent to the following
update formulas, for h0, u0, b0 respectively the water height, the velocity and the bottom topography
at the initial state:















(wn+1
i , bn+1

i )T = (wn
i , b

n
i )

T − ∆tn

∆x
(F−

i+1/2
− F+

i−1/2
) , (1.7)

(w0
i , b

0
i )

T =
1

∆x

(∫

Ci

h0(x)dx,

∫

Ci

(h0u0)(x)dx,

∫

Ci

b0(x)dx

)T

, (1.8)
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1 NUMERICAL SCHEME.

with F−(wi, wi+1, bi, bi+1) and F+(wi, wi+1, bi, bi+1) the left and right numerical fluxes (see [9])
which will be precised later on, under the well-known CFL condition which ensures that two Riemann
problems do not interact

∆t <
∆x

2 max(|λL|, λR)
,

where the function max is taken over the set of all considered Riemann problems set at each interface
xi+1/2.

1.2 Relations defining the intermediate states.

One has to define two intermediate states namely the unknowns w⋆
L, b⋆L, w⋆

R, b⋆R. We start from
the consistency relations (1.4) which write



























hRuR − hLuL = λL (h⋆L − hL) + λR (hR − h⋆R) , (1.9)
(

hRu
2
R +

gh2R
2

)

−
(

hLu
2
L +

gh2L
2

)

+ g∆x {h∂xb}

= λL (h⋆Lu
⋆
L − hLuL) + λR (hRuR − h⋆Ru

⋆
R) , (1.10)

qs(wR)− qs(wL) = λL (b⋆L − bL) + λR (bR − b⋆R) , (1.11)

where {h∂xb} stands for a consistent approximation of the source term h∂xb. Then, we add two
continuity relations across the stationary wave which ensure the well-balanced property when no
erosion is taken into account, see [6]

{

h⋆L + b⋆L = h⋆R + b⋆R , (1.12)

h⋆Lu
⋆
L = h⋆Ru

⋆
R . (1.13)

Finally, in order to close the system, we consider a minimization problem for the quantities b⋆L and
b⋆R in the form

min F(b⋆L, b
⋆
R) =

(

||bL − b⋆L||2 + ||bR − b⋆R||2
)

(1.14)

u.c. H(b⋆L, b
⋆
R) = λL (b⋆L − bL) + λR (bR − b⋆R)− (qs(wR)− qs(wL)) = 0 .

In other words, this last relation ensures that the evolution of the bed minimizes a particular moving
energy under the consistency constraint (1.11). This modelling of the bottom displacement thanks to
an energy minimization problem was also investigated in [10] in a different framework. Eventually,
the system of non linear relations (1.9)-(1.10), (1.12)-(1.13) and (1.14) allows us to find the six
intermediates states explicitly, see the next subsections. Note that the system can be splitted into
two parts since the minimization problem (1.14) can be solved separately and thus defines the values
of b⋆L and b⋆R that can be used as data in system (1.9)-(1.10), (1.12)-(1.13). We will discuss this
property in Section 3.

1.3 Expression of the intermediate states for the solid part

We begin by solving this minimization problem by classically using the Lagrange multipliers. The
partial derivatives are given by

∂F
∂b⋆L

= −2(bL − b⋆L) ,
∂H
∂b⋆L

= λL ,

∂F
∂b⋆R

= −2(bR − b⋆R) ,
∂H
∂b⋆R

= −λR ,
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1.4 Expression of the intermediate states for the hydraulic part

α̃1 is the Lagrange multiplier associated with the single constraint, which gives the following set of
equalities

{ −2(bL − b∗L) + α̃1λL = 0 ,

−2(bR − b∗R)− α̃1λR = 0 ,
⇐⇒















α̃1 =
2(bL − b⋆L)

λL
,

α̃1 = −2(bR − b⋆R)

λR
.

Then, one obtains the following equation

(bL − b⋆L)λR = (b⋆R − bR)λL, (1.15)

which is completed by the constraint H = 0,

∆qs = λL(b
⋆
L − bL) + λR(bR − b⋆R),

or equivalently

bL − b⋆L =
λR

λL
(bR − b⋆R)−

1

λL
∆qs. (1.16)

Solving (1.15)–(1.16) finally defines the values of the bottom topography of the intermediate states
as follows,

b⋆L = bL +
λL

λ2
L + λ2

R

∆qs, (1.17)

b⋆R = bR − λR

λ2
L + λ2

R

∆qs. (1.18)

1.4 Expression of the intermediate states for the hydraulic part

It is now possible to evaluate the remaining unknowns related to the hydraulic part, see [6].
Solving the four equations (1.9)–(1.12)–(1.10)–(1.13), we obtain the values of the water heights,

h⋆L = hHLL +
λR

λR − λL
∆b⋆, (1.19)

h⋆R = hHLL +
λL

λR − λL
∆b⋆, (1.20)

where hHLL is the intermediate water height of the well-known HLL Riemann solver [21],

hHLL =
λRhR − λLhL

λR − λL
− 1

λR − λL
(hRuR − hLuL) , (1.21)

and the value of the discharge,
q⋆ := h⋆Lu

⋆
L = h⋆Ru

⋆
R,

q⋆ = qHLL − g

λR − λL
∆x{h∂xb}, (1.22)

where again, qHLL corresponds to the intermediate discharge of the HLL Riemann solver [21], namely

qHLL =
λRhRuR − λLhLuL

λR − λL
−

(

hRu
2
R +

gh2R
2

)

−
(

hLu
2
L +

gh2L
2

)

λR − λL
.
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1.5 Expression of the numerical fluxes.

Easy calculations using (1.5)–(1.17)–(1.18)–(1.19)–(1.20)–(1.22) give

{

F−(wL, wR, bL, bR) = f(wL) + λL (w⋆
L −wL) , (1.23a)

F+(wL, wR, bL, bR) = f(wR) + λR (w⋆
R − wR) . (1.23b)

At this stage, the scheme is almost entirely defined since only the choice of the extreme wave velocities
λL and λR remains to be specified at each interface xi+1/2. Note that when the Grass formula (3)
is chosen to define the solid flux qs, it is well-known [13] that the model is hyperbolic and finding
the characteristic speeds of the model consists in calculating the roots of a third degree polynomial
equation. However, for numerical purposes, it is sufficient to propose upper bounds of the roots. The
computation of these upper bounds is now given. Note that it can be easily extended to the case of
more complex sediment flux formulae with a threshold value like (4).

1.6 Approximation of the wave velocities – λL and λR

Let us recall that for stability reasons, λL and λR must be upper bounds of the eigenvalues of the
Jacobian matrix A of the model; in [33], the authors have proposed some values for the eigenvalues
of A, at least approximate ones, for their Riemann solver. Easy calculations give

A =





0 1 0
gh− u2 2u gh

α̃ β̃ 0



 , (1.24)

with α̃ =
∂qs
∂h

, β̃ =
∂qs
∂q

and q = hu.

The exact values of the characteristic speeds are given by the roots of the characteristic polynomial
of A, namely

pA(λ) = λ3 − 2uλ2 − (gh(1 + β̃)− u2)λ− ghα̃ = 0. (1.25)

Recall that we are only interested in upper bounds of the exact characteristic speeds, i.e. of the
solutions of (1.25). Several strategies have been proposed in the literature but most of them are valid
under strong assumptions on the polynomial coefficients. Upper bounds proposed by Nickalls [28] turn
out to be accurate and can be applied to any polynomial with real roots. It consists in differentiating
the polynomial until we obtain a quadratic polynomial, here

3λ2 − 4uλ− (gh(1 + β̃)− u2) = 0. (1.26)

The solutions λ± of the corresponding equation can be then divided into two parts x0 and Ω,

λ± = x0 ± Ω, (1.27)

such as x0 =
2u

3
and Ω =

1

3

√

u2 + 3gh(1 + β̃). In this form, we can exhibit the abscissa of the

inflexion point which is equal to x0, and Ω can be interpreted as the distance in the horizontal direction
between the two local extrema of the polynomial (1.25) and the inflexion point. The Nickalls’ theorem
states that all the roots of (1.25) lie in the range bounded by x0 ± 2Ω. That is why, we define the
wave velocities by

λL = x0 − 2Ω, (1.28)

λR = x0 + 2Ω. (1.29)
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1.7 Positivity of the intermediate water heights.

1.7 Positivity of the intermediate water heights.

As far as (1.19) and (1.20) are considered (or used), the positivity of the intermediate water heights
is not ensured. We thus propose a similar treatment to the one used in the case of the shallow-water
equations [6].

Notice that the signs of h⋆L and h⋆R depend on the sign of ∆b⋆. With this in mind, we propose to
replace the values of the water heights h⋆L and h⋆R by h̃⋆L and h̃⋆R such that

1. if ∆b⋆ > 0,

λRh̃
⋆
R = λR max (h⋆R, 0) , (1.30)

λLh̃
⋆
L = λLh

⋆
L − λR

(

h⋆R − h̃⋆R

)

, (1.31)

2. if ∆b⋆ < 0,

λLh̃
⋆
L = λLmax (h⋆L, 0) , (1.32)

λRh̃
⋆
R = λRh

∗
R − λL

(

h⋆L − h̃⋆L

)

. (1.33)

We can easily check that these modifications preserve the positivity of the water heights. Indeed, for
the first case, it is clear that h̃⋆R is positive. The value of h̃⋆R could be h⋆R or 0. In the first situation,
h̃⋆L = h⋆L which is positive, and in the second one,

λLh̃
⋆
L = λLh

⋆
L − λRh

⋆
R ⇐⇒ h⋆R = h⋆L − λR

λL
h⋆R > 0.

We apply the same calculations to prove the positivity of the water height in the case ∆b⋆ < 0.

1.8 Well-balanced property of the scheme

To ensure this property, we work with the following discretization of the source term already used
in [6],

{h∂xb} =











hL + hR
2∆x

min (hL,∆b) , if ∆b > 0 , (1.34a)

hL + hR
2∆x

max (−hR,∆b) , if ∆b < 0 . (1.34b)

With this formulation, we can preserve the classical lake at rest.

1.9 Discretization of the friction term

This term is numerically treated in an implicit way for stability purposes [29]. We suppose that
qn+1
i is the solution of (1.1) at time tn+1. Then, the solution of (1) q̃n+1

i at time tn+1 is obtained by
solving the equation,

q̃n+1
i = qn+1

i − g∆t
|q̃n+1
i | q̃n+1

i

K2
s h

n+1
i (Rn+1

h, i )4/3
. (1.35)

We suppose that q̃n+1
i has the same sign as qn+1

i and finally define,

q̃n+1
i =























−1 +
√

1 + 4a qn+1
i

2a
, if qn+1

i > 0 , (1.36)

1−
√

1− 4a qn+1
i

2a
, if qn+1

i 6 0 , (1.37)
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2 NUMERICAL RESULTS.

with a =
g∆t

K2
s h

n+1
i (Rn+1

h,i )4/3
.

2 Numerical results.

In order to validate the proposed scheme, called SimSol (for “Simple Solver”) hereafter, we perform
a series of classical test cases from the literature and we extend them to cover additional flow regimes.
Thus we study the simulation of dune evolution in fluvial [23, 22, 16, 13, 8, 7], transcritical [15] and
torrential [7] flow regimes, and the dam break problem over a moveable bed [27, 5] with or without
dry state. For all test cases, we compare our results with those obtained for a scheme based on the
computation of an approximate Jacobian matrix and so called Intermediate Field Capturing Riemann
solver [30, 17] and an other one based on a relaxation approach [5]. They are respectively referred as
to IFCP and Relaxation thereafter. In addition we consider the widely used Grass formula (3) since
it is widely used in the literature. For the last test case we also compare the results with the ones
obtained with the two sediment flux formulae (3) and (4).

2.1 Dune evolution in a fluvial flow.

This classical test case is a sediment transport problem which considers a bump under a fluvial
flow. The length of the channel is L = 1000m and the initial data are parametrized by



























b(0, x) =







0.1 + sin2
(

(x− 300)π

200

)

, if 300 6 x 6 500m,

0.1 , elsewhere,
h(0, x) = 10− b(0, x) ,

u(0, x) =
q0

h(0, x)
,

with q(t, 0) = q0 = 10m2/s the inflow discharge. Fig. 2 shows the topography at time T = 700 s
with a mesh of 2000 elements. It clearly appears that the proposed scheme is less diffusive compared
to the other ones; the relaxation method introduces the highest diffusive effect since no shock front
appears and the top of the bump is two times lower than the other values. In addition, the scheme
succeeds in computing the shock front. One can also notice that the results returned by this scheme
with the wave velocities obtained by the Nickalls’ bounds and those approximated by the IFCP solver
are quite similar even if the solution associated to the last one is a bit more diffusive.
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Figure 2: Fluvial flow: Comparison of dune evolution for different numerical schemes.
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2.2 Dune (anti-dune) evolution in a torrential flow.

2.2 Dune (anti-dune) evolution in a torrential flow.

This test case is a modified version of the one presented in [7]. A torrential flow over a moveable
bed with an initial bump permits to deal with the anti-dune phenomenon. The channel is L = 24m
long and the initial bottom topography is

b(0, x) =

{

0.2− 0.05 (x − 10)2 , if 8 6 x 6 12m,

0 , elsewhere.

We impose a uniform discharge q(0, x) = q0 = 2m2/s and evaluate the corresponding water height
in the stationary state for the Saint-Venant equations thanks to the Bernouilli’s law,







q(t, x) = q0 ,

q20
2 gh2

+ h+ b = H0 =
q20

2 gh20
+ h0 + b(0, 0) ,

with h(t, 0) = h0 = 0.5m. The Grass formula (3) defines the solid flux with parameters Ag = 0.001
and m = 3. We run the test case with a 2400-element mesh. In this particular test case, the erosion
operates after the top of the bump; at this point the velocity is greater than before the top of the
dune causing the upstream migration of the anti-dune. The deposition of sediments occurs at the
upstream of the bump. Furthermore, the scheme computes well the shock front of the dune and is less
diffusive than the relaxation method as shown on fig. 3. In addition, it is noticed that the solutions
obtained by the proposed scheme and the IFCP based method share a similar behaviour.

2.3 Dune evolution in a transcritical flow without shock.

This test case describes a transcritical flow without shock over a bump [15]. The length of the
channel is L = 10m and the initial data are defined by







b(0, x) = 0.1 + 0.1 e−(x−5)2 ,
h(0, x) = 0.4− b(0, x) ,
q(0, x) = 0.6 ,

In fact, we begin by solving the shallow water system by imposing Ag = 0 in order to obtain a steady
state solution; in our case, we have imposed an intermediate time equal to 20 s. Starting from this
last solution, we solve the Saint-Venant–Exner equations by defining the sediment flux qs using the
Grass formula with Ag = 0.0005 and m = 3. This numerical test gives the results with a 1000-element
mesh at time T = 15 on fig. 4. We observe an erosion of the dune which mainly operates at the
downstream of its top; the lost materials are evacuated at the downstream of the flow. One notes
that the relaxation model returns a quite diffusive solution compared to the ones obtained with the
proposed solver and the IFCP scheme which both converge to the same solution.

2.4 Dam break over a wet bottom topography.

For this test case, we consider a dam break over a flat wet bottom. We define the Exner law with
the Grass formula with parameters Ag = 0.005 and m = 3. The channel is 10m long and we impose
the following initial conditions,















h(0, x) =

{

2m , if x 6 5m ,
0.125m , if x > 5m ,

u(0, x) = 0m/s ,
b(0, x) = 0m .
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Figure 3: Anti-dune: Comparison of anti-dune evolution for different schemes at different times.

The results on fig. 5 are obtained with a 1000-element mesh at time T = 1 s. This test case has
been presented in [5] and has revealed that instabilities appear when we solve the system (1) using
a splitting approach; the spurious oscillations result from the fact that the flow reaches a torrential
regime in this test case. Here, we do not observe instabilities and the results are similar for the three
schemes.

Another interest is the comparison of the results with two different sediment fluxes: the Grass (3)
and the Meyer-Peter & Müller (4) formulae. This comparison needs to adapt the Grass’ constant to
the Meyer-Peter & Müller formula (see [13] for details),

Ag =
Am

(Rd)3/2K3
s

√
h
, R =

ρs − ρw
ρw

(2.1)
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2.5 Dam break over a dry bottom topography.
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Figure 4: Trancritical flow without shock: Comparison of dune evolution for different numerical
schemes.

0

0.5

1

1.5

2

0 2 4 6 8 10

h
+

b

x

Relaxation
IFCP

SimSol + Nickalls

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10

b

x

b initial
Relaxation

IFCP
SimSol + Nickalls

Figure 5: Dam break over a wet bottom: Free surfaces (left) and bottom topographies (right) for
different schemes.

where we assume Rh = h (rectangular channel with large width). In fig. 6, it appears that the results
are quite similar. We notice that the erosion is a little more pronounced with the Grass formula than
the Meyer-Peter & Müller one. It can be explained since the latter considers a threshold value for
the Shields parameter under which no sediment is transported. On the contrary, Grass assumes that
the bed load transport always occurs.

2.5 Dam break over a dry bottom topography.

The test case is the same as the previous one excepted that the initial water height exhibits dry
zone,

h(0, x) =

{

2m , if x 6 5m ,
0m , if x > 5m .

The results in fig. 7 are obtained with a 1000-element mesh at time T = 1 s. For this test case,
we consider the friction term in the model (1) to obtain a stable solution (friction term was not
included in the previous test cases for the sake of comparisons with results of the literature). Since
the relaxation solver and the IFCP one are not adapted to handle vacuum, these schemes are run
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3 NUMERICAL STRATEGY : SPLITTING OR NOT SPLITTING ?
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Figure 6: Dam break over a wet bottom: Comparison between the Grass and the Meyer-Peter &
Müller formulae for free surfaces (left) and bottom topographies (right).

with a thin layer of water such that,

h(0, x) =

{

2m , if x 6 5m ,
10−3 m , if x > 5m .

It is worth underlying that the new ARS scheme works with a classical CFL condition if we impose a
low bound for the CFL condition (here, we have set 0.01). Under this condition, we observe that the
solution is smooth and does not present instabilities (see fig. 7). In addition, one can notice that the
solutions of the proposed scheme and the IFCP solver behave in a similar way whereas the relaxation
is a bit more diffusive solution. Within the interval [4, 6], one observes that erosion strongly occurs
at the boundaries of the cavity, which cannot be seen with the relaxation solver.
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Figure 7: Dam break over a dry bottom: Free surfaces (left) and bottom topographies (right) for
different schemes.

3 Numerical strategy : Splitting or not splitting ?

The proposed Godunov-type scheme is at the interface between the splitting and non-splitting
methods since we pointed out that
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– it is based on a three-wave approximate Riemann solver for the coupled model and the com-
putation of the wave velocities is performed by approximating the eigenvalues of the Jacobian
matrix of the whole system (1),

– the computation of the intermediate states is performed in a splitting way by evaluating first
the solid quantities through the solution of a constraint energy minimization problem and then
the fluid quantities by using the scheme proposed in [6].

.

Hence it seems legitimate to propose a new contribution to the discussion about the best coupling
strategy "splitting or not splitting ?" that was initiated in [23] and pursued in particular in [15],
including all the works listed in the introduction and devoted to the derivation of numerical schemes
adopting the non-splitting strategy. In all these works, it is emphasized that the splitting strategy is
well-adapted for weak and slow interaction between fluid and solid parts but is intrinsically doomed
to fail for a large range of test cases. In particular, in [15], the authors exhibit that, unlike the
case of the Saint-Venant system, there always exists a negative and a positive eigenvalue for the
Saint-Venant–Exner system (1). They conclude that the splitting approach is not able to deal with
torrential flows since in this situation, all the eigenvalues of the Saint-Venant systems have the same
sign and then the fluid solver relies on a simple upwind strategy. To our opinion, the situation is not
so simple since in the splitting strategy, some numerical information is also transported through the
discretization of the Exner equation and then one has to consider both fluid and solid discretization
strategies. In the following, we investigate numerical strategies where we introduce a slight coupling
in a classical splitting approach in order to obtain a stable solver.

The first idea, which is the less intrusive, is to keep unchanged the fluid solver–we already pointed
out that it is in general the key idea of industrial software–and to use some outputs to modify the
discretization of the Exner equation. More precisely, we propose to adapt the numerical strategy
for the Exner equation to the nature of the flow through the computation of the Froude number
that characterizes the flow regime. In torrential flow situations, since no information is transported
downstream by the flow, one can think of applying a downstream strategy to the discretization of the
Exner equation in order to ensure that information is transported in both direction, as it has to be
since the coupled system has both positive and negative eigenvalues. As an illustration, we present
in fig. 8 the numerical results that are obtained for the three dune evolution test cases of Section 2
when considering a splitting strategy based on

– the ARS scheme [6] for the Saint-Venant system
– an upwind or a downwind strategy for the Exner equation

It appears that in these simple test cases and depending on the proposed discretization of the Exner
equation on b, there always exists a stable splitting strategy. Note that one and only one (among the
proposed three) strategy is stable and that none of them is stable for the three test cases at the same
time. In other words, the coupling between the fluid and the solid parts must take into account the
nature of the flow regime. Note that such a coupling might not be easy to extend to (possibly two
dimensional) complex flows with flow regimes that may vary in space. The strategy that consists in
applying a centered discretization of the Exner equation is shown to be unstable for some test cases
hereafter.

Let us now investigate another way to introduce a slight coupling in the splitting strategy by
introducing the coupling in the fluid solver and no more in the Exner equation. This second strategy
is a direct extension of the proposed scheme in Section 1 and hence works only if an Godunov-
type scheme is considered for the fluid part. Let us consider an ARS scheme for the Saint-Venant
system–here we will choose the one introduced in [6]–and we simply suggest to modify the computation
of the wave velocities that will be no more computed by using an approximation of the eigenvalues
of the Jacobian matrix of the Saint-Venant system, but of the eigenvalues of the Jacobian matrix of
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3 NUMERICAL STRATEGY : SPLITTING OR NOT SPLITTING ?

-6e+15

-4e+15

-2e+15

0

2e+15

4e+15

6e+15

0 200 400 600 800 1000

b

x

Initial
SimSolSV+HLL+ExnerDownwind

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

b

x

Initial
SimSolSV+HLL+ExnerUpwind

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

b

x

SimSolSV+HLL+ExnerDownwind

t = 0s
t = 6s
t = 10s
t = 15s
t = 30s
t = 50s

-600

-400

-200

0

200

400

600

800

0 5 10 15 20 25

b

x

SimSolSV+HLL+ExnerUpwind

t = 0s
t = 6s

t = 10s
t = 15s
t = 30s
t = 50s

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 2 4 6 8 10

b

x

Initial
SimSolSV+HLL+ExnerDownwind

-400000

-300000

-200000

-100000

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10

b

x

Initial
SimSolSV+HLL+ExnerUpwind

Figure 8: Dune evolution in fluvial (top line), torrential (middle line) and transcritical (bottom
line) flow - Comparison of splitting strategy with upwind (left column) or downwind (right column)
discretization for Exner equation

the full Saint-Venant–Exner system (1). As an illustration, we compare in the following the results
that are obtained for the previous five test cases and with three different numerical strategies,

(i) Use the Godunov-type scheme proposed in [6] with wave velocities λL and λR based on an
approximation of the eigenvalues of the Jacobian matrix of the Saint-Venant system coupled
with a centered discretization of the Exner equation. In this case, we use the following values
for the computation of the wave velocities

λL = min (uL −
√

ghL, uR −
√

ghR, 0), λR = max (uL +
√

ghL, uR +
√

ghR, 0)
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3.1 Dune evolution in fluvial regime.

(ii) Use the Godunov-type scheme proposed in [6] with wave velocities λL and λR based on an
approximation of the eigenvalues of the Jacobian matrix of the full Saint-Venant–Exner system
(1) coupled with a centered discretization of the Exner equation. In this case, we compute the
wave velocities by using the Nickalls formulae introduced in Section 1.6,

(iii) Use the Godunov-type scheme for the full Saint-Venant–Exner system introduced in Section 1.

We designed this comparison to emphasize the difference between the first two approaches (i) and
(ii) and thus compare the impact of a slight coupling introduced in the fluid solver. We also compare
the results obtained with the new scheme introduced in Section 1 in order to assess two very different
discretizations of the solid part. Indeed the fluid strategy is mostly the same in approaches (ii) and
(iii) since they both rely on a three-wave ARS and the key point is the way to deal with the Exner
equation. In the second approach (ii), the Exner equation is discretized using a classical centered
finite difference formula whereas in the third approach (iii), the Exner equation is taken into account
through the constraint energy minimization process (1.3).

3.1 Dune evolution in fluvial regime.

Data are given in section 2.1 and every scheme gives a correct solution as shown on fig. 9. Schemes
(i) and (ii) are slightly less diffusive. In this flow regime, the coupling between the hydraulic part and
morphodynamic part is actually weak and the flow velocity is lower than the extreme characteristic
speeds, which explains the efficiency of the splitting method.
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Figure 9: Fluvial flow: Comparison of dune evolution for different numerical schemes.

3.2 Dune (anti-dune) evolution in torrential regime.

Data are given in section 2.2 and lead to a torrential regime. As already pointed out in the
literature, in such a flow regime where the flow velocity is higher than the wave velocities, the
splitting approach is not efficient. On fig. 10, we observe that the solution is strongly unstable.
Nonetheless, the second splitting approach (ii) is stable and gives a solution which is comparable
with the one obtained with the new scheme (iii) and to the ones presented on fig. 3 which strongly
supports the idea that the splitting method can be efficient, provided that the wave velocities are
correctly estimated. Note that modifying the wave velocities does artificially add numerical diffusion
since the shock front is preserved.
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Figure 10: Torrential flow: Comparison of dune evolution for different numerical schemes.

3.3 Dune evolution in transcritical regime without shock.

Data are given in section 2.3. The transcritical regime is pretty interesting since it involves both
fluvial and torrential regimes. More precisely, the flow regime changes from fluvial to torrential at
the top of the bump since a torrential regime is involved, scheme (i) fails and it is clearly observed
on fig. 11 that the unstable zones coincide exactly with the torrential region. Regarding scheme (ii),
the results are stable and match those of the new scheme (iii).
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3.4 Dam break over a wet bottom topography.
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Figure 11: Transcritical flow without shock: Comparison of dune evolution for different numerical
schemes.

3.4 Dam break over a wet bottom topography.

Data are given in section 2.4. Scheme (i) fails and produces very pronounced oscillations to the
degree that showing the corresponding results would significantly affect the proposed scale on fig. 12.
Schemes (ii) and (iii) give similar results in which the shock and the fluvial-torrential transition are
properly computed. Again, a proper evaluation of the wave velocities λL and λR at each interface
makes the splitting approach efficient.
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Figure 12: Dam break over a wet bottom: Free surfaces (left) and bottom topographies (right) for
different schemes.

3.5 Dam break over a dry bottom topography.

Data are given in section 2.5. As already pointed out, scheme (i) is not efficient for this test case.
Again, instabilities appear when the torrential regime is reached, see fig. 13. On the other hand,
schemes (ii) and (iii) give similar results which proves again that replacing the wave velocities λL and
λR associated with the Saint-Venant system with those obtained using the Nickalls’ upper bounds
removes the spurious oscillations of scheme (i) and makes the splitting approach stable and efficient.
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Figure 13: Dam break over a dry bottom: Free surfaces (left) and bottom topographies (right) for
different schemes.

4 Conclusion

We have introduced a Godunov-type method based on a new Approximate Riemann Solver for
the Saint-Venant–Exner system. The scheme avoids using an approximate Jacobian matrix of the
system, has been proved to be positive and well-balanced and has been successfully tested on two
families of discriminant numerical test cases.

Moreover this scheme shares common aspects with both splitting and non-splitting approaches that
were previously studied in the literature. It helps to go further in the discussion about splitting and
non-splitting approaches. In particular we exhibit that a slight modification of the splitting approach,
that only consists in changing the wave velocities in the fluid solver, leads to stable simulations for
all the test cases we performed. Another modification, that is even simpler since it only modifies the
way the Exner equation is dealt with, is shown to ensure stability but not for all test cases.
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