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Abstract

The Stand Allocation Problem (SAP) consists in assigning aircraft activities (arrival, departure and intermediate
parking) to aircraft stands (parking positions) with the objective of maximizing the number of passengers/aircraft at
contact stands and minimizing the number of towing movements, while respecting a set of operational and commercial
requirements. We first prove that the problem of assigning each operation to a compatible stand is NP-complete by a
reduction from the circular arc graph coloring problem. As a corollary, this implies that the SAP is NP-hard. We then
formulate the SAP as a Mixed Integer Program (MIP) and strengthen the formulation in several ways. Additionally,
we introduce two heuristic algorithms based on a spatial and time decomposition leading to smaller MIPs. The
methods are tested on realistic scenarios based on actual data from two major European airports. We compare the
performance and the quality of the solutions with state-of-the-art algorithms. The results show that our MIP-based
methods provide significant improvements to the solutions outlined in previously published approaches. Moreover,
their low computation make them very practical.

Keywords: Mixed integer programming, gate assignment problem, heuristic algorithms

1. Introduction

Every day, airports deal with different decisions re-
lated to aircraft movements. These decisions usually in-
volve the use of fixed and limited resources such as run-
ways, stands (parking positions) and passenger gates.
Due to the growing flow of passengers, these resources
are falling short of needs while activity planning is in-
creasingly crucial and complex. Consequently, some
airports have experienced deterioration in service qual-
ity. In one of our partner airports, the number of pas-
sengers allocated to remote stands has increased in the
last years. This affects passenger connection times, in-
creases bus transfer costs and decreases airport revenue
given that airlines usually pay lower fees for flights al-
located to remote stands. Since building new terminal
gates is expensive and does not provide a short-term so-
lution, value can only be gained from better manage-
ment of airport resources.

In this paper we deal with the Stand Allocation Prob-
lem (SAP). This consists in assigning aircraft operations
to available stands in line with operational requirements
and different objectives. This problem is closely related
to the Gate Allocation Problem (GAP). Our work results
from close collaboration between the laboratory G-Scop
and the company Amadeus. In what follows, we provide

a detailed description of the stands, aircraft operations,
operational requirements and the different objectives to
be taken into account for solving the SAP.

A stand is an aircraft parking position. Figure 1 illus-
trates the two types of possible stands: contact stands
(i.e., stands touching an airport terminal gate) and re-
mote stands (i.e., stands where a bus is needed to reach
the terminal). Airports and airlines usually prefer con-
tact stands as they are more convenient for passengers
and no bus transfer is necessary.
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Figure 1: Airport stands
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The stand operations of an aircraft turnaround can
be roughly divided into three parts: disembarkation of
the arrival flight, waiting, and embarkation of the de-
parture flight. Disembarkation concerns passengers and
luggage and also involves aircraft ground handling op-
erations (refueling, cabin services, catering, etc.) linked
to the aircraft’s arrival. Similarly, embarkation concerns
passengers and luggage and other related ground han-
dling operations. The waiting period can be null if the
turnaround is short. During the waiting period, airport
operators may decide to tow (move) aircraft to other
stands. This can be for several reasons but usually tar-
gets a better utilization of valuable stands (e.g. con-
tact stands). However, these operations require an ex-
pensive towing tractor (see Figure 2) and increase air-
port congestion. The data provided by our partner air-
ports shows that, at most, two towing operations are per-
formed during a turnaround: one after disembarkation
and one before embarkation. Consequently, we assume
that turnarounds are split into three operations at most.

Figure 2: A towing tractor

In order to define operations, we need to distinguish
between three situations depending on the waiting pe-
riod length (see Figure 3). If the waiting period is too
short to move the aircraft (case (a)), then we consider
that we only have to schedule a single operation since
disembarkation, waiting and embarkation will necessar-
ily take place at the same stand. In order to make the
assignment plan robust in the face of small disruptions
such as short delays or early arrivals, we add a buffer
time at the beginning and end of this single operation.
If the waiting period is long enough to move the aircraft
twice (case (b)), then we split the turnaround into three
operations since an aircraft can potentially disembark at
one stand, wait at a second stand and embark at a third
stand. We add a buffer time before and after embarka-
tion and disembarkation operations. If the duration of

the waiting period is only long enough to move the air-
craft once but not twice (case (c)), then the turnaround
is split into two operations with the waiting time equally
distributed between both operations and providing of a
buffer time. Note that a different distribution of the wait-
ing time is possible, but the one described above seems
to be the most natural. We also add a buffer time before
the embarkation operation and after the disembarkation
operation. When towing is allowed (cases (b) and (c)),
the towing time is much shorter than the disembarkation
and embarkation times. Hence these can be included
in the operations, which simplifies modeling even if it
results in a slight overestimation of processing times.
Indeed, this approach gives flexibility for actually per-
forming the towing during the operations. In what fol-
lows, the set of operations, with fixed start and end time,
is considered an input of the problem and is given by the
airport.
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Figure 3: Splitting turnarounds in operations and adding buffer times

The assignment of aircraft operations to stands must
take into account aircraft-stand compatibility. Indeed,
not all aircraft can be assigned to all the stands because
of size compatibility but also because of aircraft flight
requirements. For example, some stands are forbidden
to international flights because they do not offer access
to governmental inspection facilities. Furthermore, two
overlapping operations must not be assigned to the same
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stand. Finally, adjacency conflicts, also called shadow
restrictions, must be taken into account, e.g. two large
aircraft cannot be assigned to adjacent stands simulta-
neously.

The quality of an assignment plan can be defined us-
ing several, often competing criteria, such as the num-
ber of unassigned operations, the number of passen-
gers at contact stands, compliance with airline prefer-
ences, passenger connection convenience or the number
of towing operations. In practice, an unassigned oper-
ation has to be handled manually, either overstepping
certain requirements or delaying a flight. One option
is to assign an operation to a non compatible stand and
to transfer passengers to a compatible terminal area by
bus. Another option is to keep the aircraft waiting on
the tarmac.

In the literature, several authors consider the objec-
tive of minimizing passengers’ walking distance or con-
nection time (see Section 2). However, this is not al-
ways a suitable approach for airports since a large share
of their revenue comes from the shops hosted in the ter-
minal. The more passengers walk, the more likely they
are to go into a shop and buy something thus boosting
the airport’s revenue.

For our partner airports, the assignment of aircraft ac-
tivities is generally decided, at the latest, the day before
the operations. In this phase, computation time is not
overly problematic. However, on the day the operations
are scheduled, disruptions can happen. Many random
events may occur, leading to delays and flight cancella-
tions. New flights (e.g. general aviation) and diversions
can also impact planning. Hence, the assignment must
be robust in the sense that small disruptions must not
oblige airport authorities to change the whole assign-
ment plan. Bigger disruption may oblige the airport to
reassign aircraft. In this case, computation times need
to be very short.

The Stand Allocation Problem (SAP) is closely re-
lated to the Gate Allocation Problem (GAP). A gate is
the boarding desk where passengers’ tickets are checked
by the airline and a stand is the position where the air-
craft is parked. In many US airports, embarking and
disembarking passengers at remote stands is forbidden.
Consequently, there is a perfect match between stands
and gates, and therefore between the SAP and the GAP.
In Europe, this is not often the case since embarking and
disembarking can be done at a remote stand that can be
associated with different gates (called bus gates). As we
work with European airports, we will use SAP termi-
nology.

To explore the SAP, this paper has been organized in
several sections. A review of the literature and a sum-

mary of our contributions are presented in Section 2.
In Section 3, we formally introduce the SAP and as-
sociated feasibility problem. Section 4 proves the NP-
hardness of SAP and the NP-completeness of the asso-
ciated feasibility problem. Section 5 presents a mixed
integer programming formulation and a number of im-
provements designed to strengthen. Section 6 presents
two MIP based heuristic algorithms. Computational ex-
periments are presented in Section 7 to show the effi-
ciency of the model and the performance of heuristic
algorithms for realistic instances. The conclusion and a
discussion of future prospects are finally given in Sec-
tion 8.

2. Literature review

This literature review focuses on deterministic ap-
proaches related to mathematical programming for the
GAP. More references to stochastic and expert system
approaches can be found in the survey by Dorndorf et al.
(2007).

The GAP has been widely studied since 1980. Many
models aim at minimizing passenger walking distances
or connection times, which naturally leads to a 0-1
quadratic integer program (QIP) close to the Quadratic
Assignment Problem. Different methods can be found
for solving it. Mangoubi and Mathaisel (1985) propose
using the average distance of a gate to other gates and a
greedy algorithm to solve the integer program (IP) thus
obtained. Yan and Chang (1998) use the same assump-
tion for modeling walking distance and propose a multi-
commodity network flow model. They propose a La-
grangian relaxation solved by a sub-gradient algorithm
and heuristics. Haghani and Chen (1998) use the classi-
cal linearization of the product of binary variables and
propose a heuristic algorithm that consists in iterating
a greedy algorithm. Xu and Bailey (2001) consider the
same model and solve it using a Tabu Search algorithm.
Ding et al. (2005) add the objective of minimizing un-
gated flights and directly solve the quadratic model us-
ing a hybrid Tabu Search and Simulated Annealing. Yan
and Huo (2001) consider a different IP model minimiz-
ing walking distances and connection times. They pro-
pose a sensitivity analysis to reduce the number of vari-
ables.

Minimizing walking distance tends to concentrate
traffic at the best located gates, which can lead to non
robust solutions. Indeed, if a flight is delayed, its ground
time is increased and it may overlap with the next op-
eration assigned to the same gate. The robustness of an
assignment plan is an important objective in the liter-
ature. Bolat (2000) proposes a model minimizing the
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variance of idle times between two consecutive flights
assigned to the same gate. He proposes a branch-and-
bound algorithm and heuristic algorithms for solving
the model. Lim and Wang (2005) propose a stochastic
programming model that is transformed into a binary
programming model to minimize the expected number
of gate conflicts. They propose a hybrid meta-heuristic
for solving their model. Yan and Tang (2007) propose
a heuristic approach for minimizing flight delays due to
gate blockages and reassignments. Their approach con-
sists in iterating between two stages: a planning stage
based on a multi-commodity flow network and a real-
time stage based on simulations and reassignment rules
for updating the planning stage. Diepen et al. (2012)
suggest a column generation approach in order to es-
tablish robust assignment plan for Amsterdam Airport
Schiphol (AAS). They identify gate types, i.e. groups
of similar gates, and proceed in two phases. They first
assign flights to the gate type through a column genera-
tion process aiming at generating good gate plans. Then
a gate plan is assigned to each physical gate.

New objectives have appeared more recently in the
literature. Dorndorf et al. (2008) take into account tow-
ing operations and shadow restrictions. They model the
GAP as a Clique Partitioning Problem. Their model
aims at simultaneously maximizing the total flight-gate
affinity, minimizing the number of towing operations,
minimizing the number of ungated flights and maxi-
mizing robustness by minimizing low buffers (idle time
shorter than a given limit). A linear combination of
these objectives is considered and the problem is solved
by an ejection chain algorithm. Dorndorf et al. (2010)
extend this model to minimize the deviation from a
reference schedule. They suggest a method for build-
ing a reference schedule over a multi-period time hori-
zon. Jaehn (2010) proposes a dynamic programming
approach to solve a particular case of Dorndorf et al.
(2008) where only flight-gate affinities are considered.
He also proves the problem NP-hardness with a reduc-
tion from the optimal cost chromatic partition problem.

Kim et al. (2009) propose a new 0-1 QIP model for
minimizing push back conflicts and taxi blocking. The
model is further extended by Kim et al. (2013) to in-
clude the minimization of passenger transit times and
baggage transport distances. They propose a tabu search
and compare it to a linearization of the QIP and to a ge-
netic algorithm for different airport configurations (par-
allel and horseshoe terminals) with randomly generated
operations.

Genç et al. (2012) consider a new GAP, the objec-
tive of which is to maximize the total gate occupation
time. Time is discretized in time slots of 5 or 10 min-

utes and the objective is to maximize the number of
gate time slots used. They use a Big Bang Big Crunch
method for solving instances from Istanbul Atatürk In-
ternational Airport. Note that maximizing gate occupa-
tion time tends to reduce idle time at gates, which can
lead to non-robust assignment plans.

In this paper, we consider the problem introduced
by Dorndorf et al. (2008). The problem is referred to
as the SAP since we consider both contact and remote
stands. From a theoretical point of view, the SAP and
GAP are equivalent. Our contributions to the SAP are
summarized in what follows. We first prove that assign-
ing each operation to a compatible stand is NP-complete
based on a reduction from the circular arc graph color-
ing problem. As this corollary, it provides alternative
proof for SAP NP-hardness compared with the proof
given by Jaehn (2010). We also prove the NP-hardness
of particular cases left open by Jaehn (2010). While the
literature considers heuristic algorithms, we propose a
strong mixed integer programming (MIP) formulation
that solves to optimality real-size instances in reason-
able computation times. We also introduce two heuristic
algorithms based on spatial and time decompositions.
In a numerical study, we compare our MIP-based ap-
proaches to the ejection chain algorithm described by
Dorndorf et al. (2008) and to a simple greedy algorithm
that mimics industrial practices (see Section 6). All
methods are tested on real instances from two major Eu-
ropean airports. MIP-based approaches are significantly
better while computation times remain short enough for
industrial purposes.

3. The stand allocation problem

In this section we formally introduce the Stand Allo-
cation Problem (SAP) and the Stand Allocation Feasi-
bility Problem (SAFP).

The ingredients for SAP can be summarized as fol-
lows:

• O = {1, ..,m} the set of operations. Operation i ∈ O
is defined by a start time ai and an end time di,
where ai < di. ai and di are assumed to be integers.
Start and end times will often be referred to as the
arrival and departure times.

• S = {1, .., n, n + 1} the set of stands. Stand n + 1 is
a dummy stand modeling unassignment, i.e. being
assigned to stand n + 1 is equivalent to being unas-
signed. We will also use the notation S̃ = S \{n+1}
for the set of real stands.
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• S i ⊂ S the set of compatible stands for operation
i ∈ O. Obviously, n + 1 belongs to S i for each
operation i ∈ O. We will also use the notation S̃ i =

S i\{n + 1}.

• U : O→ O∪{0} the successor function. U(i) is the
direct successor of operation i for a given aircraft;
i.e., if a turnaround is divided in two operations i
and i′, then U(i) = i′. Conventionally, if operation
i does not have a successor then U(i) is equal to 0.
The end time di of an operation i ∈ O is supposed
to be equal to the start time aU(i) of its successor if
there is one.

• Q ⊆ O2 × S 2 the set of shadow restrictions. If
(i, i′, j, j′) ∈ Q and operation i is assigned to stand
j then operation i′ cannot be assigned to stand j′

and reciprocally.

• c = (ci j)O×S the affinity matrix, i.e. ci j is the affin-
ity realized if operation i ∈ O is assigned to stand
j.

Shadow restrictions represent adjacency conflicts
(e.g. two large aircraft cannot be simultaneously as-
signed to adjacent stands due to space limitations). It
should be noted that the dummy stand n + 1 is not con-
cerned by either overlapping or shadow restrictions.

An assignment can be seen as a mappingA from the
set of operations O to the set of stands S . The evaluation
f (A) of an assignmentA is defined as

f (A) = α f1(A) − β f2(A) (3.1)

where α and β are non negative and f1(A) and f2(A) are
the total operation-stand affinity and the number of tow-
ing operations, respectively. Without loss of generality,
we set α = 1 in what follows.

The objective is to find an assignment maximizing
f (A) while respecting operation-stand compatibilities,
shadow restrictions and overlapping constraints. In or-
der to avoid assignment to the dummy stand, the affinity
of an operation i for the dummy stand n + 1 can be set
to a high negative value.

Finally the Stand Allocation Feasibility Problem
(SAFP) is the problem of determining whether there is
a feasible solution not using the dummy stand.

4. Complexity of the stand allocation problem

In this section, we focus on a special case without
successor relations (U(i) = 0,∀i ∈ O and β = 0) and
without shadow restrictions (Q = ∅). An instance of the

SAP can thus be denoted as I(O, S , S i, c). An instance
of the associated feasibility problem SAFP is denoted
as I(O, S̃ , S̃ i).

We first present the current complexity status of the
SAP and highlight a number of open special cases.
Then, we show how to formulate the SAFP as a graph
coloring problem and prove its NP-completeness by a
polynomial reduction from the circular arc graph col-
oring problem. Finally, we show the NP-hardness of a
number of special SAP cases by polynomial reductions
from SAFP.

4.1. Current complexity status and contributions

Jaehn (2010) proves that the SAP is NP-hard. His
proof is based on a special case without compatibility
constraints and where operations have the same affin-
ity for each stand (ci j = c j ∈ N). This case is proven
NP-hard by a polynomial reduction from the Optimal
Cost Chromatic Partition Problem (OCCP) in interval
graphs. Kroon et al. (1997) prove that the OCCP in in-
terval graphs is polynomial when c j take at most 2 dif-
ferent values (e.g. c j ∈ {0, 1}). They also show that it
is NP-hard when c j take at least 4 different values (e.g.
c j ∈ N) while the problem is left open when c j take
exactly 3 different values (e.g. c j ∈ {0, 1, 2}).

In the computational experiments (see Section 7),
we consider three affinity functions that model differ-
ent realistic situations : ci j ∈ {0, 1}, ci j ∈ {0, 1, 2} and
ci j ∈ N. Jaehn’s proof does not provide a conclusion
with respect to the complexity status when ci j ∈ {0, 1}
or ci j ∈ {0, 1, 2}. We will show that these special cases
are also NP-hard. We will also prove that the SAP
with compatibility constraints is NP-hard, for any of the
above affinity functions.

Table 1 summarizes the results from the literature and
our own contributions.

4.2. The stand allocation feasibility problem as a graph
coloring problem

In this section, we show that the SAFP can be mod-
eled by a graph coloring problem. Let I(O, S̃ , S̃ i) be an
instance of SAFP. Let GI = (V ∪W, E) be an undirected
graph where V = {v1, .., vn} and W = {w1, ..,wm}. Vertex
v j corresponds to stand j ∈ S̃ and vertex wi corresponds
to operation i ∈ O. To simplify matters, we will speak
of stands and operations for vertices of V and W. The
edges of the graph are defined as follows:

• v jv j′ ∈ E ∀ j, j′ ∈ S̃ such that j , j′,

• wiwi′ ∈ E ∀i, i′ ∈ O such that i , i′ and [ai, di[
∩ [ai′ , di′ [ , ∅, i.e. if operations i and i′ overlap,
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Affinity Without compatibility constrains With compatibility constraints
ci j ∈ {0, 1} NP-hard (*) NP-hard (*)

ci j ∈ {0, 1, 2} NP-hard (*) NP-hard (*)
ci j ∈ N NP-hard (Jaehn, 2010) NP-hard (Jaehn, 2010)

ci j = c j ∈ {0, 1} P (Jaehn, 2010; Kroon et al., 1997) NP-hard (*)
ci j = c j ∈ {0, 1, 2} Open (Kroon et al., 1997) NP-hard (*)

ci j = c j ∈ N NP-hard (Jaehn, 2010) NP-hard (Jaehn, 2010)

Table 1: Complexity status of the stand allocation problem. (*) indicates the new results established in this paper.

• v jwi ∈ E ∀i ∈ O, j ∈ S̃ \S̃ i, i.e. if operation i and
stand j are incompatible.

Graphs GI will be denoted as SAFP graphs. Figure 4
provides an example of such a graph.

Stands Operations

Figure 4: A 4-coloration of a SAFP graph

It should be noted that the graph induced by V is the
clique Kn, thus GI cannot be colored with less than n
different colors. The graph induced by W is an interval
graph. These subgraphs are linked by edges represent-
ing incompatibility constraints.

Property 1. There is a feasible solution to an instance
I(O, S̃ , S̃ i) of S AFP if and only if GI admits a n-
coloring.

Proof. If GI can be n-colored, then a feasible solution
of I can be built from any n-coloring of GI . Indeed, we
assign each operation of a given color to the stand of the
same color. Based on the construction of GI , operations
with the same color do not overlap and operations are
compatible with the stand of the same color.

Conversely, if I is a feasible instance, then a n-
coloring can be built from any feasible solution of I. A
different color is assigned to each stand and each oper-
ation is colored with the color of the stand it is assigned
to. Based on the construction of GI , two adjacent nodes
do not have the same color.

This property implies that the SAFP and n-coloring
problem of SAFP graphs have the same complexity sta-
tus.

4.3. The circular arc graph coloring problem
The Circular Arc Graph Coloring Problem (CAGCP)

was introduced and proven NP-complete by Garey et al.
(1980). A brief overview of this problem is given below.

A circular arc A is a pair of positive integers (e, f )
where e and f are different. Let F = {A1, .., Ap} be a
set of circular arcs and k the maximum of all ei and fi
(k = max{ei, fi | Ai = (ei, fi), i ∈ {1, .., p}}). Consider
a geometric arrangement of circular arcs as follows. A
circle can be regarded as divided into k parts defined by
k equally spaced points numbered clockwise as 1, 2, .., k.
In such a circle, each circular arc Ai previously defined
can be regarded as representing an arc from point ei to
point fi again in a clockwise direction. The span S p(Ai)
of an arc Ai = (ei, fi) is:

S p(Ai) =

{
{ei + 1, .., fi} if ei < fi
{ fi + 1, .., k, 1, .., ei} if ei > fi

Two arcs intersect if the intersection of their spans is
not empty, i.e. S p(Ai) ∩ S p(A j) , ∅. Note that arcs do
not intersect if they only share end points since the first
point does not belong to the span.

We can define graph G = (F, E), where AiA j ∈ E if
and only if Ai and A j intersects. G is the circular arc
graph induced by the set of circular arcs F. Figure 5
presents different representations of a circular arc graph.

7
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2
3

4

5

6

A3(3,6)A2(2,4)A1(1,3) A4(4,8)

A5(5,7) A6(8,2) A7(7,2)

A3

A5

A6

A1

A2

A4

A7

A4 A7

A5

A3 A1

A6

A2

Figure 5: Three representations of a circular arc graph

CAGCP is the problem of finding a n-coloring for a
circular arc graph. We will now show the relationship
between this class of graph and our problem.
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4.4. Complexity results

The NP-completeness of the SAFP can be shown by
a reduction from the CAGCP.

Theorem 1. The stand allocation feasibility problem
(without shadow constraints and successor relations) is
NP-complete.

Proof. The SAFP is in NP as it represents a special case
of a n-coloring problem. Let F = {Ai, .., Ap} be a set of
circular arcs and G = (F, E) the circular arc graph in-
duced by F. It is easy to show that the subgraph induced
by K = {Ai ∈ F|ei > fi} is a clique and the subgraph in-
duced by L = {Ai ∈ F|ei < fi} is an interval graph.

As K is a clique, G cannot be colored with less than
|K| colors. Hence, deciding whether G can be n-colored
is polynomial if n < |K|. Coloring G is trivial if n ≥ p.
Hence, we assume that n ∈ {|K|, .., p − 1} in order to
prove the above theorem.

We now build an instance I(O, S̃ , S̃ i) of the SAFP
such that it accepts a solution if and only if G is n-
colorable.

• For each circular arc Ai = (ei, fi) ∈ L, we define an
operation i with the start time ai = ei and end time
di = fi. As Ai ∈ L, ei < fi and operation i is well
defined.

• For each circular arc A j of K, we define a stand.
Stand j is compatible with operation i if and only
if the associated arc A j does not intersect the asso-
ciated arc Ai.

• We add n − |K| stands that are compatible with all
operations.

Let GI be the graph associated with I. It should be noted
that G and GI only differ by the vertices associated with
the last n−|K| stands. These vertices are only adjacent to
other vertices of K. It follows that if GI is n-colorable,
so is G as G is a sub-graph of GI . The reciprocal is
valid because an n-coloring of GI can be built from an
n-coloring of G by assigning the n − |K| colors not used
in K to the n − |K| last stands of GI .

To conclude, G is n-colorable if and only if GI is n-
colorable. Hence coloring GI is NP-complete. Together
with Property 1, this implies the NP-completeness of the
SAFP.

As corollaries of Theorem 1, we now show that some
special cases of the SAP, left open by Jaehn (2010), are
NP-hard.

Corollary 1. SAP with compatibility constraints and
affinity coefficients verifying ci j = c j ∈ {0, 1},∀i ∈
O,∀ j ∈ S is NP-hard.

Proof. Since the SAFP is in NP and a solution can be
evaluated in polynomial time, the SAP is in NP. Let us
consider an instance I(O, S̃ , S̃ i) of the SAFP. We define
the instance I(O, S , S i, c) of the SAP as follows:

• S = S̃ ∪ {|S̃ | + 1}, i.e. |S̃ | + 1 is the dummy stand,

• S i = S̃ i ∪ {|S̃ | + 1},

• ci j =

{
1 ∀i ∈ O, j ∈ S̃
0 otherwise, i.e. for the dummy stand only .

I(O, S̃ , S̃ i) has a feasible solution if and only if
I(O, S , S i, c) has a solution of value |O|. Furthermore,
we define I(O, S , S i, c) such that ci j = c j ∈ {0, 1}. This
proves the corollary.

Corollary 2. SAP without compatibility constraints and
affinity coefficients ci j ∈ {0, 1} is NP-hard.

Proof. As in Corollary 1, the SAP is in NP. Let us con-
sider an instance I(O, S̃ , S̃ i) of the SAFP. We define the
instance I(O, S , S i, c) of the SAP as follows:

• S = S̃ ∪ {|S̃ | + 1}, i.e. |S̃ | + 1 is the dummy stand,

• S i = S (no compatibility constraints),

• ci j =

{
1 ∀i ∈ O, j ∈ S̃ i

0 otherwise .

I(O, S̃ , S̃ i) has a feasible solution if and only if
I(O, S , S i, c) has a solution of value |O|. This proves
the corollary.

Corollaries 1 and 2 imply the new results presented
in Table 1. They also provide alternative proof to the
results of Jaehn (2010).

The NP-hardness of the special cases considered in
this section does not mean that all instances are hard to
solve. There may be constraints in industrial problems,
making them easier to solve. Nevertheless, we did not
identify such sub-structures in the instances considered
in Section 7.

5. A mixed integer programming formulation

In this section, a first mixed integer program (MIP)
formulation is presented. This model is then strength-
ened by reformulating a number of constraints and in-
troducing new variables. Finally, an efficient process to
break symmetries is presented.
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5.1. A natural MIP formulation
Let us introduce the following decision variables:

• xi j =


1 if operation i ∈ O is assigned to

stand j ∈ S i

0 otherwise

• yi =


1 if a towing operation is performed

between operation i ∈ O and its suc-
cessor U(i) if there is one

0 otherwise

Note that for the sake of simplicity, we define variables
xi j = 0 for each operation i ∈ O and each non compati-
ble stand j ∈ S \S i. Using these variables, the SAP can
be formulated as follows:

max
∑
i∈O

∑
j∈S i

ci jxi j − β
∑
i∈O

yi (5.1)

s.t.
∑
j∈S i

xi j = 1 ∀i ∈ O (5.2)

xi j + xi′ j 6 1 ∀i, i′ ∈ O, ai 6 ai′ < di

∀ j ∈ S i ∩ S i′ (5.3)
xi j + xi′ j′ 6 1 ∀(i, i′, j, j′) ∈ Q (5.4)

xi j − xU(i) j 6 yi ∀i ∈ O,U(i) , 0,
∀ j ∈ S i (5.5)

xi j ∈ {0, 1} ∀i ∈ O,∀ j ∈ S i (5.6)
yi > 0 ∀i ∈ O (5.7)

MIP 1: A natural formulation for SAP

Constraints (5.2) ensure the assignment of each oper-
ation to one and only one stand. Constraints (5.3) pre-
vent two overlapping operations from being assigned to
the same stand. Constraints (5.4) guarantee that shadow
restrictions are respected. Constraints (5.5) ensure that
for each operation i towing is needed if the operation
is assigned to stand j and not its successor U(i). Note
that, according to their definition, yi ∈ {0, 1} should be
imposed. However, since β > 0 and since the objective
function is maximized, we can simply impose yi > 0
(5.7). Indeed, in any optimal solution, variable yi will
be set to the smallest value, i.e. 0 or 1 according to con-
straints (5.5) and (5.7).

5.2. A better MIP formulation
We will now strengthen this natural formulation by

reformulating a number of constraints, introducing new
variables and disrupting the objective function to break
symmetries.

Strengthening overlapping and shadow constraints.
Overlapping constraints (5.3) are weakly formulated
and can be reformulated as follows. We introduce over-
lapping sets Ot as the set of operations overlapping time
line t

Ot = {i ∈ O | ai 6 t < di}

Overlapping constraints (5.3) can be replaced by∑
i′∈Oai

xi′ j 6 1 ∀i ∈ O,∀ j ∈ S i (5.8)

This formulation can be proven to be is ideal, i.e. de-
scribes the convex hull of integer solutions that satisfy
overlapping constraints.

The same principle can be applied to strengthen
shadow constraints. Constraint (5.9) is valid for any pair
of stands ( j, j′) ∈ S 2 and any set of operations H and H′

such that

• each pair of operations (i, k) ∈ H overlap,

• each pair of operations (i′, k′) ∈ H′ overlap,

• there is a shadow restriction (i, i′, j, j′) between
each operation i ∈ H and each operation i′ ∈ H′

on stands j and j′.

∑
i∈H

xi j +
∑
i′∈H′

xi′ j′ 6 1 (5.9)

Nevertheless, the number of pairs of sets (H,H′) suf-
fers from a combinatorial explosion, even if only maxi-
mal sets are considered. We can heuristically aggregate
the shadow constraints with the following algorithm.

While there are uncovered shadow restrictions
(i, i′, j, j′) ∈ Q:

1. Let H = {i} and H′ = {i′}.

2. Complete set H: for each operation k ∈ O (by
increasing order of start time), add k to H if
(k, i′, j, j′) ∈ Q and if k overlaps each operation
in H.

3. Complete set H′: for each operation k′ ∈ O (by
increasing order of start time), add k′ to H′ if for
each operation k ∈ H, (k, k′, j, j′) ∈ Q and k′ over-
laps every operation in H′.

H j j′ denotes the set of couples (H,H′) generated by our
algorithm for stands j ∈ S and j′ ∈ S .
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Improving towing formulation. The linear relaxation
can be strengthened by introducing variables

yi j =


1 if operation i ∈ O is assigned to stand

j ∈ S i and not its successor (if there is
one),

0 otherwise.

The objective function becomes∑
i∈O

∑
j∈S i

ci jxi j − β
∑
i∈O

∑
j∈S i

yi j

and towing constraints (5.5) become

xi j − xU(i) j 6 yi j ∀i ∈ O,∀ j ∈ S i,U(i) , 0 (5.10)

Indeed, it can be seen that the linear relaxation of
both formulations has the same feasible domain in x =

(xi j)O×S i . Furthermore, for a given x, the optimal values
of y variables in the linear relaxation are

• yi = max
j∈S i

(xi j − xU(i) j) for the first formulation,

• yi j = max{0, xi j−xU(i) j} for the second formulation.

Consequently, yi = max
j∈S i

yi j and∑
i∈O

yi =
∑
i∈O

max
j∈S i

yi j 6
∑
i∈O

∑
j∈S i

yi j

Therefore the formulation using variables yi j is stronger.

Summary. To conclude, the problem can be reformu-
lated as MIP 2.

max
∑
i∈O

∑
j∈S i

ci jxi j − β
∑
i∈O

∑
j∈S i

yi j

s.t.
∑
j∈S i

xi j = 1 ∀i ∈ O∑
i′∈Oai

xi′ j 6 1 ∀i ∈ O,∀ j ∈ S i∑
i∈H

xi j +
∑
i′∈H′

xi′ j′ 6 1 ∀ j, j′ ∈ S ,

∀(H,H′) ∈ H j j′

xi j − xU(i) j 6 yi j ∀i ∈ O,U(i) , 0,
∀ j ∈ S i

xi j ∈ {0, 1} ∀i ∈ O,∀ j ∈ S i

yi j > 0 ∀i ∈ O,∀ j ∈ S i

MIP 2: An improved formulation for the SAP

Breaking symmetries. If coefficients ci j belong to a
small set of values, this implies a high multiplicity of
optimal solutions limiting the efficiency of branch-and-
bound algorithms. For instance, some airports set ci j to
1 for each contact stand and to 0 for each remote stand.
A simple way to break symmetries is to disturb coeffi-
cients ci j. We propose the following disruption that does
not affect the optimal solution.

Property 2. Assume that coefficients β and ci j are inte-
ger (for all i ∈ O and j ∈ S i). Let γi j be arbitrary real
numbers in [0, 1) and δi j =

γi j

(m+1) .
Thus, any optimal solution of the SAP with coeffi-

cients c′i j = ci j + δi j is also optimal for the SAP with
coefficients ci j.

Proof. Let f and f ′ be the objective functions of the
original and disrupted problem. It should be noted that
both problems have the same feasible solutions as they
only differ by their objective functions. Let x be a fea-
sible solution, then f ′(x) = f (x) + ε(x) with ε(x) =∑

i∈O
∑

j∈S i
δi jxi j. We have 0 ≤ ε(x) < 1. Since coef-

ficients β and ci j are integers, f (x) is also an integer and
b f ′(x)c = f (x) + bε(x)c = f (x).

Let x∗ be an optimal solution for f ′. For each feasible
solution x we have f (x) = b f ′(x)c 6 b f ′(x∗)c = f (x∗)
and x∗ is also optimal for f .

In the numerical experiments, γi j is chosen randomly
in [0,1) according to a uniform distribution.

6. Heuristic approaches

Regardless of how improved an MIP formulation can
be, there exists instances that cannot be solved in a rea-
sonable time. In this section, we present four heuris-
tic algorithms that will be numerically compared to
the exact MIP method in Section 7. The first two al-
gorithms consist in splitting the problem into smaller
sub-problems for which the MIP can be solved more
quickly. The third algorithm is a greedy algorithm re-
flecting what was observed in practice in one of our
partner airports. The fourth algorithm is the ejection
chain algorithm designed by Dorndorf et al. (2008).

6.1. Spatial (or stand) decomposition

In the airports we work with, setting the affinity ci j to
0 for remote stands is a reasonable assumption. This
is not true for all airports since some remote stands
might be preferable to others (e.g. short driving dis-
tance, stands that can be reached without a bus transfer,
etc).
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The stand decomposition method consists in splitting
the set of stands into two disjunctive subsets. Subset
B1 contains stands with a positive affinity for at least
one operation (typically contact stands). Subset B2 con-
tains the other stands with zero affinity for all oper-
ations (typically remote stands). Formally, we have
S̃ = B1 ∪ B2 with B1 = { j ∈ S̃ : ∃i ∈ O, ci j > 0}
and B2 = { j ∈ S̃ : ∀i ∈ O, ci j = 0}.

We relax the assignment constraint (5.2) by∑
j∈S i

xi j 6 1 ∀i ∈ O

The relaxed problem provides an upper bound for the
original problem. For the relaxed problem, not every
operation may be assigned but any operation cannot be
assigned more than once. The contribution of the stands
in B2 ∪ {n + 1} is null or negative. As operations can
be unassigned in the relaxed problem, this implies the
following property:

Property 3. The relaxed problem can be solved by con-
sidering the stands in B1 only.

This property reduces the size of the relaxed prob-
lem. We define the stand decomposition method in two
phases:

• Phase I: solve the relaxed problem by considering
stands in B1 only,

• Phase II: fix the assignments defined in phase I and
solve the SAP for the remaining operations and the
stands in B2 ∪ {n + 1}.

The upper bound provided in Phase I can be used to
guarantee the solution a posteriori. The following prop-
erty presents sufficient conditions under which the so-
lution provided by the stand decomposition method is
optimal for the original problem.

Property 4. Conditions of optimality for the stand de-
composition method.
In Phase II, if each operation is assigned to a stand in
B2 without towing, the solution provided by the stand
decomposition method is optimal for the original prob-
lem.

Proof. Under these conditions, the Phase II solution has
the value 0 since the coefficient ci j are all null for stands
in B2 and no towing operation is performed. Therefore,
the global solution value is equal to the upper bound
provided in Phase I.

Property 4 can be used for solving Phase II in a more
efficient way. Indeed, a Phase II solution with a 0 value
is optimal (for Phase II). Consequently, if a heuris-
tic algorithm provides such a solution, it is not neces-
sary to solve a second MIP. In practice, we first apply
the greedy algorithm presented in Section 6.3 and then
solve the MIP only if the greedy algorithm fails to find
a 0 value solution.

6.2. Time decomposition
The time decomposition consists in splitting the day

into smaller intervals and iteratively solving the MIP for
each sub-problem from the beginning of the day to the
end of the day. Assignments decided in a previous iter-
ation are not questioned in the current one except if the
operation is still in progress. To reduce the total compu-
tation time, we split the day such that each sub-problem
has almost the same size.

6.3. Greedy algorithm
The process of one of our partner airports is per-

formed manually and is close to the following greedy
algorithm.

1. Sort operations by increasing number of compati-
ble stands.

2. Iteratively assign each operation to the compatible
and available stand that maximizes the objective
function. In case of multiplicity, choose the stands
in lexicographic order.

The complexity of such an algorithm is in O(m log m +

nm).
Once each operation has been assigned, the airport

scheduler improves the solution by performing local
changes. This process is similar to a descent algorithm
using two types of moves : simple move (switch the
assignment of an operation to another compatible and
available stand) and swap move (swap the assignment
of two operations). Only moves improving the objec-
tive are performed.

Such an algorithm ends very quickly in practice but
it tends to fall into a local optimum that cannot be over-
come as only improving moves are considered.

6.4. Ejection chain algorithm
An ejection chain algorithm is a local search meta-

heuristic where neighborhoods are defined not only by
one move but by a sequence, or chain, of locally op-
timal moves. Performing more moves with each itera-
tion is supposed to contribute to escaping the local op-
timum. Dorndorf et al. (2008) applied an ejection chain
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algorithm to the stand allocation problem. We refer the
reader to their paper for further details about their algo-
rithm. In the next section, we compare our approaches
to this algorithm, which has been replicated exactly.

7. Computational experiments

In this section, we compare the performance of the
algorithms on realistic instances generated from the ac-
tual data of two major European airports. For the sake
of privacy, these airports will be noted I and J.

7.1. Instances and tests environment

Computer. The results of mixed integer programs pre-
sented in this section were obtained using a Cplex 12.4
solver with default parameter tuning on a personal com-
puter (Intel Core i5-2400 3.10Ghz, 4Go RAM) oper-
ating with Ubuntu 12.04 LTS operating system. Java
Concert API was used to define the models.

Instances. Each instance corresponds to an operational
day. For the largest airport, we have a single instance I.
For the other airport, we have a test set J = {J1, · · · , J83}

of 83 consecutive days. Table 2 presents characteristics
of the instances with respect to the number of opera-
tions, the number of stands and the number of stands
compatible with each operation.

Inst. Ops Simulta-
neous ops

(peak)

Contact
stands

Remote
stands

Compatible
stands

(average)
I 703 92 43 122 131.2

Min J 397 37 60 49 34.8
Avg J 485 43 60 49 35.9
Max J 553 52 60 49 36.7

Table 2: Characteristics of the instances (Ops=Operations)

Operation-stand affinity. Pricing policies and perfor-
mances measurements are complex substantially differ-
ent from one airport to another. However, the operation-
stand affinities ci j can capture many practical situations.
We will consider three affinity functions that represent
different practices.

• Passenger affinity: Maximize the number of pas-
sengers assigned to contact stands

ci j =


number of passengers for operation i
if stand j is a contact stand

0 otherwise

• Operation affinity: Maximize the number of oper-
ations assigned to contact stands

ci j =



2 if operation i is a whole turnaround
and stand j is a contact stand

1 if operation i is an arrival or a departure
operation and stand j is a contact stand

0 otherwise

• Bus affinity: Minimize the number of buses, which
is equivalent to maximize the number of avoided
buses

ci j =


Number of necessary buses for
operation i if stand j is a contact stand

0 otherwise

The number of buses required is equal to the ceiling
of the number of passengers involved in an operation
divided by the capacity of a bus (80 in our numerical
study). Note that we set affinity of a waiting operation
at a contact stand to 0.

We use subscript _op, _bus and _pax to indicate
which affinity function is under consideration. For ex-
ample, I_op corresponds to instance I with the opera-
tion affinity function.

Weighting of objectives. Coefficient ci,n+1 is set to −106

to make the assignment of all operations the first pri-
ority. Note that all instances allow a feasible solution
without using the dummy stand.

Coefficient β is respectively set to 1 for the optimiza-
tion of operations at contact stands, 2 for optimization
of buses and 100 for optimization of passengers. In this
case both parts of the objective functions have similar
weights.

Buffer time. We include buffer times of 10 minutes fol-
lowing the procedure presented in Section 1.

7.2. MIP 1 versus MIP 2

In this section, we evaluate the effect of strengthening
constraints, towing reformulation and symmetry break-
ing, with respect to memory consumption, quality of the
Linear Programming (LP) relaxation and computation
times.

Table 3 shows that reformulating overlapping and
shadow constraints substantially reduces the number of
constraints. Note that the number of binary variables is
the same since only continuous variables are added in
MIP 2.
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Gap (z∗LP/z
∗
MIP − 1) CPU time [s]

MIP 2 MIP 2 MIP 2 +

Instances MIP 1 without yi j MIP 2 MIP 1 without yi j MIP 2 sym. break.

I_op OOM 2.4% 0.0% OOM 313.0 92.8 34.3
I_bus OOM 3.5% 0.0% OOM 1717.2 86.3 36.5
I_pax OOM 2.8% 0.0% OOM 512.2 74.3 28.2

J_op
Avg 3.2% 1.7% 0.0% 65.5 68.5 3.9 4.2
Min 1.3% 0.8% 0.0% 2.7 1.6 1.0 1.3
Max 5.8% 3.2% 0.1% TL (0.0 %) TL (0.0 %) 22.4 12.7

J_bus
Avg 4.8% 2.5% 0.0% 10.1 7.8 3.4 3.9
Min 2.3% 1.2% 0.0% 3.1 1.7 1.0 1.6
Max 6.7% 4.3% 0.1% 42.3 37.5 9.2 10.0

J_pax
Avg 4.1% 2.0% 0.0% 11.6 9.5 3.2 3.7
Min 1.6% 0.9% 0.0% 3.0 1.6 1.0 1.2
Max 5.8% 3.5% 0.1% 53.3 39.4 9.3 9.7

Table 4: Gap with the LP solution and computation time (OOM = Out of memory, TL (0.0 %) = Time limit of 1 hour reached, an optimal solution
has been found but it cannot be proven because of remaining integrality gap)

Overlapping
constraints

Shadow constraints

Instance Binary
variables

MIP 1 MIP 2 MIP 1 MIP 2

I 93 k 4.4 M 36 k 1.3 M 45 k
Avg J 17 k 315 k 10 k 146 k 6 k
Min J 14 k 196 k 8 k 93 k 4 k
Max J 20 k 415 k 11 k 195 k 7 k

Table 3: Number of binary variables and constraints

Table 4 presents the effect of the MIP formulation on
the integrality gap and computation time, for the three
affinity functions. A time limit of one hour is set.

We first discuss the results for the large instance (I)
that cannot be solved with MIP 1 since the model def-
inition phase exceeds the computer’s memory. Refor-
mulating overlapping and shadow constraints reduces
memory consumption enough to be able to define the
model. It also tightens the linear relaxation. Reformu-
lating towing (i.e. replacing yi by yi j) further strength-
ens the linear relaxation and yields a zero integrality gap
for most instances. MIP 2 without towing reformulation
provides the optimal solution for all objectives within 5
to 30 minutes. Towing reformulation reduces the com-
putation time to 1 minute and 30 seconds. The sym-
metry breaking method further reduces the computation
time to approximately 30 seconds.

We now discuss the results for the medium-sized air-
port (J). MIP 1 does not exceed the available memory
since the 83 instances are much smaller than I. The re-
sults with respect to the quality of the LP relaxation are
similar to those of I. Furthermore, reformulating the
constraints significantly improves the integrality gap,

but there is little impact on computation times (probably
because Cplex also uses an aggregation method based
on cliques). While towing reformulation reduces com-
putation times in a systematic and significant way, sym-
metry breaking has no effect on them.

These first numerical experiments show that the dif-
ferent reformulations strengthen the model and offer
reasonable computational times for all instances and
affinity functions under consideration. In what follows,
only MIP 2 with symmetry breaking will be considered
and will be simply referred to as exact MIP.

7.3. Comparison of algorithms

In this section, we compare the exact MIP method
with the MIP decomposition methods (time and stand),
the ejection chain algorithm and the greedy algorithm.
For the time decomposition method, we split the day
into three intervals for the large airport (I) and into two
intervals for the medium-sized airport (J). We have
tested other splits and found that these choices offer a
good trade-off in terms of solution quality and compu-
tation times.

Table 5 presents the gap to optimality and the compu-
tation time for the three objective functions. The min-
imum, maximum and average values are presented for
instance set J (83 instances).

On the one hand, Table 5 reveals that MIP based ap-
proaches provide significantly better solutions than the
ejection chain and the greedy algorithms. The exact
MIP always finds an optimal solution (and proves its
optimality) in less than 40 seconds. The stand decom-
position heuristic provides an optimal solution most of
the time for both airports and the maximum gap is 0.3%.
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Gap (1 − z/z∗) CPU time [s]
Instances MIP SD TD EC Greedy MIP SD TD EC Greedy

I_op 0.0% 0.0% 0.7% 5.0% 18.1% 34.3 20.6 16.3 1.7 0.1
I_bus 0.0% 0.0% 0.4% 6.9% 26.4% 36.5 37.8 20.6 4.1 0.1
I_pax 0.0% 0.0% 0.3% 6.8% 27.3% 28.2 21.1 12.1 3.0 0.1

J_op
Avg 0.0% 0.0% 0.1% 2.0% 6.4% 4.1 2.6 2.7 0.4 <0.1
Min 0.0% 0.0% 0.0% 0.7% 3.4% 1.2 0.6 1.1 0.2 <0.1
Max 0.0% 0.3% 0.4% 3.6% 19.9% 13.7 15.1 6.0 0.9 0.2

J_bus
Avg 0.0% 0.0% 0.2% 4.0% 7.9% 3.8 2.6 2.6 0.4 <0.1
Min 0.0% 0.0% 0.0% 1.3% 3.8% 1.2 0.6 1.2 0.1 <0.1
Max 0.0% 0.0% 0.7% 7.6% 13.2% 8.8 10.7 5.8 0.8 0.2

J_pax
Avg 0.0% 0.0% 0.1% 3.2% 6.5% 3.7 2.6 2.6 0.4 < 0.1
Min 0.0% 0.0% 0.0% 1.3% 3.1% 1.2 0.6 1.2 0.1 <0.1
Max 0.0% 0.0% 0.5% 5.9% 10.9% 9.8 9.4 4.5 0.8 0.2

Table 5: Comparison of the different methods (MIP=MIP2+ symmetry breaking, SD=Stand Decomposition, TD = Time Decomposition, EC=

Ejection Chain)

The time decomposition heuristic provides very good
solutions with gaps of less than 0.7%. The greedy al-
gorithm offers poor performance for all instances and
affinity functions, with a gap of up to 27.3 % for the
large airport (I). The ejection chain algorithm outper-
forms the greedy algorithm with a gap of up to 7.6 %
and an average gap of 2.0 % to 4.0 % for the medium-
sized airport (J).

On the other hand, Table 5 shows that the greedy
algorithm and the ejection chain are faster than the
MIP based approaches. Nevertheless, the MIP based
approaches offer reasonable computation times for in-
dustrial applications. They solve all instances of the
medium-sized airport (J) in less than 15 seconds and in
less than 40 seconds for the large airport (I). Regarding
instances I and J, the stand decomposition method gen-
erally outperform exact MIP with respect to computa-
tion time, but its effect is sometimes more mixed. Time
decomposition is the fastest MIP method with computa-
tion times approximately halved with respect to the ex-
act MIP method. The differences between the exact MIP
and the decomposition methods will be more significant
when considering instances with more operations (see
Section 7.4).

Our experiments lead us to conclude that MIP based
approaches are suitable for solving the stand allocation
problem for the set of instances considered. Indeed,
they offer optimal or near-optimal solutions while en-
suring reasonable computation times. The time decom-
position method in particular offers the best trade-off be-
tween solution quality and computation time.

7.4. Feasibility

In Section 4, we show that deciding whether there
is a feasible solution without the dummy stand is NP-
complete. In this next section, we illustrate how im-
portant this result is from a practical point of view and
compare the ability of each method to find a feasible
solution when there is one. Obviously, any algorithm
finding a feasible solution leads to the conclusion that
an instance is feasible. However only exact methods,
such as our MIP formulation, are able to guarantee that
there is no feasible solution.

All the instances considered so far admit feasible so-
lutions. In order to test the ability of each algorithm
to find a feasible solution, we add a given number s
of operations chosen randomly from the 82 other in-
stances in J to the largest instance of J (553 operations).
When an operation is added, we also add all the opera-
tions involved in the same turnaround while compatibil-
ity and objective coefficients are not changed. For each
s = 10, 20, · · · , 300, we simulate 30 instances. We then
run the 5 algorithms for each of the 900 instances with
the passenger affinity function. Note that the optimiza-
tion is allowed to run to the end, i.e. it is not stopped
when a feasible solution is found. Figure 6 presents
the number of instances for which a feasible solution
is found, the total number of unassigned operations and
the CPU time for each algorithm.

In Figure 6(a), we observe that the greedy algorithm
begins to fail to find feasible solutions with only 20 ad-
ditional operations. The ejection chain algorithm and
the stand decomposition method handle all instances
with up to 110 operations added while the exact MIP
and the time decomposition method can go up to 160
operations. Figure 6(b) shows that the number of unas-
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Figure 6: Effect of the number of operations on finding a feasible
solution

signed operations with the time decomposition method
is very close to the exact MIP method. On the con-
trary, the ejection chains fails for approximately twice
as many operations. The number of unassigned op-
erations grows very quickly for the greedy algorithm,

which is why it has not been plotted.
In Figure 6(c), we observe that the MIP computation

times grow exponentially with the number of operations
but remain reasonable up to the addition of 250 opera-
tions. The time and stand decomposition methods suffer
less from this phenomenon since the MIPs solved are
smaller.

To conclude, the exact MIP or time decomposition
methods are preferable for handling the most congested
instances. Once again, the time decomposition algo-
rithm offers the best trade-off in terms of computation
time.

7.5. Passengers at contact stand versus number of tow-
ing operations

Maximizing operation-stand affinity contradicts the
idea of minimizing the number of towing operations. A
trade-off can be found by tuning coefficient β. However,
choosing the values may prove to be a challenging task.
This is why we propose to use Pareto curves to support
the decision maker. Pareto curves translate the choice
of abstract coefficients in terms of business measures.
In this section, we consider the passenger affinity func-
tion since it provides smoother curves.

Figure 7 plots the Pareto curve linking the number of
towing operations to the percentage of passengers as-
signed to contact stands. This curve was obtained by
solving Instance I for 100 values of β, from 0.1 to 10
with a step of 0.1. Each point is Pareto optimal, i.e. not
dominated by any other solution. A solution is said to
dominate another one if it is better, or at least equal, for
all objectives simultaneously.
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Figure 7: Passengers at contact stand versus number of towing oper-
ations for I

Plotting such a curve might be time consuming as the
problem has to be solved several times. However, air
traffic is mainly repetitive in the sense that it does not
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significantly change from one week to the next. There-
fore the coefficient values do not need to be discussed
everyday and can be previously set with the help of
Pareto curves for reference operational days.

The extreme left-hand point indicates the minimal
number of towing operations. As it is Pareto optimal,
it also provides the best possible percentage of passen-
gers assigned to contact stands with this given number
of towing operations. On the other hand, the extreme
right-hand point indicates the maximal percentage of
passengers that can be assigned to contact stands and
the associated minimum number of towing operations.

We observe that the first three towing operations
enable a 0.6% gain in passengers at the contact
stand whereas fourteen additional towing operations are
needed to gain the last 0.4% of passengers at the contact
stand.

8. Conclusion and future prospects

In this paper, we prove that finding a feasible solu-
tion for the stand allocation problem is NP-complete.
As a corollary, this proves the NP-hardness of the op-
timization problem. We then propose a strong MIP
formulation and two heuristic algorithms. Our heuris-
tic algorithms are based on the decomposition of the
problem (spatial and temporal) where the sub-problems
are solved using the MIP formulation. Based on in-
stances from two European airports, we compare our
approaches with the ejection chain method proposed by
Dorndorf et al. (2008) and a greedy algorithm represent-
ing the current practice of a partner airport.

Computational experiments show that our MIP based
approaches provide significantly better solutions than
the other methods tested but need more computation
time. Nevertheless, the computation times are short
enough for an industrial application.

The instances considered in this paper come from
large European airports. However, this does not nec-
essarily mean that the proposed methods can be applied
to the biggest airports in the world. Considering the re-
ported computation times, the methods should be able
to deal with bigger instances, and when this is not the
case, our decomposition can be hybridized to handle the
biggest instances: time decomposition can be applied to
both phases of the stand decomposition heuristic. The
stand decomposition can also be generalized in a ter-
minal decomposition, as many flights are already pre-
allocated to terminals in most airports.

Future research might focus on the aggregation of
shadow constraints through clique constraints. The

cliques used in this paper were generated heuristically
but a theoretical study might lead to better ones being
found and consequently stronger constraints.

Future research might also take robustness into more
detailed consideration. Buffer times might be managed
as an objective and not as a constraint, as Dorndorf et al.
(2008) propose. Stochastic optimization and simulation
can also be considered as proposed by Lim and Wang
(2005) and Yan and Tang (2007).

It would also be interesting to study alternative objec-
tives such as minimizing risky connections or the total
walking distance of passengers. Finally, another topic to
be researched further is the integration of airports’ de-
cision making problems, in particular the integration of
the stand allocation problem together with other key air-
port resources such as runways (i.e. a sequencing prob-
lem) and tarmac space (i.e. a routing problem) as Kim
et al. (2013) propose.

Acknowledgment

We would like to thank the associate editor and the
three anonymous referees for their constructive com-
ments, which significantly improved the exposition of
this paper. We also thank Grégory Morel for giving us
the link between the coloring of the stand allocation fea-
sibility graph and the circular arc coloring problem. Fi-
nally we thank colleagues from Amadeus who provided
instances, development support, airport knowledge and
feedback.

AppendixA. Significant tow times

In this appendix, we explain how to extend our MIP
formulation to the case where tow times are significant
and cannot be reasonably included in operation process-
ing times. Let τ j j′ be the tow time from stand j to stand
j′. For the sake of simplicity, we assume that the tow
time does not depend on the aircraft type. This assump-
tion can be easily relaxed.

Consider an operation i that has a predecessor U−1(i),
which implies that i is the successor of U−1(i). When
the tow time is neglected, the start time of operation i
is equal to the end time of its predecessor operation :
ai = dU−1(i). With positive tow times, the starting time
of operation i is equal to a j j′

i = di + τ j j′ if operation
U−1(i) is assigned to stand j and operation i is assigned
to stand j′.

Based on this, consider two operations i and i′ such
that di 6 di′ . We distinguish the case where i′ does not
have a predecessor (U−1(i′) = 0) and the case where i′

has a predecessor (U−1(i′) , 0).
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Case 1 : U−1(i′) = 0
In this case, operation i′ does not succeed any other

operation. Operations i and i′ overlap if and only if ai′ <
di. Hence the overlapping constraint is the same as (5.3)
in MIP 1 :

xi j + xi′ j 6 1 ∀i, i′ ∈ O,U−1(i′) = 0,
∀ j ∈ S i ∩ S i′ ,

ai′ < di 6 di′

Case 2 : U−1(i′) , 0
In this case, operation i′ succeeds operation U−1(i′).

Operations i and i′ cannot be assigned to stand j if
U−1(i′) is assigned to stand j′ and a j′ j

i′ < di, which leads
to following overlapping constraints :

xi j + xi′ j + xU−1(i′) j′ 6 2 ∀i, i′ ∈ O,U−1(i′) , 0,
∀ j ∈ S i ∩ S i′ ,∀ j′ ∈ S U−1(i′),

a j′ j
i′ < di 6 di′
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