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The present work focuses on the modeling of dry granular flows in the context of the granular column
collapse in an inclined channel and detailed comparison with experimental thickness profiles and front
velocities. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channelis
added in the model, providing the ability to accurately simulate this column collapse on large slopes (up to
22◦). We demonstrate that accouting for lateral friction effect in the simulations is crucial at large slopes
(higher or equal to 16◦).

In other respect, we show that a Drucker-Prager constant viscosity model with a well-chosen value for the
viscosity is able to predict the slow propagation phase at large slopes, experimentally observed, whereas the
viscosity provided by the µ(I) rheology, evaluated from physical quantities, does not behave as well.

Finally, we show that the present model predicts the appearance of shear bands in the bulk when refining
the mesh. This behaviour appears to be unstable (as it induces shear bands as narrow as 4 grain diameter,
to the best of our refining capacities) but is not affecting the simulations in terms of velocity range and
free-surface movements. We also show that this effect is triggered by the coupling of the plasticity criterion
with the pressure field.

I. INTRODUCTION

Granular materials play a major role in many branches
of natural and industrial physics. Dry granular flows can
exhibit solid, liquid or gas state, hysteretic behaviour,
wall effects, depending on the flowing context. The
description of the mechanical behaviour of this media
still remains a challenging question and the ability to
achieve accurate numerical simulations of the flow of a
granular material strongly depends on the discrimination
and description of the physical quantities involved in
these flows.

In the context of geophysical flows such as landslides
and debris flows, most of the numerical work has been
performed using thin-layer depth-averaged approxima-
tions to overcome the prohibitive computational burden
of solving the 3D primitive equations problem. In gen-
eral, these works have proved to be efficient in simulating
the final deposit of the flow. However, the dynamical
evolution of the granular mass along the flow is not
adequately described by shallow approximations. In
addition, mechanical processes such as the static-flowing
transition are not accurately handled by thin-layer depth
averaged model. We refer to Bingham3, GRD Midi
Group32, Andreotti et al.2, Ancey1 for general reviews
on granular flows.

The mechanical investigation of these flows, based
on a complete 3D modelling, at a laboratory scale, is

a relevant way to study and quantify the processes at
stake in such a flow and validate or improve the con-
stitutive relations that are being used. In this context,
the experimental and numerical study of the granular
column collapse has become widely used for the study
of the dynamics and deposit of gravity granular flows.
The reason is that it has a typical and reproductible
transient behavior. It starts with a quick acceleration
phase, that lasts until a maximum velocity is reached.
After what, the flow begins to decelerate during a
longer period, until it stops. The different phases of
the flow, the shape of the final deposit and the runout
distance are the main features that numerical models
try to reproduce. Their duration and shape change with
the slope of the bottom, the aspect ratio of the ini-
tial column, the possible presence of an erodible bed, etc.

As a matter of fact, many numerical studies addressed
granular column released problem using typically three
different approaches: shallow-type models (Mangeney-
Castelnau et al.26, Kerswell21, Larieu et al.25, Doyle et
al.8), Discrete Element Methods (DEM) (Staron and
Hinch37, Zenit39, Lacaze et al.23, Girolami et al.11), and
complete viscous-plastic models (Crosta et al.5, Lacaze
and Kerswell22, Meruane et al.31 and Lagrée et al.24).

While thin-layer depth averaged models are generally
able to lead to a good agreement with experiments for
the final deposit shape, they strongly overestimate the
flow velocity during the acceleration phase (see e.g.
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Mangeney-Castelnau et al.26, Kerswell21, Ionescu17).
Discrete Element method have been more able to
quantitatively reproduce the column spreading with
well-chosen friction coefficient values (see Larieu et
al.25, Lacaze and Kerswell22, Girolami et al.11) but
often overestimate the runout distance (see Staron and
Hinch37, Lagrée et al.24). In addition, all these studies
focus on the collapse on an horizontal plane, and mostly
on the reproduction of scaling laws, with little attention
paid to the dynamic.

A first attempt to thoroughly compare the dynamics
of the simulations with a continuum viscoplastic ap-
proach to experimental results (typically by comparing
thickness profiles during the collapse) is proposed by
Ionescu et al.18. They successfully achieve an accurate
prediction of the whole spreading of the column on an
horizontal plane using values of the litterature for the
physical parameters. However, difficulties arose for the
simulation of the collapse on an inclined plane (α = 16◦)
with an overestimated runout distance.

The present work is based on the same numerical
model and focuses on the simulation of the granular
column collapse on large slopes. The comparisons
with experiments are based on the experimental setup
and the resulting data of Mangeney et al.27 and Farin
et al.9. The model presented in Ionescu et al.18 has
been improved ony by considering additional physics
without any adjustment on the physical parameters of
the model. In a first part, we briefly describe the model
and the approach considered to include lateral friction
effects in a 2D model. In a second part, simulations
are compared with experiments in terms of thickness
profiles and front velocities, showing that the new model
allows to achieve systematic quantitative simulations
of the column collapse on various slopes (up to 22◦)
demonstrating the important role of the friction on the
lateral walls, in order for the granular mass to stop.

Also, following Ionescu et al.18, the preliminary results
on the little effects of the variable viscosity provided
by the µ(I) rheology model compared to a constant
viscosity Drucker-Prager viscoplastic model are carried
on in the present work. In a third part, thickness
profiles, front velocities are compared for both model
on different slopes, demonstrating that the average
value of the viscosity term can be of great influence on
the dynamic of the flow, whereas its spatial variability
is not. An analytical pressure profile derived from a
constant viscosity Drucker-Prager model is used to try
to highlight the differences of this model with the µ(I)
rheology with variable viscosity.

On a fourth part, we present preliminary results on
the development of shear bands in the computational
domain when one refines the mesh. This phenomenon
appears to be unstable (as it is not captured when

refining the mesh). We show that it is triggered by the
coupling of the plasticity criterion with the solution of
the problem through the pressure dependency. However,
as showed, these instabilities do not affect the result
in terms of velocity range and thickness profile of the
domain but modify the internal structure of the velocity
field and the pressure field.

Finally, we discuss the results and give some con-
clusions on their implications in terms of rheological
modelling and numerical simulations.

The first appendix provides a short description of the
numerical scheme employed in all the computations. The
second appendix develops the change of referential of
an analytical pressure field from the topography related
frame to the horizontal-vertical one.

II. MECHANICAL MODEL

A granular material generally exhibits a plastic
behavior that prevents the medium from deforming if
the applied stress is lower than a given value called yield
stress. This effect is modelled using a plasticity criterion
that describes this flow/no-flow behavior. In the specific
case of a granular material, the plasticity criterion is a
frictional criterion in the sense that its ability to sustain
a Cauchy stress σ is due to internal friction between
grains and geometrical particle rearrangement.

A classical approach consists in using the Drucker-
prager plasticity criterion κ that relates the pressure field
p to the deviatoric stress tensor S = p Id+σ through :

‖S‖ = κ(p) = κ0 + µp , (1)

where ‖A‖ =
√
A : A/2 is the Frobenius matrix norm,

or equivalently the second invariant of the tensor A,
µ = tan(δ) is the tangent of the internal friction angle
and κ0 is the cohesion of the material (set to 0 here).

The deformation of the material occuring under a large
enough stress is given by a plastic flow law that makes
the hypothesis of the colinearity of the deviatoric stress
tensor S and the strain-rate tensor D = 1

2 (∇u +∇uT )
where u = (ux, uy) denotes the 2D velocity field. This
property is written :

S

‖S‖
=

D

‖D‖
, (2)

that becomes using the Drucker-Prager plasticity cri-
terion (1) :

S = µp
D

‖D‖
. (3)

By analogy to a viscous flow law, the term µp/‖D‖
can be seen as an effective viscosity of the material
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depending on shear rate and pressure.

This purely plastic behavior is known to fail describ-
ing correctly the flow of granular materials. To overcome
this problem, one uses the so-called µ(I) rheology that
phenomenologically describes a spatial variability of the
internal friction coefficient µ from various physical quan-
tities and one dimensionless quantity called the inertial
number I. The inertial number, which is the square root
of the Savage number or of the Coulomb number, in-
troduced by Savage35 and Ancey et al.1 respectively, is
defined by :

I =
2‖D‖d√
p/ρs

, (4)

where d denotes the grain diameter and ρs the grain
density. This number can be seen as the ratio between
two timescales : the microscopic timescale of particle
rearrangement d/

√
p/ρS and the macroscopic strain

rate time scale 1/‖D‖.

The µ(I) rheology is then written :

µ(I) = µ1 +
µ2 − µ1

1 + I0
I

(5)

where I0 is a dimensionless constant and µ1 and µ2

represent respectively the value of the internal friction
coefficient for low and high inertial numbers. This law
has been introduced by Jop et al.19.

As in Ionescu et al.18, we develop the plastic flow law
(3) with µ = µ(I) defined by (5) and (4), and we finally
obtain (setting k = d

√
ρS):

S = µ1p
D

‖D‖
+ 2

(µ2 − µ1)p

2‖D‖+ I0
√
p/k

D (6)

In that form the flow law is now including the original
pressure-dependent plastic term µ1pD/‖D‖ plus an ad-
ditional viscous term 2ηD introducing a spatially varying
viscosity η given by:

η =
(µ2 − µ1)p

2‖D‖+ I0
√
p/k

(7)

Consequently, the use of the µ(I) law to describe the
internal friction coefficient in the plastic flow law leads
to describe the granular material as a viscoplastic fluid
with a pressure-dependent yield stress and spatially
variable viscosity depending on the pressure and the
shear-rate.

In what follows, the role of the spatial variation of
η defined by (7) is being assessed and compared to
the case of a constant viscosity η. To avoid confusion,
the µ(I) rheology will designate the original definition

given by (5) and the variable viscosity η, defined by
(7), obtained by developping the µ(I) rheology will be
referred to as ηI (although η, as defined by (7), does not
directly depends on the inertial number I but on the
physical parameters that are involved in the calculation
of I).

To sum-up, the rewriting of the µ(I) rheology naturally
leads to the following variable viscosity Drucker-Prager
formulation:

S = µ(I)p
D

‖D‖
= κ(p)

D

‖D‖
+ 2ηID (8)

This law is eventually inverted in order to express the
strain-rate D as a function of the deviatoric stress S
leading to:

D =
1

2ηI

[
1− κ(p)

‖S‖

]
+

S, (9)

The above expressions was introduced by Perzyna33

and Duvaut and Lions7 and is called the viscoplastic reg-
ularization method. We refer to Section A for the de-
scription of the numerical treatment of the viscoplastic
flow law (9).

III. MASS AND MOMENTUM CONSERVATION

The granular column collapse is a highly transient
problem with an aspect ratio close to 1 at the beginning
of the collapse. For these reasons, it is modelled here
by a complete Navier-Stokes problem with free-surface
transport. The viscoplastic fluid is considered to be in-
compressible. The solution (u, p) of the Navier-Stokes
equation is computed in a domain Ω(t) by solving the
following system :{

ρ (∂tu+ (u · ∇)u)− div(S) +∇p = ρg ,

div(u) = 0 .
(10)

The viscoplastic fluid domain Ω(t) is transported with
the fluid as:

∂1Ω(t)

∂t
+ u · ∇1Ω(t) = 0 (11)

where 1Ω(t) is the characteristic function of the domain.

IV. BOUNDARY CONDITIONS

The bidimensionnal fluid domain Ω(t) represents the
central vertical cross-section of the granular flow in the
channel (see Figure 1). Its boundary ∂Ω(t) is divided into
two disjoints parts ∂Ω(t) = Γb ∪ Γs. On the boundary
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Figure 1. Fluid domain and notations

Γb, the flowing material is in contact with a rigid body
through the Coulomb friction law :

u · n = 0 ,

{
σT = −µ [−σn]+

uT

|uT | if uT 6= 0

|σT ≤ µ [−σn]+ if uT = 0
(12)

where µ is the Coulomb friction coefficient at the bound-
ary, n is the outward normal vector on ∂Ω(t), and [ ]+
is the positive part. We adopt the following notation for
the normal and tangential components of the velocity u
and the normal stress σn :

u = unn+ uT and σn = σnn+ σT (13)

A stress-free condition is imposed at the surface Γs :

σn = 0 . (14)

V. ACCOUNTING FOR LATERAL FRICTION

To include the three dimensional effect of friction on
the lateral walls of the channel, let us consider the 3D
domain D(t) = Ω(t) ×

[−w
2 , w2

]
where w denotes the

channel width. The solution is assumed to be constant
in the transverse direction z (see Figure 1). The weak
formulation of the problem is then evaluated on D(t)
and the variational formulation is modified accordingly.

Let the variational formulation of problem (10) with
boundary conditions (12) and (14) on D(t) be:

ρ

∫ w
2

−w
2

∫
Ω(t)

(∂tu+ u · ∇u) · ϕdx+

∫ w
2

−w
2

∫
Ω(t)

∇p · ϕdx =∫ w
2

−w
2

∫
Ω(t)

div(S) · ϕdx+ ρ

∫ w
2

−w
2

∫
Ω(t)

ρg · ϕdx∀φ ∈ H. (15)

where H designates the appropriate functional space
and ϕ a test function of this space.

It becomes using Green’s formula:

ρw

∫
Ω(t)

(∂tu+ u · ∇u) · ϕdx+ w

∫
Ω(t)

∇p · ϕdx =

−w
∫

Ω(t)

S : D(ϕ) dx+ ρw

∫
Ω(t)

ρg · ϕdx (16)

+

∫
∂D(t)

σn · ϕdx∀φ ∈ H.

The boundary term coming from Green’s formula is
written:∫

∂D(t)

σn·ϕdx = w

∫
Γb

σn·ϕds+2

∫
Ω(t)

σn·ϕdx . (17)

We retrieve the 1D boundary integral of the 2D varia-
tional formulation multiplied by the width of the chan-
nel w plus an extra volumic term. In this mixed 2D/3D
form, the tangential component of the normal stress σT

is defined by:

σT =

{
σt1t1 + σt2t2 in 3D ,

σtt in 2D .
(18)

On the lateral faces, the normal component σn of the
normal stress σn is naturally equal to the third diago-
nal component of the stress tensor σzz. Using both 2D
incompressibility (∂xux + ∂yuy = 0) and 3D incompress-
ibility (∂xux + ∂yuy + ∂zuz = 0), we easily obtain that
∂zuz = 0 and consequently:

σzz = −p . (19)

From (12) and (19), the boundary term (17) becomes:

∫
∂D(t)

σn · ϕdx = w

∫
Γb

σn · ϕds

+2

(∫
Ω(t)

−pz · ϕdx−
∫

Ω(t)

µp
u

|u|
dx

)
(20)

The solution being constant in the direction z,
∫

Ω(t)
−pz ·

ϕdx = 0. If we divide the variational formulation by the
width w, we finally obtain:

ρ

∫
Ω(t)

(∂tu+ u · ∇u) · ϕdx+

∫
Ω(t)

∇p · ϕdx =

−
∫

Ω(t)

S : D(ϕ) dx+ ρ

∫
Ω(t)

ρg · ϕdx (21)

+
2

w

∫
Ω(t)

µp
u · ϕ
|u|

dx−
∫

Γb

µ[σn]+
uT

|uT |
· ϕds∀φ ∈ H.

It corresponds to the original 2D variational formulation
plus the volumic frictional term

1

w
µp

2u

|u|
. (22)
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It is worth noticing that a simpler approach to take into
account the effect of lateral friction that consists in in-
creasing the value of the internal friction coefficient leads
to a somewhat similar correction. This approach consists
in modelling the effect of the sidewalls by introducing an
additional friction coefficient with a maximum value of
the order of µ h

w where h is the thickness of the flowing
layer, µ is the grain/wall friction coefficient and w is the
width of the channel (see equation (1) of Taberlet et al.38

or equation (4.5) of Jop et al.20). Indeed, if one replaces
µ1 and µ2 by respectively (µ1 + µ h

w ) and (µ2 + µ h
w ) in

equation (6), it introduces the following contribution in
the momentum equation

1

w
µp

h

‖D‖
div (D) . (23)

The viscous term remains identical since it is a function
of (µ2 − µ1).

This term is quite similar to the one in equation
(22). It varies with the inverse of the width w and is
proportional to µp. However, in the case of (23), the
extra friction develops in the direction of the divergence
of the strain-rate D, scaled by the thickness of the
flowing layer h divided by the shear-rate γ̇ = ‖D‖. In
the present case, the term (22) acts in the direction of
the velocity u. It is important to point out that our
approach leads to a non-linear correction that depends
on the velocity unknown whereas the simpler approach
linearly modifies the problem (by just increasing the
internal friction coefficient). It consequently slows the
motion (by changing the position of the static-flowing
interface) but without modifying the velocity field. For
instance, it would not be effective in a plane shear flow
(more generally whenever the divergence of the devia-
toric stress is zero). On the contrary, the extra friction
introduced by (22) adds a contribution to the velocity
field that non linearly counteracts the downslope flow
and modifies the shape of the static-flowing interface
and of the velocity field (see Section VII). It is thus
active whenever a motion occurs.

Details of the numerical algorithm that implements the
solution to the problem with lateral friction effect are
given in Appendix A.

VI. EXPERIMENTAL SETUP

We briefly describe in this section the experimental
setup used in Mangeney et al.27 and Farin et al.9 that is
being reproduced numerically in the present work (see
also Ionescu et al.18).

It consists of a channel of rectangular section with
plexiglas walls and a variable spacing w (w = 10 cm and
w = 20 cm are considered hereafter). A mass of glass
beads of height h0 = 14 cm and of length l0 = 20 cm

l0=20cm

h
0
=
1
4
c
m

h

l

w

w

glass beads

rough surface

plexiglas walls

uplifting door

Figure 2. Sketch of the experimental setup

Table I. Rheological parameters

µ1 µ2 µb µw I0 k

0.48 0.73 0.48 0.18 0.279 0.035 kg1/2 m−1/2

is released from a reservoir at time t = 0 s by lifting
a door. The glass beads are subspherical, cohesionless
and highly rigid with a diameter d = 0.7 ± 0.1 mm.
They flow down an inclined surface of inclination α
roughened with one glued layer of the same glass beads
(see Figure 2). The particle density is ρs = 2500 kg m-3

and the volume fraction is estimated at ν = 0.62 giving
an apparent density ρ = 1550 kg m-3.

The thickness profiles of the granular mass are being
recorded at various instants during the flow. The uplift
of the door is simulated hereafter as a rigid boundary
with a free-slip condition lifting at a velocity Vd = 2.3 m
s-1 (see Ionescu et al.18 for details on the effect of the
door on the flow) .

The various rheological parameters are identical to
those used in Ionescu et al.18 and are summarized
in Table I. At the bed, µ = µb is the basal friction
coefficient and along the wall at the back of the reservoir
and on the lateral walls, µ = µw is the wall friction
coefficient (see Figure 2).
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VII. LATERAL WALL EFFECTS

This sections presents the results computed from
the numerical model presented herebefore for different
angles of the channel ranging from α = 0◦ to α = 22◦.
A specific attention is paid to the improvement provided
by the introduction of lateral friction effects, particularly
at large slopes (typically α ≥ 16◦) where, as already
mentioned, their absence has proved to be a strong limi-
tation (see Ionescu et al.18). In the present formulation,
the case wthout lateral friction effects is simulated using
a large value for the width w (see equation (21)).

Two sets of experimental results are being used for
comparison. The first one is the one presented in Man-
geney et al.27 that uses an experimental channel with
a width w = 10cm width. The second one is presented
in Farin et al.9 and uses an experimental channel with
a width w = 20cm. For both experiments, the initial
granular column is rectangular, 20cm long and 14cm
high (see Figure 2) leading to volumes of 2800cm3 and
5600cm3 respectively.

First, we compare the observed and computed thick-
ness profiles of the granular material for different slopes
α and both channel widths. Figure 3 and 4 represent,
at different instants of the collapse, the observed and
computed thickness profiles and the computed static
flowing transitions on a 10◦ slope for w = 10cm and
w = 20cm respectively. Figure 5 and 6 on the one hand,
and Figure 7 and 8 on the other hand, plot the same
results for α = 16◦ and α = 22◦ respectively.

The thickness profiles computed without lateral
friction, corresponding to the former results pre-
sented in Ionescu et al.18 are plotted on every figure to
highlight the (positive) effects of the lateral friction term.

The static-flowing transition is obtained as the isocon-
tour for a velocity equal to 0.01 m s-1. On Figure 3-8,
the latest plotted instant corresponds to the observed
(experimental) final time for the collapse.

A first observation is that the effect of the lateral
friction term (see equation (21)) is more signifcant at
large slopes (here 16◦ and 22◦) than at small slopes
(here 10◦). This result make sense since the effect of
the Coulomb friction arises only in the flowing zone and
this flowing zone represents a larger part of the whole
fluid domain when the slope increases. It follows that
the area of the domain that is subject to lateral friction
is bigger for an identical volume of flowing material.

This observation is consistent with the previous study
of Ionescu et al.18 who showed that the ability to achieve
a good prediction was deteriorating with an increased
slope leading to the necessity to account for lateral
friction effects.

Another general observation on the shape of the
computed thickness profiles is the presence, particularly
for α ≥ 16◦, of a slight yet systematic lowering of
the surface in the upper-left corner. This shape is a
numerical artifact related to the remeshing method and
disappears for more refined meshes.

A. Final deposits

The computed final deposits are significantly improved
by including lateral friction. The surface shape of the
final deposit computed with lateral friction has a greater
slope in average. The concavities and convexities of
the surface are more pronounced leading to a better
agreement with the experimental profiles.

This observation is true regardless of the width of the
channel ; for w = 20 cm, the lateral frictional effects
are smaller than for w = 10 cm but remains clearly
observable and significantly improve the numerical
results.

For α = 10◦ (Figure 3(d) and 4(d)), the static-flowing
transitions show that the flow has clearly stopped and
only very small areas of non-zero velocity close to the
surface remain but too small to lead to any observable
mass transfer. The extents of the final deposits are very
accurate for both cases (w = 10cm and w = 20cm),
but not particularly improved compared to the case
w = ∞. However, lateral friction term provided a small
yet clear improvement of the computed shape of the
surface (obviously more significant for w = 10cm).

For α = 16◦ (Figure 5(d) and 6(d)), the shapes
of the final deposits are again significantly improved.
This time, we also observe that the extent of the final
deposits is much more accurate when including the
lateral friction. The runout distance computed without
lateral friction is too big. The static-flowing transitions
show that the numerical propagation has almost stopped
for both cases. The remaining non-zero velocities do not
affect the plotted final deposit. A small area of non-zero
velocity can be seen at the front for the simulation
without lateral friction effects but the velocity is small
enough and does not induce any extra propagation after
the plotted time.

For α = 22◦ (Figure 7(d) and 8(d)), the differences
are large. The extent of the deposit simulated without
lateral friction is too long whereas the one with lateral
friction remains very close to the observed one. As
we can see from the static-flowing transition, in the
simulation with lateral friction, there is still some
velocity at the front but again too small to produce
any significant extra propagation (smaller than 0.5%
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Figure 3. Computed and experimental thickness profiles for an inclination of the channel α = 10◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 10cm and corresponding computed static-flowing transitions. The
axes scales are different for each time and the aspect ratio is thus not preserved.
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Figure 4. Computed and experimental thickness profiles for an inclination of the channel α = 10◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 20cm and corresponding computed static-flowing transitions.The axes
scales are different for each time and the aspect ratio is thus not preserved.
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Figure 5. Computed and experimental thickness profiles for an inclination of the channel α = 16◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 10cm and corresponding computed static-flowing transitions. The
axes scales are different for each time and the aspect ratio is thus not preserved.
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Figure 6. Computed and experimental thickness profiles for an inclination of the channel α = 16◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 20cm and corresponding computed static-flowing transitions.
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Figure 7. Computed and experimental thickness profiles for an inclination of the channel α = 22◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 10cm and corresponding computed static-flowing transitions. The
axes scales are different for each time and the aspect ratio is thus not preserved.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Length (m)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

H
e
ig

h
t 

(m
)

α=22 ◦ ,t=0.3 s Simulation with w=20 cm

Simulation with w=∞

Experimental profile

Thickness profiles

Static-flowing transitions

Thickness profiles

Static-flowing transitions

(a)t = 0.3s

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Length (m)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

H
e
ig

h
t 

(m
)

α=22 ◦ ,t=0.66 s Simulation with w=20 cm

Simulation with w=∞

Experimental profile

Thickness profiles

Static-flowing transitions

Thickness profiles

Static-flowing transitions

(b)t = 0.66s

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Length (m)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H
e
ig

h
t 

(m
)

α=22 ◦ ,t=1.02 s Simulation with w=20 cm

Simulation with w=∞

Experimental profile

Thickness profiles

Static-flowing transitions

Thickness profiles

Static-flowing transitions

(c)t = 1.02s

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Length (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

H
e
ig

h
t 

(m
)

α=22 ◦ ,t=1.8 s Simulation with w=20 cm

Simulation with w=∞

Experimental profile

Thickness profiles

Static-flowing transitions

Thickness profiles

Static-flowing transitions

(d)t = 1.8s

Figure 8. Computed and experimental thickness profiles for an inclination of the channel α = 22◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 20cm and corresponding computed static-flowing transitions. The
axes scales are different for each time and the aspect ratio is thus not preserved.
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Figure 9. Volume variations during time in the experiments
and the numerical simulations for w = 10cm for inclinations
of the channel α = 10◦, 16◦ and 22◦.

of the plotted runout distance). On the contrary, the
simulation without lateral friction shows a large flowing
area that will continue to transfer mass downstream and
the computed runout distance reaches 1.6m.

B. Dynamical thickness profiles

The plotting of the static-flowing transitions allows to
see the effect of the lateral friction term. In every cases,
the lateral friction leads to a more convex transition
(in the sense that the angle between the static-flowing
interface and the bottom of the channel is greater)
that prevents mass from the upper-left corner to flow
downstream. It makes sense since the lateral friction
term acts only on the flowing part and in the direction
of the flow.

Thus, the surface remains more convexe along the
collapse and that clearly reflects more accurately the
experiments. In every cases, the earlier instant (Figures
3(a)-4(a), 5(a)-6(a) and 7(a)-8(a)) is the less accurate.
A first reason is that even though the simulation models
the presence of the uplifting door, it considers a free-slip
boundary condition on it and the experiments clearly
shows (see Ionescu et al.18) a frictional effect of the
uplifting door that perturbs the flow at the beginning.
We point out that the plots does not have the same
scale on the horizontal and the vertical axis (because the
aspect ratio of the plotted domain goes from almost 1 up
to 50), thus (possibly strongly) enhancing the horizontal
variations of the surface.

The other aspect is the strong dilatancy effects that
occurs in the experiments. Figure 9 and 10 plot the vari-
ation of volume as a function of time for the numerical
simulation and the experiments in both channels (w = 10
cm and w = 20 cm).

As we can see, the typical experimental behavior is
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Figure 10. Volume variations during time in the experiments
and the numerical simulations for w = 20cm for inclinations
of the channel α = 10◦, 16◦ and 22◦.

an important volume increase at the beginning that
decreases after some time to approximately retrieve the
original compaction. In the case w = 10 cm (Figure 9),
the experimental volume generally exhibits less than
3% of volume variation but locally reaches up to 5% of
dilatancy (and compaction for α = 22◦). In every case,
the final volume is almost equal to the initial one. These
variations in volume partly explain the difficulty for the
incompressible numerical simulation to reproduce the
transient state with the same accuracy as the final one,
especially since the numerical simulation tends to lose
mass (around 2% at the end) when the domain quickly
evolves (so basically during the acceleration phase).
This numerical mass loss appears to be bigger on larger
slopes. This observation suggests that an adaptive time
scheme would be relevant to perform smaller time steps
in the acceleration phase. We point out that another
possibility for reducing mass loss is to consider a higher
refinement of the mesh. We observed that the numerical
mass loss behaves linearly with the refining of the mesh
(typically for a mesh size twice as small, the numerical
mass loss is divided by 4).

In the case w = 20 cm (Figure 10), the variations
of volume are stronger, and strictly increase with the
slope. For α = 22◦, the volume increase is close to 10%.
In addition, the volume of the final deposit is less close
to the initial one than in the case w = 10 cm and, in
the case α = 22◦, more compact (but this might be due
to experimental measurement errors). Conversely, the
numerical mass behaves rather identically to the case
w = 10 cm. The velocities being slightly higher when
w = 20cm, the mass loss seems to be slightly higher too
but remains smaller than 3%.

It is important to note that the use of a broader
channel for the experiments, while providing reduced
lateral wall effects, also allows for a stronger dilatancy
to occur.
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In any case, a more accurate prediction of this type
of experiment could only be achieved through the
modeling of the dilatancy effects for instance throug a
dilatant Drucker-Prager model that takes into account
the evolution of the volumic fraction with respect to the
shearing of the material (see e.g. Andreotti et al.2).

The extents of the collapsing mass at intermediate
times are pretty accurate and globally improved by
including lateral friction. The very end of the mass (i.e.
close to the front) is not always sharply determined but
this effect is mainly due to the size of the mesh cells
compared to the aspect ratio of the domain (which goes
from approximately 1 at the beginning up to 50 for the
final deposit at α = 22◦). A higher refinement of the
mesh would have produced a better description of the
front zone. In other respect, the experimental measure-
ment of the location of the front can be unreliable due
to the saltation of the beads. It leads to an error on the
runout distances estimated to 10% in general (see Farin
et al.9).

From theses aspects, it appears insufficient to com-
pare only the thickness profiles since their precision is
limited by the sharpness of the mesh, the variations
of volume and the possibly variable precision of the
experimental measurements. To take a closer look at the
dynamical behavior, we consider in the next part the
evolution of the velocities at the front during the collapse.

C. Front velocities

Figure 11 and 12 plot the computed velocities at the
front of the fluid domain during the collapse with and
without lateral friction. for w = 10cm and w = 20cm
respectively. In order to compare, the experimental front
velocities are also plotted. The experimental front veloc-
ities have not been directly measured and the resulting
plot simply correspond to the finite rates of change
(i.e.∆x/∆t) computed on the observed positions of the
front. The curves consequently have few points with
little precision about their position in time. However, it
allows to observe the general behaviour.

It clearly appears that the experimental front veloc-
ities are closer to the velocities computed with lateral
friction effects. Typically the maximum velocity reached
for a given situation is better reflected when including
lateral friction effect. At 22◦, in both cases, the decel-
eration phase shows a much faster deceleration in the
experimental measurements followed by a change of
slope. This behavior, designated by “slow propagation
phase” (see Mangeney et al.27, Farin et al.9), is not
captured by the simulations, regardless of the lateral
friction effects. As we show in Section VIII, this slow
propagation phase is related to the rheology of the flow
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Figure 11. Velocity of the front as a function of time computed
with and without the lateral friction term and experimental
velocities (obtained from the evolution of the position of the
front with time) for w = 10cm for inclinations of the channel
α = 10◦, 16◦ and 22◦.
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Figure 12. Velocity of the front as a function of time computed
with and without the lateral friction term and experimental
velocities (obtained from the evolution of the position of the
front with time) for w = 20cm for inclinations of the channel
α = 10◦, 16◦ and 22◦.

and its parameters.

VIII. ROLE OF THE SPATIAL VARIABILITY OF THE
VISCOSITY ηI IN THE µ(I) VISCOPLASTIC MODEL

A. Thickness profiles and front velocities

From equation (6) and (7), it is clear that the use of
the µ(I) rheology leads to model a viscoplastic fluid with
a yield stress depending on the pressure. In that sense,
the µ(I) rheology is not very different from a viscoplastic
fluid with a Drucker-Prager plasticity criterion, except
for the spatially variable viscosity ηI (see equation (7)
and (8)). The aim of this section is to determine more
specifically the role of the spatial variability of ηI in the
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viscoplastic model (see (8)). Many works (e.g. Lagree
et al.24, Andreotti et al.2, Silbert et al.36, Jop et al.19)
has proved that a Newtonian model fails to predict a
granular flow. We can safely assume that the viscoplas-
ticity is then of primary importance to achieve a good
modelization. However, until now, little attention has
been paid to the role of the dependance of the viscosity
ηI to the inertial number (except in Ionescu et al.18).
In what follows, two different models are considered.
The ηI model (see (8)) and the Drucker-Prager model
where the viscosity η defined by (7) is taken constant:
η = ηc = 0.4 Pa s. This value corresponds to a coarse
global average of the range of values computed using ηI
(see Figure 15).

Figure 13 plots the front velocities for various slopes
computed with η = ηI and η = ηc (see equation (7)
and (8)) considering an infinitely wide channel (w = ∞
in (21)). Figure 14 plots the same results with w = 10cm.
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Figure 13. Velocity of the front as a function of time for
α = 0◦, 10◦, 16◦, 19◦ and 22◦ computed with ηI viscosity and
constant viscosity ηc = 0.4 Pa s. The velocities have been
computed without lateral friction effects (w = ∞).

In both cases (w =∞ and w = 10 cm), the differences
between ηI and ηc are small in both the acceleration
phase and the deceleration phase, the maximum velocity
and the stopping time. The key point is to observe
that the behavior of the front velocities is preserved and
the viscosity ηI does not predict any peculiar behavior
that the constant viscosity model fails to predict. The
observable differences only come from the fact that the
value of η = 0.4 Pa s is slightly higher in general than
the arithmetic average of the viscosity computed by
equation (7) leading to a slightly slower flow.

As a matter of fact, not only the front velocities
but also the dynamical shape of the domain is hardly
affected by the variable viscosity. Figure 15 represents
the contour of the domains computed with and without
a variable viscosity, for different slopes, at the time cor-
responding to the maximum velocity where the inertial
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Figure 14. Velocity of the front along time for α = 0◦, 10◦,
16◦, 19◦ and 22◦ computed with ηI viscosity and constant
viscosity ηc. The value for the constant viscosity η = 0.4Pa.s
is chosen as an average value of the viscosity obtained from
equation (7) in the flowing part of the fluid domain. The
velocities has been computed with w = 10cm.

number strongly varies within the fluid domain (typically
I varies between 10−3 close to the static-flowing transi-
tion to 1 at the surface and the front, see Ionescu et al.18).

As we can observe, the thickness profiles hardly
differ from one another even if the viscosity field varies
significantly within the domain. The low sensitivity of
the model to the spatial variability of the viscosity has
been highlighted for other non-Newtonian fluids (see
e.g. Martin and Monnier29). We retrieve the fact that
the value of 0.4 Pa s is suited as a coarse average value
of the viscosity ηI .

While the spatial variability of the viscosity does not
have a significant influence on the flow, we observed
that the absolute value of the viscosity has. We plot on
Figure 16, for different slopes, the results obtained with
ηI and ηc models for different constant values of ηc.

In the acceleration phase the behavior is almost
preserved when changing the value of the viscosity. A
high viscosity leads to a smaller maximum velocity. The
slopes of the curves in the acceleration phase identical
during the first part of the acceleration phase. They
start to differ from one another before the velocity peak
and the value ηc = 1 Pa s provide a better fit to the
experimental velocities.

In the deceleration phase, the behavior is significantly
modified by changing the value of ηc. It appears that
the convexity of the curve is strongly related to the
value of ηc. A smaller value leads to an almost constant
deceleration whereas a higher value induces a change
of slope in the velocity curve. The differences remain
small at small slopes. For α = 22◦, the value ηc = 1
Pa s predicts two different regimes in the deceleration
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(a)α = 0◦

(b)α = 10◦

(c)α = 16◦

(d)α = 22◦

Figure 15. Computed thickness profiles for inclinations of the
channel α = 0◦, 10◦, 16◦ and 22◦ computed with ηI and ηc.
The color field displays the value of the viscosity ηI in the
flowing part (see (7)). The velocities have been computed
with w = 10cm. The viscosity field in the static part has
been set to 0 for clarity.
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Figure 16. Computed and experimental velocities of the front
as a function of time for w = 10cm and for inclinations of the
channel α = 10◦, 16◦ and 22◦ computed with ηI and ηc. The
values ηc = 0.1Pa.s and ηc = 1Pa.s has been chosen as the
bounds of the viscosity range provided by ηI (see Figure 15).
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Figure 17. Computed and experimental velocities of the front
as a function of time for w = 20cm and for inclinations of the
channel α = 10◦, 16◦ and 22◦ computed with ηI and ηc. The
values ηc = 0.1Pa.s and ηc = 1Pa.s has been chosen as the
bounds of the viscosity range provided by ηI (see Figure 15)

phase: first a quick deceleration followed by what can be
seen as a slow propagation phase. To highlight the slow
propagation phenomenon, we plot on Figure 18 and 19
for α = 22◦, for w = 10 cm and w = 20 cm respectively,
the results obtained with ηI , ηc = 1 Pa s and ηc = 2 Pa s.

As we can see, the slow propagation phenomenon
in the case ηc = 2 Pa s is stronger than for ηc = 1
Pa s, leading to a more significant change of slope in
the deceleration phase. One can deduce that the slow
propagation phase is related to the balance between
the mean viscosity of the flow and the other adjustable
physical quantities of the model, namely the (internal
and boundary) friction coefficients. However, in that
case, the value of the viscosity is too high and the
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Figure 18. Computed and experimental velocities of the front
as a function of time for w = 10cm and for α = 22◦ computed
with ηI , ηc = 1Pa s and ηc = 2 Pa s.
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Figure 19. Computed and experimental velocities of the front
as a function of time for w = 20cm and for α = 22◦ computed
with ηI , ηc = 1Pa s and ηc = 2 Pa s.

computed velocities are too small compared to the
experimental velocities.

This slow propagation phase has been clearly demon-
strated by experimental measurements (see Farin et
al.9, Mangeney et al.27) mainly at high slopes. As a
matter of fact, the curves obtained with ηc = 1Pa.s
much better agree with the experimental front velocities
in all the phases of the flow (acceleration, deceleration,
slow propagation) and for every angle. The very good
agreement between the simulation with ηc = 1 Pa s
and the experimental front velocities allows to notice
that the maximum velocity does not appear on the
experimental points.

B. Pressure fields

A classical simplification of these granular flows, typ-
ically for large scale realistic simulations, is to consider
the pressure to be hydrostatic in the flow. However, the
pressure within a Drucker-Prager flow is a priori different

from the hydrostatic pressure. Recent works (Bouchut
et al.4) have proposed, under some assumptions, terms
of correction for the pressure field from a shallow-type
model, in order to include the effects deviating from the
hydrostatic pressure. The resulting second order analyt-
ical pressure is derived from the Drucker-Prager model
with constant viscosity ηc. It is written in the topogra-
phy related frame (X,Z):

p = ρg
(

cos(α) + sin(α)∂Xh

− 2| sin(α)| ∂XU
|∂Y U |

)
(h− Y ) +O(ε3) (24)

where (U,W ) is the velocity field and h(X) is the height
of the free-surface (in the topography related frame
(X,Z)). We point out that this analytical pressure is
derived under a shallow-type approximation (thickness,
stresses and pressure of order ε) combined with a
slow flow approximation (streamwise velocity of order
ε). There are two extra terms (deviating from the
hydrostatic pressure component) that includes a surface
slope effect and a streamwise velocity gradients related
component. It implies that this pressure is only defined
in the flowing phase. The expression of (24) in the
gravity related frame (x, z) considered hereafter is given
in Appendix B.

In order to look further into the effect of the spatially
varying viscosity ηI , we compare hereafter the computed
pressure profiles on a slope α = 22◦ obtained with ηI
and ηc to the analytical pressure given in (24). Because
of the model hypothesis, we consider the results at time
t = 1.5s, in order to have a rather shallow problem with
a relatively small average velocity (consistently with the
hypothesis of the analytical pressure). The domain is
plotted on Figure 20. The resulting pressure profiles are
plotted on Figure21.

We point out that the free-surface of the domain
computed with ηI (see Figure 20) presents a pperturbed
aspect whereas the one computed with ηc smoothly
varies. As a matter of fact, it is a systematic behavior
and the most observable effect of the variable viscosity
ηI , conversely to the constant one.

A first observation is that the analytical pressure
significantly improves the hydrostatic approximation
and allows to capture quite well the pressure variation
with depth that deviates from the hydrostatic pressure.
Since the fluid domains computed with ηc and ηI are
slightly different, obviously the pressure profiles at a
given abscissa x are different. However, they are quite
similar for every x.

Regarding the comparison between ηI and ηC , we
can see that the analytical pressure (24), derived from
the constant viscosity Drucker-Prager model, allows,
with an identical precision, to describe the pressure
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Figure 20. Thickness profiles of the granular collapse computed for α = 22◦ with variable ηI and constant ηc at t = 1.5s. The
colored surface represent the pressure field computed with ηI . It is worth noting that the real aspect ratio of the plot is a tenth
as small as the plotted one (hence the perturbed aspect of the pressure field).
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Figure 21. Pressure profiles at different abscissae extracted from the pressure field computed with ηI and plotted on Figure 20
and its counterpart computed with ηC , analytical pressure evaluated from (24) and corresponding hydrostatic pressure. The
profiles in magenta are plotted using the right y-axis. The plotted profiles are vertical cuts of the domain plotted on Figure 20.
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field computed with and without the varying viscosity ηI .

It results that the ηI viscosity does not seem to
influence the model in terms of pressure as the pressure
field is hardly affected by this variable viscosity and
the analytical pressure that does not take into account
this viscosity variability in space is able to predict the
pressure variations of the model solved with ηI .

C. Summary

In the present case, we have seen that the variable
viscosity ηI induced by the µ(I) rheology is of very little
effect when compared to a constant viscosity model with
the same value of viscosity in average. But we have
also demonstrated that the value of viscosity ηI , based
on physical quantities, is not exactly suited; indeed, a
constant viscosity model with a value chosen in the limits
of the ηI viscosity range significantly improves the simu-
lations and allows to capture the slow propagation phase.

Theses results assess the fact that the µ(I) rheology
is mainly efficient because it transforms the classical
plastic model to a Drucker-Prager viscoplastic model.
The dependency of the viscosity to the inertial number
allows to provide, from physical quantities, an idea of
the correct value of the viscosity. In the present case,
however, the resulting value is too small.

In any case, a computation with the variable viscosity
ηI induces a higher computational burden and a slower
convergence that can lead to overall simulations twice as
long, in the present case.

IX. SHEARING INSTABILITIES

This section focuses on the presence of confined zones
of high shearing, that can be seen as shear bands, which
appears systematically in the simulations. We show
that this result cannot be captured by refining the
mesh and is consequently related to an instability-type
phenomenon. However, the simulations show that
this instability does not affect the result in terms of
dynamical shape of the computational domain and that
it is triggered by the coupling of the plasticity criterion
with the solution through the pressure-dependency.

We first plot on Figure 22 the norm and isocontours
of the computed velocity field and the corresponding
shear-rate field at time t = 0.1s on a 0◦ slope for
mesh sizes h = 0.008m, h = 0.004m and h = 0.002m
(corresponding to approximatively 1000, 5000 and 20000
triangular cells). As we can see on the coarser mesh
(Figure 22(a)), the isolines are basically evenly spaced

according to the value of the velocity field. As we refine
the mesh, the velocity field becomes stratified and bands
of high gradient in the velocity field appear. On the finer
mesh, the phenomenon is very clear and the velocity
field almost appear as a sequence of plug flows separated
by thin zone of high gradient. This behavior is clearly
retrieved on the shear-rate field (Figure 22(d)-22(f)),
and what can be called shear bands appears at the
interfaces between the plug zones.

This behavior is not stable since there is no conver-
gence of the computation to a given number of shear
bands when mesh size decreases, from the best of our
refining capacities; the shear bands always covering a
thickness of two to three elements, which is the smallest
size for a phenomenon to be captured by a discrete com-
putation. The highest refinement we have been able to
reach was predicting bands as narrow as 4 grain diameter.

However, this mesh dependent phenomenon does not
affect the stability of the simulation. First, we can
see that the velocity range is not affected by the shear
bands and only its spatial structure is. As a matter of
fact, in a more global point of view, we can observe that
the stability of the computational domain movement is
preserved.

Figure 23 plots the thickness profiles of the same
simulation (α = 0◦) at time t = 0.5s for the three mesh
sizes. From this figure, we clearly observe that the
thickness profiles are not modified when refining the
mesh and the differences that can be observed between
the three profiles are completely expected regarding the
higher precision one gets from a finer mesh.

The results plotted on Figure 22 have been computed
using a constant viscosity η = 0.4Pa.s without lateral
friction effects. We point out that the use of a µ(I)
viscosity and/or lateral friction does not change this
result.

To understand what triggers this effect, the same
problem is solved for different plasticity criterions.
Figure 24 plots the results for the 3 mesh sizes in the
case of a constant yield stress κ = 100 (see equation
(1)) and a constant viscosity η = ηc, thus leading to a
Bingham fluid.

This time, no such shearing bands appear. The
refining of the mesh leads normally converging velocity
and shear-rate fields. This result highlights the fact that
the shear bands effect is related to the coupling of the
plasticity criterion with the pressure field. This coupling
has two different aspects. On the one hand it induces a
coupling of the plasticity criterion with the solution to
the momentum problem which can be seen as a strong
coupling, and on the other hand, since it varies spatially,
it couples the criterion with the geometry of the problem
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(a)Velocity norm, h = 0.008m (b)Velocity norm, h = 0.004m (c)Velocity norm, h = 0.002m

(d)Shear-rate, h = 0.008m (e)Shear-rate, h = 0.004m (f)Shear-rate, h = 0.002m

Figure 22. Velocity norm and shear-rate computed at time t = 0.1s on a slope α = 0◦ on meshes with cells of size h for the
Drucker-Prager problem with constant viscosity. The colorscale of the plots of the shear-rates has been saturated for the sake
of readability to a maximum shear-rate of 40s−1
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Figure 23. Thickness profiles computed with increasingly fine
meshes at time t = 0.5s on a 0◦ channel and the corresponding
static-flowing transitions.

which is a weaker coupling.

In order to separate these effects, we consider this
time a plasticity criterion taken equal to the hydrostatic
pressure at each time step, thus resulting in a weak
geometrical coupling of the plasticity criterion with
the free-surface. Since the hydrostatic pressure sharply
varies within an almost rectangular domain, these simu-
lations have been performed starting from a trapezoidal
column (inspired from the one considered in Farin et
al.9). We plot on Figure 25 the results at time t = 0.1s
on the three meshes.

In this case, the computations again appear to be
converging with the refining of the mesh. The velocity
field structure is preserved when refining and the shear-

rates also show the convergence of the spatial structure.
For instance, the presence of a trapezoidal patch of high
shear close to the lower-right corner is nicely captured.

From these results, we have clearly established that
the shear bands effect is directly triggered by the
coupling of the plasticity criterion with the solution of
the problem through its pressure dependency. Based on
the different results, this phenomenon does not appear
to be a numerical instability (simulations of the collapse
are accurate, stable in time when refining and the choice
of other types of plasticity criterion leads converged
solution devoid of instabilities). It follows that this
phenomenon seems to be inherent to the Drucker-Prager
viscoplastic model.

X. DISCUSSION AND CONCLUSION

The present work lies in the continuation of Ionescu et
al.18 on the quantitative simulation of a granular column
collapse at laboratory scale using a continuum viscoplatic
modelling approach. It tries to tackle limitations previ-
ously highlighted; firstly, to obtain accurate simulations
at large slopes (typically α ≥ 16) and secondly to im-
prove the dynamic shape of the granular mass during the
spreading by preventing mass from the upper-left corner
to flow downstream. These two limitations have been
overcomed by accouting for the 3D friction of the gran-
ular material on the lateral walls of the channel. Under
the hypothesis of a solution constant along the channel
width.
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(a)Velocity norm, h = 0.008m (b)Velocity norm, h = 0.004m (c)Velocity norm, h = 0.002m

(d)Shear-rate, h = 0.008m (e)Shear-rate, h = 0.004m (f)Shear-rate, h = 0.002m

Figure 24. Velocity norm and shear-rate computed at time t = 0.1s on a slope α = 0◦ on meshes with cells of size h for
a Bingham-like problem with fixed given yield stress µ = 100 in the plasticity criterion. The colorscale of the plots of the
shear-rates are logarithmic to enhance readability

(a)Velocity norm, h = 0.008m (b)Velocity norm, h = 0.004m (c)Velocity norm, h = 0.002m

(d)Shear-rate, h = 0.008m (e)Shear-rate, h = 0.004m (f)Shear-rate, h = 0.002m

Figure 25. Velocity norm and shear-rate computed at time t = 0.1s on a slope α = 0◦ on meshes with cells of size h for a
Drucker-Prager problem with a yield stress µ = κ(ph) where ph designates the hydrostatic pressure. The colorscale of the plots
of the shear-rates are logarithmic to enhance readability.

FL modifie la forme de l’écoulement contrairement
a mu+0.1. A forte pente, avant ca marchait pas,
maintenat ca marche.
This result is all the more significant that realistic
geophysical granular flows mostly occur on large slopes.

Rappeler les resultats sur la dilatation (et le fait qu un
canal plus large c bien et pas bien).

The ability for the model to capture the slow prop-
agation phase is an important aspect of validating the

underlying physics of the equations. In the present case,
we thus see that a constant viscosity Drucker-Prager
model is able to produce it whereas the variable viscosity
ηI model fails to do so with the parameters considered
here.

+ etude des profils de pression.
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Appendix A: Numerical Method

We describe here the numerical algorithm used to
solve the dynamic flow problem described above. This
numerical method is an extension of the one presented
in Ionescu et al.18 to include lateral friction effects. The
following appendix briefly presents the method and its
modification and we refer to Ionescu et al.18 for a more
comprehensive description.

The time discretization is achieved using an implicit
Euler scheme, and a set of nonlinear equations on the
velocity u, the deviatoric stress tensor S and the pressure
p is to besolved at each time step.

To overcome the difficulties related to the non-
differentiability of the viscoplastic and friction terms,
an iterative decomposition-coordination formulation
coupled with the augmented Lagrangian method of
Glowinski and Le Tallec12 and Fortin and Glowinski10 is
adapted here.

The treatment of the Coulomb friction condition is
done using a regularisation approach (see Ionescu15,
Ionescu16). A small frictional viscosity ηf << 1 is in-
troduced in the Coulomb friction law (12) which is then
written:

uT = − 1

ηf

[
1− µ[−σn]+

|σT |

]
+

σT , (A1)

where [ ]+ denotes the positive part. The new formu-
lation of the friction law has the same mathematical
structure as the viscoplastic constitutive equation (9)
and we can use the same iterative decomposition-
coordination formulation.

The volume Coulomb friction is treated identically but
in that case the tangential stress comes from the 3D for-
mulation (see (18)). If we denote the 3D tangential stress
σZ (in order to avoir confusion), we obtain:

u = − 1

ηw

[
1− µ[p]+

|σZ |

]
+

σZ . (A2)

In the present case, the regularization frictional vis-
cosity coefficient has been set to ηf = ηw = 0.1Pa.s.m-1.

The treatment of the free-surface and the associated
time-moving domain within a Navier-Stokes problem
is achieved through an Arbitrary Lagrangian-Eulerian
(ALE) method which is rather classical and thus not de-
scribed here (see for instance Hughes et al.14, Maury30,
Maronnier et al.28, Duarte et al.6).

1. Time discretization

Let ∆t be the time step and uk, Sk and pk be the
values of the unknowns at time k. The implicit Euler
scheme applied to problem (10) with viscoplastic flow
law (9) gives the following set of nonlinear equations on
uk, Sk, pk and σk

Z :

ρ

(
uk − uk−1

∆t
+ uk · ∇uk

)
− divSk

+∇pk + σk
Z = ρg in Ω, (A3)

div(uk) = 0 in Ω, (A4)

D(uk) =
1

2η(‖D(uk)‖, pk)

[
1− κ(pk)

‖Sk‖

]
+

Sk, (A5)

uk =
−1

ηf

[
1− µ[p]+

|σk
Z |

]
+

σk
Z (A6)

while the boundary conditions read

Skn = 0 on Γs, (A7)

uk · n = 0, uk
T = − 1

ηf

[
1− µ[−σk

n]+
|σk

T |

]
+

σk
T , on Γb.

(A8)

2. The algorithm at each time step

Let r, rf , rw > 0 be the augmented Lagrangian param-

eters. Let the strain rate multipliers γ̇k,n−1 : Ω→ R3×3
S ,

the slip rate multipliers δk,n−1 : Γb → R2 and the lateral
slip rate multiplier λk,n−1 : Ω→ R2, be known.

Step 1. The first step consists in solving the following
linear Stokes-like problem for the velocity field uk,n and
the pressure pk,n:

div(uk,n) = 0, (A9)

ρ

(
uk,n − uk−1

∆t
+ uk,n−1 · ∇uk,n

)
−

div
(
rD(uk,n)

)
+∇pk,n − 2

w
rwu

k,n = ρg + (A10)

div
(
Sk,n−1 − rγ̇k,n−1

)
+

2

w
(σk,n−1

Z − rwλk,n−1),

with the boundary conditions(
rD(uk,n)− pk,n Id +Sk,n−1 − rγ̇k,n−1

)
n = 0, on Γs,

uk,n · n = 0, on Γb,
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rD(uk,n)− pk,n Id +Sk,n−1 − rγ̇k,n−1

)
T

=

−rfuk,n
T + rfδ

k,n−1 + σk,n−1
T , on Γb.

Step 2. First we update the viscosity coefficient
η = η(‖D(uk,n)‖, pk,n) and the yield limit κ = κ(pk,n).
Then, we compute the strain rate multipliers γ̇k,n and
the slip rate multipliers δk,n

γ̇k,n =
1

2η + r

[
1− κ

‖Sk,n−1 + rD(uk,n)‖

]
+

(Sk,n−1 + rD(uk,n)), (A11)

δk,n = − 1

ηf + rf

[
1− µ[−σk,n−1

n ]+

|σk,n−1
T − rfuk,n

T |

]
+

(σk,n−1
T − rfuk,n

T ), (A12)

λk,n = − 1

ηw + rw

[
1− µ[pk,n−1]+

|σk,n−1
Z − rwuk,n|

]
+

(σk,n−1
Z − rwuk,n), (A13)

according to the decomposition-coordination formulation
coupled with the augmented Lagrangian method.

Step 3. Finally, we update the stress deviator Sk,n,

the tangential stress σk,n
T and the lateral stress σZ using

Sk,n = Sk,n−1 + r(D(uk,n)− γ̇k,n),

σk,n
T = σk,n−1

T − rf (uk,n
T − δk,n).

σk,n
Z = σk,n−1

Z − rw(uk,n − λk,n).

In the present paper, the problem is solved using a
finite element formulation. The computational domain
Ω is discretized using triangular finite elements. The fi-
nite element spaces for the discretization of uk,n and pk,n

are respectively P2 continuous and P1 continuous. The
variables Sk,n and γ̇k,n are discretized using P1 discon-

tinuous finite elements. The variables σk,n
T and δk,n on

the one hand, and σk,n
Z and λk,n on the other hand, are

discretized using P2 continuous finite elements. The solu-
tion of the Stokes like problem at step 1 is rather standard
and we address the reader to the litterature for the many
techniques available (see for instance Pironneau34). The
whole implementation of the solver has been achieved
using the software FreeFem++13.

Appendix B: Analytical pressure in the gravity related frame

Let us consider topography related frame (X,Z) and
the velocity field (U(X,Z),W (X,Z))T in this frame.

We denote by α the local slope of the topography
with respect to the gravity related frame (x, z) and by
(u(x, z), w(x, z))T the velocity field in this frame.

We have for a constant α:{
x = X cos(α)− Z sin(α)

z = X sin(α) + Z cos(α)

or equivalently:{
X = x cos(α) + z sin(α)

Z = −x sin(α) + z cos(α)

The analytical pressure in (X,Z) is given by:

p(X,Z) = ρg (cos(α) + sin(α)∂Xh(X)

−2| sin(α)| ∂XU(X,Z)

|∂ZU(X,Z)|
(h(X)− Z) ,

(B1)

where h(X) = Zs, Zs designating the height of the
free-surface in (X,Z) (i.e. the local thickness of the flow
at X). If we denote by h(x) = zs the height of the free-
surface at x, it follows that:

h(X) = −x sin(α) + zs cos(α)

= −x sin(α) + h(x) cos(α) (B2)

Thus:

∂Xh(X) = − sin(α)∂Xx+ cos(α)∂Xh(x)

= − sin(α) cos(α) + cos(α)∂Xh(x) (B3)

that becomes, using the chain rule:

∂Xh(X) = cos2(α)∂xh(x)− sin(α) cos(α) . (B4)

And we also have:

h(X)− Z = (h(x)− z) cos(α) (B5)

The change of variable naturally gives:

U(X,Z) = u(x, z) cos(α) + w(x, z) sin(α) (B6)

A similar calculation gives, using the chain rule:

∂XU = (∂xu cos(α) + ∂zu sin(α)) cos(α)

+ (∂xw cos(α) + ∂zw sin(α)) sin(α) , (B7)

∂ZU = (−∂xu sin(α) + ∂zu cos(α)) cos(α)

+ (−∂xw sin(α) + ∂zw cos(α)) sin(α) . (B8)

We finally obtain using (B4), (B5), (B7) and (B8) in
(B1):
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p(x, z) =

ρg
(

cos(α) + sin(α)
(
cos2(α)∂xh(x)− sin(α) cos(α))

−2| sin(α)|
[ (

(∂xu cos(α) + ∂zu sin(α)) cos(α)+

(∂xw cos(α) + ∂zw sin(α)) sin(α)
)
/ (B9)∣∣∣ ( (−∂xu sin(α) + ∂zu cos(α)) cos(α)+

(−∂xw sin(α) + ∂zw cos(α)) sin(α)
)∣∣∣]) (h− z cos(α)) .
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