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We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel
(up to 22◦) and compare precisely the results with laboratory experiments. Incompressibility is assumed
despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called µ(I)
rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction
term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate
that this term is crucial to accurately reproduce granular collapses on slopes & 10◦ whereas it remains of
little effect on horizontal slope.

Quantitative comparison between experimental and numerical changes with time of the thickness profiles
and front velocity makes it possible to strongly constrain the rheology. In particular, we show that the use of
a variable or a constant viscosity does not change significantly the results provided that these viscosities are of
the same order. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict
the slow propagation phase observed experimentally at large slopes. Finally, we observed that small-scale
instabilities develop when refining the mesh (also called ill-posed behavior, characterized in Barker et al.3

and in the present work), associated to the mechanical model. The velocity field becomes stratified and
bands of high velocity gradient appear. These model instabilities are not avoided by using variable viscosity
model such as the µ(I) rheology. However we show that the velocity range, the static-flowing transition and
the thickness profiles are almost not affected by them.

I. INTRODUCTION

Granular materials play a major role in many branches
of natural and industrial physics. The description of the
mechanical behaviour of this media and the quantifica-
tion of the rheological parameters involved still remain
a challenging question (e. g. Bingham4, GdR Midi
Group41, Andreotti et al.2, Ancey1, Delannay et al.11).
Detailed quantitative comparison between numerical
models and observations is necessary to go further in
this direction.

In the context of geophysical flows such as landslides
and debris avalanches, most of the numerical work has
been performed using thin-layer depth-averaged approx-
imations to overcome the prohibitive computational
burden of solving the 3-D problem. These ’shallow’
models have proved to be efficient in simulating the final
deposit of the flow. However, even though the first order
dynamics of the landslides is reproduced15,33,42,43,53,
these models fail in describing accurately the flow
velocity, especially during the first instants of the mass
spreading. In addition, mechanical processes such as
the static-flowing transition are not well handled by

thin-layer depth-averaged models5,6.

As a result, the mechanical investigation of these flows
based on a complete 3-D modelling and comparison with
laboratory experiments, is a relevant way to validate or
improve the constitutive relations that are being used.
In this context, the experimental and numerical study of
the release of rectangular or cylindrical granular columns
(so-called granular column collapse) on channelled or un-
confined horizontal and inclined beds has become widely
used to analyze the dynamics and deposit of gravity
granular flows (see e. g. Delannay et al.11 for a review).
The reason is that it has a typical and reproducible
transient behavior. On horizontal slopes, it starts with
a quick acceleration phase, that lasts until a maximum
velocity is reached. After what, the flow begins to
decelerate until it stops31,34. As the slope increases, the
duration of the deceleration phase increases. At large
slopes (> 16o), after the deceleration, a slow propa-
gation phase with a quite stable velocity is observed
that increases the duration of the flow and consequently
the maximum distance it reaches13,36. The different
phases of the flow, the shape of the thickness profiles
and final deposit are the main features that numerical
models try to reproduce. These quantities change
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with the slope of the bed, the aspect ratio of the ini-
tial column, the possible presence of an erodible bed, etc.

As a matter of fact, many numerical studies addressed
granular column released problem using typically three
different approaches: shallow-type models (Mangeney-
Castelnau et al.35, Kerswell27, Larieu et al.32, Doyle et
al.12), Discrete Element Methods (DEM) (Staron and
Hinch51, Zenit54, Lacaze et al.29, Girolami et al.16), and
complete viscous-plastic or elasto-plastic models (Crosta
et al.8, Lacaze and Kerswell28, Meruane et al.40, Lagrée
et al.30, and Ionescu et al.24).

While shallow models generally well reproduce the
experimental final deposit shape after calibration of
the friction coefficients, they strongly overestimate the
flow velocity during the acceleration phase (see e.g.
Mangeney-Castelnau et al.35, Kerswell27, Ionescu23).
Discrete Element Methods have been able to repro-
duce more quantitatively the column spreading with
well-chosen friction coefficient values (see Lacaze and
Kerswell28, Girolami et al.16) but often overestimate
the runout distance observed experimentally (see Staron
and Hinch51, Lagrée et al.30). In addition, all these
studies except Ionescu et al.24 focus on the collapse on
an horizontal plane, and mostly on the reproduction
of scaling laws, with little attention paid to the dynamics.

A first attempt to thoroughly compare the flow dynam-
ics simulated with a continuum viscoplastic approach to
experimental results (typically by comparing thickness
profiles during the collapse) is proposed by Ionescu et
al.24. Their viscoplastic model includes a Drucker-Prager
yield stress and either a variable viscosity (equivalent to
the well-known µ(I) rheology) or a constant viscosity.
They accurately predicted the whole spreading of the col-
umn on an horizontal plane using values of the rheolog-
ical parameters taken from the literature, without any
calibration process. However, they significantly overes-
timated the maximum distance reached by the flow for
collapses on an inclined plane (α = 16◦). For the granu-
lar collapses they investigated their simulations with the
µ(I) rheology, i. e. variable viscosity, were very similar
to those obtained with a constant viscosity. After this
first work, several questions remains : (1) is the overes-
timation of the flow dynamics on inclined slopes due to
the poor description of lateral wall friction in the model,
(2) is the model able to quantitatively reproduce granular
collapses on larger slopes where a slow propagation phase
develops, (3) is the difference between the simulations us-
ing the variable viscosity coming from the µ(I) rheology
and the constant viscosity still small for larger slopes,
(4) is the flow stable despite the ill-posed nature of the
µ(I) rheology near the static-flowing transition (Barker
et al.3)?

We address these issues here by using the numerical
model proposed in Ionescu et al.24 where we added the
description of the friction applied by the lateral walls

bordering the channel. We mainly focus on simulation
of granular column collapses on moderate slopes (from
horizontal to 22◦) by comparing the results with the lab-
oratory experiments of Mangeney et al.36 and Farin et
al.13.

In a first part, we briefly describe the model and how
we include lateral friction effects in a 2-D model. In a
second part, simulations are compared with experiments.
Our results show that the new model makes it possible
to reproduce quantitatively column collapses on a large
range of slopes, demonstrating the key role of lateral
friction, in particular on the static/flowing interface po-
sition. In a third part, comparison between the thickness
profiles and front velocities simulated with the variable
and constant viscosity is performed for granular collapses
on different slopes. Supporting the preliminary results
of Ionescu et al.24, we demonstrate that fundamental
changes in the flow dynamics in our case can be obtained
when changing the average value of the viscosity while its
spatio-temporal evolution during the flow poorly affects
the results. Pressure profiles are compared to analytical
profiles derived from a constant viscosity Drucker-Prager
model to highlight the similarities between the results
obtained with constant and variable viscosities. On a
fourth part, we present simulations showing the devel-
opment of unstable shear bands when one refines the
mesh. Finally, we discuss the implication of our results in
terms of rheological modeling and numerical simulations.

II. GRANULAR MATERIAL MECHANICAL MODEL

A granular material generally exhibits a plastic
behavior that prevents the medium from deforming if
the applied stress is lower than a given value called yield
stress. This effect is modeled using a plasticity criterion
that describes this flow/no-flow behavior. In the specific
case of a granular material, the plasticity criterion is a
frictional criterion in the sense that its ability to sustain
a Cauchy stress σ is due to internal friction between
grains and geometrical particle arrangement.

A classical plasticity criterion, that describes the
flow/no-flow condition, is the Drucker-Prager plasticity
criterion:

‖S‖ ≤ κ(p) = κ0 + µp . (1)

if and only if the fluid is at rest. Here ‖A‖ =
√
A : A/2

is the Frobenius matrix norm (the second invariant), S
is the deviatoric stress tensor (σ = −p Id +S), κ is the
Von-Mises yield limit, p is the pressure, µ = tan(δ) is
the tangent of the internal friction angle and κ0 is the
cohesion of the material, set to 0 here.

With a Von-Mises plasticity criterion κ(p) ≡ κ0 >
0, µ = 0 and a constant viscosity one can recover the
classical Bingham fluid model (see4), used for many
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fluids with a solid like behavior (for instance oils or
sediments in oil drilling processes). This model and the
regularized one, usually called Bingham-Papanastasiou
model (see44), were also considered to describe the (high
rate) deformation of many solid materials having a fluid
like behavior. However, these models are not able to
paint the dependency of the yield limit with pressure
specific to granular materials (see e. g. Andreotti et al.2

for a review of the behaviour of granular materials).

The deformation of the material occurring under a
large enough stress is given by a visco-plastic flow law
that makes the hypothesis of the collinearity of the de-
viatoric stress tensor S and the strain-rate tensor D =
1
2 (∇u + ∇uT ) where u denotes the velocity field. By
analogy to a viscous flow law, in the µ(I) rheology,

S = µ(I)p
D

‖D‖
, (2)

the term µp/‖D‖ can be seen as an effective viscosity of
the material depending on shear rate and pressure. This
constitutive law was introduced by Jop et al.25 to phe-
nomenologically describe the spatio-temporal variability
of the internal friction coefficient µ through a function
of one dimensionless quantity called the inertial number
I. The inertial number, which is the square root of the
Savage number or of the Coulomb number, introduced
by Savage47 and Ancey et al.1 respectively, is defined by:

I =
2‖D‖d√
p/ρs

, (3)

where d denotes the grain diameter and ρs the grain
density. This number can be seen as the ratio between
two timescales : the microscopic timescale of particle re-
arrangement d/

√
p/ρs and the macroscopic strain rate

time scale 1/‖D‖. The proportionality factor µ(I) is then
written:

µ(I) = µ1 +
µ2 − µ1

1 + I0
I

(4)

where I0 is a dimensionless constant and µ1 and µ2

represent the value of the internal friction coefficient for
low and high inertial numbers, respectively.

As it follows from Ionescu et al.24, using (4) and (3) in
the visco-plastic law (2) leads to :

S = µ1p
D

‖D‖
+ 2

(µ2 − µ1)p

2‖D‖+ I0
√
p/k

D, (5)

where k = d
√
ρs. In that form the flow law is now

including the original pressure-dependent plastic (rate
independent) term µ1pD/‖D‖ plus an additional vis-
cous (rate dependent) term 2ηID introducing a spatio-
temporally varying viscosity depending on the pressure
and the shear-rate given by:

ηI = ηI(p, ‖D‖) =
(µ2 − µ1)p

2‖D‖+ I0
√
p/k

(6)

To sum-up, the rewriting of the µ(I) rheology naturally
leads to a model including the Drucker-Prager plasticity
and a variable viscosity which does not directly depends
on the inertial number I but on the physical parameters
that are involved in the calculation of I:

S = µ(I)p
D

‖D‖
= µ1p

D

‖D‖
+ 2ηID. (7)

In what follows, the role of the spatio-temporal vari-
ation of the viscosity η = ηI is being assessed and com-
pared to the model with a constant viscosity η = ηc:

S = µ1p
D

‖D‖
+ 2ηcD. (8)

To avoid confusion, the µ(I) rheology will designate
the original definition given by (4) with a variable viscos-
ity η = ηI defined by (6). The model (8) with a constant
viscosity η = ηc will be called the Drucker-Prager model.

III. MASS AND MOMENTUM CONSERVATION

To include the three dimensional effect of friction on
the lateral walls of the channel, let us consider the 3-D
domain D(t) = Ω(t) × [−w/2, w/2] where w denotes
the channel width, and the bidimensionnal fluid domain
Ω(t) represents the central vertical cross-section of the
granular flow in the channel (see Figure 1). In what
follows, (x, z; y) denotes the cartesian (gravity-related)
frame (see Figure 2) whereas (X,Z;Y ) denotes the
topography (channel-related) frame (see Figure 1) with
naturally Y = y.

The release from rest of a granular column on a plane
or in a channel is a highly transient problem with an as-
pect ratio of the granular mass close to 1 at the beginning
of the collapse. For these reasons, it is modeled here by
a complete visco-plastic problem with free-surface trans-
port. The visco-plastic fluid is considered to be incom-
pressible. The solution (u, p) of the momentum balance
law is computed in the domain D(t):{

ρ (∂tu+ (u · ∇)u) +∇p− div(S) = ρg ,

div(u) = 0 .
(9)

The viscoplastic fluid domain D(t) is transported with
the fluid as:

∂1D(t)

∂t
+ u · ∇1D(t) = 0 (10)

where 1D(t) is the characteristic function of the domain.

IV. BOUNDARY CONDITIONS

Following the decomposition of the boundary ∂Ω(t)
into two disjoints parts ∂Ω(t) = Γb(t) ∪ Γs(t) we will de-
compose the boundary of D(t) in four parts ∂D(t) =
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Back wall
Lateral walls        ,

Free surface

Bottom  

Figure 1. Fluid domain and notations

DL(t) ∪ DR(t) ∪ Db(t) ∪ Ds(t) : 2 lateral boundaries
DL(t) = Ω(t) × {−w/2}, DR(t) = Ω(t) × {w/2}, the
bottom and left wall lateral boundary Db(t) = Γb(t) ×
(−w/2, w/2) and the free surface Ds(t) = Γs(t) ×
(−w/2, w/2) (Figure 1).

We adopt the following notation for the normal and
tangential components of the velocity u and the stress
vector σn:

u = unn+ uT and σn = σnn+ σT , (11)

where n is the outward normal vector on ∂D(t).
On the boundariesDb, DR andDL the flowing material

is in a frictional contact with a rigid body:

u · n = 0, σT = F f , (12)

where F f is the frictional stress acting on that boundary
and described by the Coulomb friction law:{

F f = −µf [−σn]+
uT

|uT | if uT 6= 0

|F f | ≤ µf [−σn]+ if uT = 0
(13)

Here µf is the Coulomb friction coefficient at the bound-
ary, and [ ]+ is the positive part ([s]+ = (s + |s|)/2).
Note that the boundary friction coefficient µf is generally
different from the internal friction coefficient µ1 and it is
a specific data of each contact surface. We consider here
two different values for the (boundary) Coulomb friction
coefficient µf :

µf =

{
µfw on the back wall and on the lateral walls,

µfb on the rough bottom.

(14)
At the free surface, a stress-free condition is imposed:

σn = 0, on Ds(t). (15)

V. ACCOUNTING FOR LATERAL FRICTION

Our approach consists in introducing the frictional
stresses associated to the two lateral walls DL and DR,

through a 3-D variational formulation but keeping the
in-plane flow assumption to avoid 3-D computations.

The variational formulation of problem (9) can be writ-
ten:∫ w

2

−w
2

∫
Ω(t)

(ρ(∂tu+ u · ∇u− g) ·ϕ+ σ : D(ϕ)) dx =∫
∂D(t)

σn ·ϕ dx ,

where ∂D(t) = DL(t)∪DR(t)∪Db(t)∪Ds(t) (using nota-
tions defined in the previous section) is the boundary of
the 3D domain D(t) and ϕ is a kinematically admissible
test function (ϕ ·n = 0 on DL(t)∪DR(t)∪Db(t)). Using
the stress-free condition (15) and the frictional condition
(12) we get∫
∂D(t)

σn · ϕdx =

∫
DL∪DR

F fw ·ϕT ds+

∫
Db

F fb ·ϕT dx ,

(16)
where F fw is the friction force acting on DL(t) ∪ DR(t)

while F fb is acting on Db(t).
Except the lateral friction, already taken into consid-

eration, we will adopt here the in-plane flow assumption.
In particular, we shall neglect the variation of the veloc-
ity along the transverse direction Y even though exper-
imental results show smaller velocities near the lateral
walls than near the center of the flow. In what follows
all the mechanical variables will be assumed to be con-
stant in the transverse direction Y = y (see Figure 1).
Bearing in mind that uy is vanishing on DL(t) ∪ DR(t)
we deduce that there is no transverse flow uy ≡ 0, i.e.
u = (ux, uz, 0). We shall use the notation u = (ux, uz)
for the in-plane flow also. Following this assumption the
strain rate and the stress deviator are plane tensors, and
we will use the same notations, D(u) and S respectively,
as for the 3-D description.

On the lateral faces DL(t) ∪DR(t), the normal stress
is then given by σn = σyy = −p while the 3-D tangen-
tial slip rate is the in-plane velocity, i.e. uT = u. The
frictional stress acting on the lateral walls isF

f
w = −µfw[p]+

u

|u|
if u 6= 0

|F fw | ≤ µfw [p]+ if u = 0,
(17)

while the frictional stress acting on the bottom and on
the left side isF

f
b = −µf [−σn]+

uT
|uT |

if uT 6= 0

|F fb | ≤ µf [−σn]+ if uT = 0,
(18)

where µf = µfw on the back wall and µf = µfb on the
rough bottom. Then, the boundary term (16) becomes:∫
∂D(t)

σn ·ϕ dx = w

∫
Γb

F fb ·ϕT ds+ 2

∫
Ω(t)

F fb ·ϕ dx.
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The solution being constant in the direction y, we can
divide now the variational formulation by the width w,
we finally obtain:∫

Ω(t)

(ρ(∂tu+ u · ∇u− g) ·ϕ− pdiv(ϕ)) dx =∫
Ω(t)

(
−S : D(ϕ) +

2

w
F fw ·ϕ

)
dx+

∫
Γb

F fb ·ϕT ds,

which can be written as an in-plane momentum balance
law in Ω(t):

ρ (∂tu+ (u · ∇)u) +∇p− div(S) =
2

w
F fw + ρg . (19)

It corresponds to the original 2-D momentum balance
law from Ionescu et al.24 plus the 2-D Coulomb friction

term
2

w
F fw . Note that this term, which is of order of

2

w
µfwp

u

|u|
, (20)

induces a frictional resistance in the opposite direction
to the velocity.

Ionescu et al.24 used another approach to take into
account the effect of lateral friction. This consists in
increasing the internal friction coefficient by adding to
it a constant value of the order of µfw

h
w where h is the

averaged thickness of the flowing layer observed in the
experiments (see also equation (1) of Taberlet et al.52 or
equation (4.5) of Jop et al.26). Indeed, if one replaces
µ1 and µ2 by (µ1 + µfw

h
w ) and (µ2 + µfw

h
w ), respectively,

in equation (5), then the viscous term remains identical
(since it is a function of (µ2 − µ1)). It introduces the
following contribution in the momentum equation

h

w
µfw div(p

D

‖D‖
) . (21)

For a laminar shear flow (ux = V y/h, uy = 0) with a
hydrostatic pressure distribution p = ρg(h − y) cos(α)
this last term is ( hwµ

f
wρg cos(α), 0) which represents

exactly the depth average of the wall frictional force
given by equation (20). However, this similarity is
present only for a laminar flow and it is not anymore
valid for a non-laminar flow considered here. In the case
of (21), the extra friction develops in the direction of the
divergence of the strain-rate. In the present case, the
term (20) acts in the opposite direction of the velocity
u. It is important to point out that our approach
leads to a non-linear correction that depends on the
unknown velocity whereas the Ionescu et al.24 approach
linearly modifies the problem by just increasing the
internal friction coefficient. This additional constant
internal friction consequently slows down the motion
(decreases the velocity u) by changing the position of
the static-flowing interface but without qualitatively
modifying the velocity field (the dynamics is preserved).
On the contrary, the extra friction introduced by (20)

adds a contribution to the velocity field that non linearly
counteracts the flow and modifies the shape of the
static-flowing interface and of the velocity field (see
Section VII). It is thus active whenever a motion occurs.

Details of the numerical algorithm that implements
the solution to the problem with lateral friction effect
are given in Appendix A. In the following numerical
results, meshes are made of 1000 to 2000 triangular cells
depending on the situation (except specified otherwise),
for an average size of 0.006 m. Times of computation are
strongly dependending on the rate of convergence which
is related to the slope, the frictional parameters and
the numerical parameters among others. Overall, the
solution of one time step takes between a few minutes
at the beginning of the collapse, when many (∼ 1500)
iterations are needed to achieve the convergence, to a
few seconds, later in the simulation, when the initial
guess is close to the converged solution. The time-step
is constant in what follows and equal to 0.001 s thus
leading to simulations made of 1500 to 3500 time-steps,
depending on the slope. Note that, in the studied con-
figurations, the computation with the variable viscosity
ηI induces a higher computational burden and a slower
convergence that can lead to overall simulations twice as
long as those with a constant viscosity.

VI. EXPERIMENTAL SETUP AND MODEL
PARAMETERS

Let us recall here the experimental setup of Mangeney
et al.36 and Farin et al.13 that is being reproduced
numerically in the present work (see also Ionescu et
al.24).

It consists of a channel of rectangular section with
plexiglas walls and a variable spacing w (w = 10 cm and
w = 20 cm are considered hereafter). A mass of glass
beads of height h0 = 14 cm and of length l0 = 20 cm
is released from a reservoir at time t = 0 s by lifting a
gate. The glass beads are subspherical, cohesionless and
highly rigid with a diameter d = 0.7±0.1 mm. They flow
down an inclined surface of inclination α roughened with
one glued layer of the same glass beads (see Figure 2).
The particle density is ρs = 2500 kg m-3 and the volume
fraction is estimated at ν = 0.62 giving an apparent
density ρ = 1550 kg m-3. The thickness profiles of the
granular mass are being recorded at various instants
during the flow.

In the model, the gate is simulated as a rigid boundary
with a free-slip condition that is lifted at a velocity
Vd = 2.3 m s-1 (see Ionescu et al.24 for details on the
effect of the gate on the flow). The various rheological
parameters are identical to those used in Ionescu et al.24

and are summarized in Table I. At the bed and along
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Figure 2. Sketch of the experimental setup

Table I. Rheological parameters

µ1 µ2 µb µw I0 k

0.48 0.73 0.48 0.18 0.279 0.035 kg1/2 m−1/2

the back wall of the reservoir µ = µb while on the lateral
walls µ = µw (see Figure 2).

VII. LATERAL WALL EFFECTS

This section presents the results computed from the
numerical model described herebefore for different angles
of the channel ranging from α = 0◦ to α = 22◦. A
specific attention is paid to the improvement provided
by the introduction of lateral friction effects, particularly
at large slopes (typically α ≥ 16◦) where, as already
mentioned, their absence has been thought to be a
strong limitation (see Ionescu et al.24). In the present
formulation, the case without lateral friction effects, i.
e. w = ∞ is simulated using a width w = 1010m (see
equation (19)).

We simulate here some experiments of Mangeney et
al.36 and Farin et al.13 that differ only by the width
of the channel, i.e. w = 10 cm and w = 20 cm,
respectively. For both experiments, the initial granular

column is rectangular, 20 cm long and 14 cm high (see
Figure 2) leading to volumes of 2800 cm3 and 5600 cm3,
respectively.

First, we compare the observed and computed
thickness profiles of the granular material for different
slopes α (10◦, 22◦) for the two different channel widths
(Figure 3 to 4). On these figures, the latest plotted
instant corresponds to the time when the whole mass
has stopped in the experiments. An estimate of the
position of the static-flowing interface predicted by
the model is obtained by representing the isocontour
of a velocity equal to 0.01 m s-1. This chosen small
velocity corresponds to approximately 1 % of the
mean flow velocity during the collapse. The thick-
ness and static-flowing interface profiles computed
without lateral friction, corresponding to the results pre-
sented in Ionescu et al.24, are plotted on every figure to
highlight the (positive) effects of the lateral friction term.

Before going into the details of the comparison, a
first general observation is that including the lateral
friction term (see equation (19)) systematically improves
the results of the simulations. Furthermore, this effect
increases as the slope angle increases. It is really
significant at large slopes (see e. g. the results at 22◦

on Figure 4). This makes sense since the effect of the
Coulomb friction arises only in the flowing zone and
this flowing zone represents a larger part of the whole
fluid domain when the slope increases. This observation
supports the assumption made by Ionescu et al.24

that the absence of lateral wall friction in their model
explained the deteriorating aggreement they found with
experimental results as the slope increases.

Another global observation on the shape of the
computed thickness profiles is the presence, particularly
for α ≥ 16◦, of a slight yet systematic lowering of
the surface at the upper-left corner. This shape is a
numerical artifact related to the remeshing method and
disappears for more refined meshes. Note that the scale
on the vertical axis is exaggerated, thus enhancing the
horizontal variations of the free surface shape.

A. Final deposits

The computed final shape and runout distance of
the deposits are significantly improved by including
lateral friction. The average surface slope of the deposit
computed with lateral friction is greater than without
lateral friction. The concavities and convexities of
the surface are more pronounced leading to a better
agreement with the experimental profiles. This obser-
vation holds regardless of the width of the channel.
Even though the lateral frictional effects are smaller for
w = 20 cm than for w = 10 cm, they remain clearly
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Figure 3. Computed and experimental thickness profiles for an inclination of the channel α = 10◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 10 cm (left column) and w = 20 cm (right column) and corresponding
computed static-flowing transitions.The axes scales are different for each time and the aspect ratio is thus not preserved.

observable and significantly improve the agreement with
experimental results. Note that on smaller slope α = 10◦

the improvement of the results thanks to lateral friction
effects is very small.

For α = 10◦ (Figure 3(e) and 3(f)), the static-flowing
transitions at the time the experimental mass has
stopped show that most of the numerical mass has
clearly stopped and only very small areas of non-zero
velocity close to the surface remain. This motion is
too small to lead to any observable mass transfer. The
extents of the deposits are very accurate for both cases
w = 10 cm and w = 20 cm. Lateral friction term
provided a small yet clear improvement of the computed
shape of the surface (obviously more significant for

w = 10 cm).

For α = 22◦ (Figure 4(e) and 4(f)), both the extent
and shape of the deposits are significantly improved with
the lateral friction term. Indeed, the simulated deposit is
very close to the observed one. In particular, the lateral
friction term corrects the overestimation of the runout
distance computed without lateral friction. At α = 22◦

and whatever w, the position of the static-flowing tran-
sition in the simulations with lateral friction, show that
there is still some velocity, in particular near the front.
However, this motion is again too small to produce any
significant extra propagation (smaller than 0.5% of the
plotted runout distance). On the contrary, simulations
without lateral friction show a large still flowing area
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Figure 4. Computed and experimental thickness profiles for an inclination of the channel α = 22◦ computed with the µ(I)
rheology with and without lateral friction effects for w = 10 cm (left column) and w = 20 cm (right column) and corresponding
computed static-flowing transitions. The axes scales are different for each time and the aspect ratio is thus not preserved.

that will continue to transfer mass downstream and lead
to a computed runout distance reaching 1.6 m, much
larger than the observed runout distance.

B. Dynamics

1. Thickness profiles and static-flowing transition

The lateral friction term changes the position of the
static-flowing transition during the flow. In every cases,
the lateral friction leads to an interface with a smaller
curvature and the angle between the static-flowing inter-
face and the bottom of the channel is also greater. The

part of the domain where the mass is flowing is thus re-
duced. This prevents in particular the downstream and
the down flow in the direction normal to the bed of the
mass from the upper-left corner (see e.g. Figure 19 of
Ionescu et al. for the vertical velocities in the collapse on
an horizontal plane simulated without lateral friction).
As a result, in every cases, the shape and in particular
the maximum thickness of the free surface, located near
the upper-left corner, are in much better agreement with
the experiments.

The earlier instants (Figures 3(a)-3(b) and 4(a)-4(b))
are systematically the less accurate. A first reason is re-
lated to the free-slip boundary condition imposed on the
uplifted gate in the model whereas clear perturbations
of the mass due to friction along the gate are observed
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Figure 5. Volume variations during time in the experiments
and the numerical simulations for w = 10 cm for inclinations
of the channel α = 10◦, 16◦ and 22◦.

in the first instants of the experimental collapse (see e.
g. Figures 14 and 15 in Ionescu et al.24). The extents
of the collapsing mass at intermediate times are pretty
accurate and globally improved by including lateral fric-
tion. The shape of the mass is improved when including
lateral friction even though at α = 22◦ some curvatures
of the free surface are observed in the simulation and
not in the experiments (Figures 4(c)-4(d)). As detailed
in section VIII these oscillations do not appear when a
constant viscosity is used in the model.

The shape of the mass near the front is not always
sharply determined. This is mainly due to the size of the
mesh cells compared to the aspect ratio of the domain
(which goes from approximately 1 at the beginning
to 1/50 for the final deposit at α = 22◦). A higher
refinement of the mesh would have produced a better
description of the front zone. On the other hand, the
experimental measurement of the front shape can be
unreliable due to the saltation of the beads, leading to
an error on the runout distances estimated to be ±2 cm
(see Farin et al.13).

2. Dilatancy effects

Another up to know unnoticed aspect of the granular
collapse dynamics is the strong dilatancy of the mass that
occurs in the experiments. Figure 5 and 6 plot the vol-
ume variation as a function of time in the experiments
and in the simulations for channel widths w = 10 cm
and w = 20 cm, respectively. Note that volume vari-
ations in the simulations are numerical artefacts owing
that incompressibility is assumed in the equations.

Despite the scattering of the measurements, we can
see that the typical experimental behavior is an impor-
tant volume increase at the beginning that decreases
after some time to approximately retrieve the original
compaction. In the case w = 10 cm (Figure 5), the
experimental volume generally exhibits less than 3%
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Figure 6. Volume variations during time in the experiments
and the numerical simulations for w = 20 cm for inclinations
of the channel α = 10◦, 16◦ and 22◦.

of volume variation but locally reaches up to 5% of
dilatancy (and compaction for α = 22◦). In every case,
the final volume is almost equal to the initial one. These
variations in volume partly explain the difficulty for the
incompressible numerical simulation to reproduce the
initial transient states with accuracy, especially since the
numerical simulation tends to lose mass (around 2% at
the end) when the domain quickly evolves (so basically
during the acceleration phase). This numerical mass loss
appears to be bigger on larger slopes. This observation
suggests that an adaptive time scheme would be relevant
to perform smaller time steps in the acceleration phase.
We point out that another possibility for reducing mass
loss is to consider a higher refinement of the mesh. We
observed that the numerical mass loss linearly decreases
with the mesh refinement (typically for a mesh size twice
as small, the numerical mass loss is divided by 4).

In the case w = 20 cm (Figure 6), the variations of
volume are stronger, and strictly increase with the slope.
For α = 22◦, the volume increase is close to 10%. In
addition, the volume of the final deposit is less close
to the initial one than in the case w = 10 cm. Note
that in the case α = 22◦ the final mass seems more
compact even though this might be due to experimental
measurement errors. Conversely, the numerical mass
behaves rather identically to the case w = 10 cm. The
velocities being slightly higher when w = 20 cm, the
mass loss seems to be slightly higher too but remains
smaller than 3%.

It is important to note that the use of a broader
channel for the experiments, while providing reduced
lateral wall effects, also allows for a stronger dilatancy
to occur. In any case, a more accurate prediction of this
type of experiment could only be achieved through the
modeling of the dilatancy effects for instance through a
dilatant Drucker-Prager model that takes into account
the evolution of the volumic fraction with respect to the
shearing of the material e.g. Andreotti et al.2.
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Figure 7. Velocity of the front as a function of time computed
with and without the lateral friction term and experimental
velocities (obtained from the evolution of the position of the
front with time) for w = 10 cm for inclinations of the channel
α = 10◦, 16◦ and 22◦.

As a result, it appears insufficient to compare only
the thickness profiles since their precision is limited by
the sharpness of the mesh, the variations of volume
and the possibly variable precision of the experi-
mental measurements. To take a closer look at the
dynamical behavior, let us consider in the next part the
evolution of the velocities of the front during the collapse.

C. Front velocities

Figures 7 and 8 represent the computed and experi-
mental velocities of the front of the fluid domain during
the collapse over slopes α = 10◦, 16◦, and 22◦. with
and without lateral friction for w = 10 cm and w = 20
cm, respectively. The experimental front velocities
have been simply calculated from the change in time
of the measured positions of the front. The curves
consequently are made of few points with little precision
on their position in time. It allows however to observe
the general behaviour.

In all cases, the velocities computed with lateral
friction effects are clearly closer to the experimental
front velocities. Typically, the maximum velocity is
better reproduced when including lateral friction effect.
At 22◦, whatever the lateral friction and the channel
width, simulations do not reproduce the two regimes
observed in the experiments: a fast deceleration followed
by the emergence of a slow propagation phase with
a quite stable velocity for a given period of time (see
Mangeney et al.36, Farin et al.13). In the simulations,
the deceleration is on the contrary almost regular in
time. As highlighted in Section VIII, the emergence of
this slow propagation phase in the simulations depends
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Figure 8. Velocity of the front as a function of time computed
with and without the lateral friction term and experimental
velocities (obtained from the evolution of the position of the
front with time) for w = 20 cm for inclinations of the channel
α = 10◦, 16◦ and 22◦.

on very fine changes of the rheological parameters.

VIII. ROLE OF THE VALUE AND VARIABILITY OF
THE VISCOSITY

As explained in section II, the µ(I) rheology only
differs from a viscoplastic fluid with a Drucker-Prager
plasticity criterion, because of the spatio-temporally
variable viscosity ηI (see equation (6) and (7)). Vis-
coplasticity has been shown to be of primary importance
to achieve a good modelization of granular flows (e.g.
Lagree et al.30, Andreotti et al.2, Silbert et al.48, Jop
et al.25). However, until now, little attention has been
paid to the role of the variability of the viscosity ηI .
Following Ionescu et al.24, we will compare here the
simulations obtained using ηI and using a constant vis-
cosity ηc = 0.4 Pa s. This value corresponds to a coarse
spatio-temporal average of the range of values computed
using ηI for the collapses considered here (see Figure 11).

A. Thickness profiles and front velocities

Figure 9 plots the front velocities for various slopes
computed with η = ηI and η = ηc (see equation (6), (7)
and (8)) considering an infinitely wide channel (w = ∞
in (19)). Figure 10 plots the same results with w = 10
cm.

In both cases (w =∞ and w = 10 cm), the differences
between ηI and ηc are relatively small when looking at
the acceleration and deceleration phases, the maximum
velocity and the stopping time. The simulations with the
viscosity ηI do not predict any peculiar behavior that the
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Figure 9. Velocity of the front as a function of time for α = 0◦,
10◦, 16◦, 19◦ and 22◦ computed with ηI viscosity and constant
viscosity ηc = 0.4 Pa s. The value for the constant viscosity
η = 0.4 Pa s is chosen as an average value of the viscosity
obtained from equation (6) in the flowing part of the fluid
domain. The velocities have been computed without lateral
friction effects (w = ∞).

0.0 0.5 1.0 1.5 2.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
ro

n
t 

V
e
lo

c
it

y
 (

m
/s

)

w=10 cm

ηI ηc =0.4 Pa s

α=0 ◦

α=10 ◦

α=16 ◦

α=19 ◦

α=22 ◦

Figure 10. Velocity of the front as a function of time for
α = 0◦, 10◦, 16◦, 19◦ and 22◦ computed with ηI viscosity and
constant viscosity ηc. The velocities has been computed with
w = 10 cm.

constant viscosity model fails to predict. As a matter of
fact, not only the front velocities but also the dynamical
shape of the domain is hardly affected by the variable
viscosity. Figure 11 shows that the contour of the do-
mains computed with and without a variable viscosity are
very similar for different slopes even if the viscosity field
varies significantly within the domain. This contours are
represented at the time corresponding to the maximum
velocity where the inertial number strongly varies within
the fluid domain (typically I varies between 10−3 close to
the static-flowing transition to 1 at the surface and the
front, see Ionescu et al.24). Note that the constant viscos-
ity ηc does not produce the oscillations of the free surface
that appear with ηI at intermediate times for slope angle
α = 22◦ (see Figure 17). As a matter of fact, pertur-
bation of the free surface with ηI at large slopes is sys-

tematic and is not observed with a constant viscosity ηc.
Note that the low sensitivity of the model to the spatial
variability of the viscosity has been highlighted for other
non-Newtonian fluids (see e.g. Martin and Monnier38).

The observable differences between a constant and
variable viscosity mainly come from the fact that the
value of η = 0.4 Pa s is slightly higher in general than
the arithmetic average of the viscosity computed by equa-
tion (6) leading to a slightly slower flow. The differences
are however stronger when lateral friction is taken into
account, possibly due to the non-linear coupling between
this friction and the velocity field.

While the spatio-temporal variability of the viscosity
does not have a significant influence on the flow, the ab-
solute value of the viscosity has. This is illustrated on
Figure 12 representing the results obtained with ηI and
different values of ηc for different slopes. A higher vis-
cosity leads to a smaller maximum velocity but the slope
of the velocity curves in the first part of the acceleration
phase are almost identical. They start to differ from one
another before the velocity peak. The value ηc = 1 Pa s
provides the best fit to the experiments.
During the deceleration phase, the behavior is signifi-
cantly modified by changing the value of ηc. It appears
that the convexity of the curve is strongly related to the
value of ηc. A smaller value leads to an almost constant
deceleration whereas a higher value induces a change of
slope in the velocity curve. The differences remain small
at small slopes. For α = 22◦, the value ηc = 1 Pa s
predicts two different regimes in the deceleration phase:
first a quick deceleration followed by what can be seen
as a slow propagation phase. To assess the sensitivity
of the slow propagation phenomenon to the value of the
viscosity, we plot the results obtained with ηI , ηc = 1 Pa
s and ηc = 2 Pa s on Figure 14 and 15 for α = 22◦, for
w = 10 cm and w = 20 cm respectively.

The slow propagation phase last longer when ηc = 2
Pa s. The duration and shape of this slow phase is better
reproduced with ηc = 1 Pa s. We plot on Figure 16 the
final deposits computed with ηI , ηc = 0.4 Pa s, ηc = 1
Pa s and ηc = 2 Pa s. As we can see, the differences
between the deposits are small (except for ηc = 2 Pa s)
and one cannot tell if the deposit obtained with ηc = 1
Pa s is closer to the experimental profile than the others.
It results that, for ηc ∈ [0.4, 1] Pa s, while the final
deposit is barely affected by the value of the viscosity,
the dynamics experiences significant changes.

Our simulations suggest that the slow propagation
phase is related to the subtle balance between the mean
viscosity of the flow and the other adjustable physical
quantities of the model, namely the internal and bound-
ary friction coefficients. Calibration of the viscosity
on the velocity front variations seems thus to be very
precise. Indeed, for every angle, the front velocity curves
obtained with ηc = 1 Pa s much better agrees with the
experimental front velocities in all the phases of the
flow (acceleration, deceleration, slow propagation). Note
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Figure 11. Computed thickness profiles for inclinations of the
channel α = 0◦, 10◦, 16◦ and 22◦ computed with ηI and ηc.
The color field displays the value of the viscosity ηI in the
flowing part (see equation (6)). The chosen times correspond
to the time of maximum front velocity for each slope. The
velocities have been computed with w = 10 cm. The viscosity
field in the static part has been set to 0 for clarity.
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Figure 12. Computed and experimental velocities of the front
as a function of time for w = 10 cm and for inclinations of
the channel α = 10◦, 16◦ and 22◦ computed with ηI and ηc.
The values ηc = 0.1 Pa s and ηc = 1 Pa s has been chosen as
the bounds of the viscosity range provided by ηI (see Figure
11).
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Figure 13. Computed and experimental velocities of the front
as a function of time for w = 20 cm and for inclinations of
the channel α = 10◦, 16◦ and 22◦ computed with ηI and ηc.
The values ηc = 0.1 Pa s and ηc = 1 Pa s has been chosen as
the bounds of the viscosity range provided by ηI (see Figure
11)

that the very good agreement between the simulation
with ηc = 1 Pa s and the experimental front velocities
suggest that the maximum velocity has been missed in
the experimental measurements (Figures 12 and 13).

B. Pressure fields

The pressure is a crucial quantity here since it defines
the position of the static-flowing interface through the
Drucker-Prager plasticity criterion. A classical simplifi-
cation of these granular flows, typically for large scale
realistic simulations, is to consider the pressure to be hy-
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Figure 14. Computed and experimental velocities of the front
as a function of time for w = 10 cm and for α = 22◦ computed
with ηI , ηc = 1Pa s and ηc = 2 Pa s.
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Figure 15. Computed and experimental velocities of the front
as a function of time for w = 20 cm and for α = 22◦ computed
with ηI , ηc = 1Pa s and ηc = 2 Pa s.

drostatic. However, the pressure within a Drucker-Prager
flow has a priori non-hydrostatic components. Recent
work (Bouchut et al.6) derived non-hydrostatic correc-
tion terms from the Drucker-Prager model with constant
viscosity ηc based on the shallow flow approximation de-
veloped up to second order. More precisely, the shallow
approximation assumes that the thickness, stresses and
pressure are of order ε and the flow is slow, i. e. the
streamwise velocity is of order ε. The resulting analytical
pressure reads in the topography related frame (X,Z):

p = ρg
(

cosα− sinα∂Xh

− 2| sinα| ∂XU
|∂ZU |

)
(h− Z) +O(ε3) (22)

where (U,W ) is the velocity field and h(X) is the height
of the free-surface (in the topography related frame
(X,Z)). The two terms describing the deviation from
hydrostatic pressure are related to surface slope effect
and to streamwise velocity gradients, respectively. Note
that the last term in equation (22) is only defined in
the flowing phase. The expression of (22) in the gravity
related frame (x, z) considered hereafter is given in
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Figure 16. Computed and experimental thickness profiles for
an inclination of the channel for w = 10 cm and for α = 22◦

computed with ηI , ηc = 0.4Pa s, ηc = 1Pa s and ηc = 2 Pa s.

Appendix B.

In order to further investigate the effect of the variable
viscosity ηI , we compare hereafter the computed pres-
sure profiles on a slope α = 22◦ obtained with ηI and ηc
to the analytical pressure given in (22). In order to have
a rather shallow problem with a relatively small average
velocity consistent with the hypothesis of the analytical
pressure, we consider the results at time t = 1.5s where
the flow is fully developped. The domain is plotted on
Figure 17. The resulting pressure profiles are plotted on
Figure18.

A first observation is that the deviation from the
hydrostatic pressure is relatively small. However,
accounting for the non-hydrostatic terms significantly
improves the precision of the calculated pressure and
allows to capture quite well the pressure variation with
depth. The analytical pressure (22), derived from the
constant viscosity Drucker-Prager model, allows, with
an identical precision, to describe the pressure field
computed with both the constant and variable viscosity.

Since the fluid domains computed with ηc and ηI are
slightly different, the pressure profiles at a given abscissa
x are obviously not the same. However, overall, it does
not seem that the variable viscosity predicts a pressure
field radically different from that obtained with the con-
stant viscosity.

C. Summary

In the present case, we have seen that the variability of
the viscosity ηI derived from the µ(I) rheology is of very
little effect when compared to the results obtained with a
constant viscosity model with the same value of viscosity
in average. On the other hand, we have demonstrated
that the flow dynamics is very sensitive to the value of
the viscosity (and not to its spatio-temporal variation).
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Figure 17. Thickness profiles of the granular collapse computed for α = 22◦ with variable ηI and constant ηc viscosities at
t = 1.5s. The colored surface represents the pressure field computed with ηI . It is worth noting that the real aspect ratio of
the plot is a tenth as small as the plotted one (hence the perturbed aspect of the pressure field).
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Figure 18. Pressure profiles at different abscissae extracted from the pressure field computed with ηI and plotted on Figure 17
and its counterpart computed with ηc, analytical pressure evaluated from (22) and corresponding hydrostatic pressure. The
profiles in magenta are plotted using the right y-axis. The plotted profiles are vertical cuts of the domain plotted on Figure 17.
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In particular, simulating the front velocity makes it pos-
sible to precisely calibrate the value of the viscosity. The
average viscosity obtained from the µ(I) rheology pro-
vides a very good order of magnitude of the best fitted
viscosity. However, with the physical parameters con-
sidered here, this value is too small. Here the viscosity
ηc = 1 Pa.s, which is within the upper values of the ηI
viscosity, gives better agreement with the experiments.
It allows in particular to capture the slow propagation
phase which was not possible with the variable viscosity
considered here.

IX. ANALYSIS AND IMPACT OF SMALL SCALE
MODEL-INSTABILITIES

This section focuses on the presence of small scale in-
stabilities (also called ill-posed behavior) associated to
the mechanical model. The main goal is to analyse and
assess how these instabilities affect the numerical simu-
lation and more generally their impact on the modeling
of granular flows.

Very recently Barker et al.3 have studied the “well-
posedness” of the µ(I) rheological model through a linear
stability analysis. The terminology “well-posed” or “ill-
posed” problem, used by them to distinguish between
stable or unstable processes, respectively, is related to the
old definition of Hadamard18 who considered a problem
to be well-posed if it has a unique and stable solution. In
what follows we use both terminologies to discriminate
between linearly stable and unstable behaviors.

Starting from a reference flow, Barker et al.3 establish
a (linear) stability criterion: if in some region of the ref-
erence flow the inequalities (2.40)-(2.41) of their paper
(or equivalently (2.43)) are satisfied then one can expect
an unbounded growth of short-wavelength perturbations,
i.e. the problem is ill-posed. Note that the stability con-
dition is computed locally in time and space from the ref-
erence flow. Only small-scale perturbations are affected,
hence the model-instability could be detected numeri-
cally only for very fine meshes. This is why we would
like to analyse here the mesh dependency of the flow,
starting from a “normal” mesh computation as reference
flow.

Since we would like to evaluate the influence of the
µ(I) viscosity on small-scale instabilities we consider in
addition the case of constant viscosity (Drucker-Prager
fluid). A linear stability analysis of the Drucker-Parger
flow, similar to the one done by Barker et al.3 (see also
Schaeffer49 and Schaeffer and Pitman50), can be found in
section C of the Appendix. We get the ill-posedness (in-
stability) criterion (C12) with (C11) to be satisfied for
getting an unbounded growth of short-wavelength per-
turbations.

We would like to prove here that the presence of
small-scale instabilities is inherent to the choice of the
incompressible Drucker-Prager plasticity model (non-
associated plasticity) and not to secondary effects as vari-

able viscosity (µ(I)- rheology), lateral wall friction or
barrier modeling. This is the reason why, in what follows,
we choose to present two cases. The first one has been
studied before: µ(I)- rheology with lateral wall effect and
gate modeling. For the second one we consider a Drucker-
Prager fluid with constant viscosity ηc = 0.4 Pa s with-
out any lateral-wall or gate effects. The reference flow
for both cases will be the numerical computation with a
normal mesh (called coarse mesh in this section) with a
mesh size h = 0.008m (corresponding to approximatively
1000 triangle cells). On Figure 19 we have plotted in or-
ange the stable (well-posed) regions at time t = 0.1 s.
They have been computed from the Barker et al.3 crite-
rion (2.40)-(2.41) for the µ(I)- rheology (left side) and
from (C12) for the Drucker-Prager fluid (right side). We
remark that in both cases almost all the flow region is
unstable (ill-posed). Between these two ill-posed (unsta-
ble) models the µ(I)-rheology presents a larger stability
region.

We first analyze the case of the µ(I)- rheology. We
plot on figure 20 the norm and iso-contours of the com-
puted velocity field and of the corresponding strain-rate
field at time t = 0.1s on a 0◦ slope for the reference
flow (mesh sizes h = 0.008m), and for h = 0.004m and
h = 0.002m (corresponding to approximatively 5000 and
20000 triangular cells respectively). As we can see on
the coarser mesh (Figure 20(a)), the isolines are basi-
cally evenly spaced according to the value of the velocity
field. As we refine the mesh, the velocity field becomes
stratified and bands of high velocity gradient appear. On
the finer mesh, the short-wave model-instability is very
clear and the velocity field almost appears as a sequence
of plug flows separated by thin zones of high gradient.
This behavior is clearly retrieved on the strain rate field
plotted on Figure 20(d)-20(f), where the color scale re-
lated to strain rate has been saturated for the sake of
readability to a maximum of 40s−1. Some ”shear bands”
appear at the interfaces between the plug zones. This be-
havior is not related to a physical instability since there
is no convergence to a given number of shear bands when
the mesh size decreases (up to the smallest tested mesh
size i.e. h=0.001m for shear bands width of around 3-4
grain diameters). These fictitious “shear bands” always
cover a thickness of two to three elements, which is the
smallest size for a short-wave instability which could be
captured by a finite element computation.

We can perform the same analysis for the second
case, the Drucker-Prager fluid with a constant viscos-
ity ηc = 0.4 Pa s and without any lateral-wall or gate
effects. On figure 21 the norm and iso-contours of the
computed velocity and strain rate fields are plotted at
time t = 0.1s on a 0◦ slope for the reference flow (mesh
sizes h = 0.008m), and for h = 0.004m and h = 0.002m.
As for the µ(I)-rheology model, when we refine the mesh
the velocity field becomes stratified and bands of high
gradient occur for the finer mesh, the short-wave model-
instability appears through a sequence of plug flows sepa-
rated by thin zone of high gradient. As before the “shear
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(a)Stable (well-posed) regions for the µ(I)-rheology (b)Stable (well-posed) regions for the Drucker-Prager fluid

Figure 19. The stable regions (in orange) at time t = 0.1 s computed from the Barker et al.3 criterion (2.40)-(2.41) for the
µ(I)- rheology (left side) and from (C12) for the Drucker-Prager fluid (right side).
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(c)Velocity norm, h = 0.002m
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Figure 20. Short-wave model-instability of the µ(I)-rheology. Velocity norm (up) and strain rate (down) computed at time
t = 0.1s on a slope α = 0◦ on meshes with cells of size h = 0.008 (left), h = 0.004 (middle) and h = 0.002 (right).

bands” always cover a thickness of two to three elements
which is consistent with the stability analysis given in the
Appendix of this paper.

These results highlight the fact that the model-
instabilities (model ill-posedness) are present even in
modeling usual and simple granular flows, as the column
collapse studied here. The model instabilities are not
avoided by considering variable viscosity models, as
the µ(I)-rheology. It seems that they are related to
the use of the Drucker-Prager plasticity criterion (1)
in the context of an incompressible flow. Indeed, for
the Von-Mises plasticity (i.e. the Bingham model)
the incompressibility condition is a consequence of the
maximum plastic power dissipation principle, valid
for the so called “associated plasticity models”. For
these models we can associate a plastic potential and

give an energetic variational principle. If we want to
use the Drucker-Prager criterion (1) in the context of
associated plasticity then we obtain a rather complicated
compressible model (see Cazacu and Ionescu7, section
“It does not always work”). The model including the
incompressibility assumption and the Drucker-Prager
plasticity criterion (1) does not belong to the family of
associated plasticity models and there is no associated
plastic potential. This could be an explanation for the
presence of model instabilities in describing granular
flows.

However, the numerical simulations show that the in-
stability does not affect the overall results in terms of
dynamical shape or static-flowing transition. As an ex-
ample Figure 22 plots the thickness profiles of the sec-
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(a)Velocity norm, h = 0.008m (b)Velocity norm, h = 0.004m (c)Velocity norm, h = 0.002m

(d)Strain rate, h = 0.008m (e)Strain rate, h = 0.004m (f)Strain rate, h = 0.002m

Figure 21. Short-wave model-instability of the Drucker-Prager fluid (constant viscosity). Velocity norm (up) and strain rate
(down) computed at time t = 0.1s on a slope α = 0◦ on meshes with cells of size h = 0.008 (left), h = 0.004 (middle) and
h = 0.002 (right).

ond case (Drucker-Prager fluid with a constant viscosity
ηc = 0.4 Pa s and without any lateral-wall or gate ef-
fects) at time t = 0.5s for the three mesh sizes. From
this figure, we clearly observe that the thickness profiles
are not modified when refining the mesh and the differ-
ences that can be observed between the three profiles are
completely expected regarding the higher precision one
gets from a finer mesh. The velocity range is not af-
fected by the fictitious shear bands and only its spatial
structure is. We conclude that the model and the asso-
ciated computations are robust for “normal” mesh size,
where no short-wave instabilities are present. The mesh
refining technique is essential for “continuous-type” mod-
els but it has some limits in modeling granular materials
which have a small scale characteristic length. It suggests
that the model could eventually be “regularized” by the
introduction of a small parameter, the grain diameter.
Indeed for our continuous visco-plastic model the short
wave instabilities are present only when the mesh size is
of order of a few grain diameter. At this level of mesh
refinement the continuous (finite element) model might
be no longer computationally attractive and replaced by
a discrete-element numerical approach.

X. DISCUSSION AND CONCLUSION

Following the work of Ionescu et al.24, we have com-
pared quantitatively the simulation of a granular column
collapse using a continuum viscoplatic model with labo-
ratory experiments. One of the main focus of this paper is
to introduce lateral wall friction in a 2D model and quan-
tify its effect. Confinement and subsequent lateral fric-

0.0 0.1 0.2 0.3 0.4 0.5
Length (m)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
e
ig

h
t 

(m
)

w=10 cm h=0.002m

h=0.004m

h=0.008m

Thickness profiles

Static-flowing transitions

Thickness profiles

Static-flowing transitions

Figure 22. Thickness profiles computed with increasingly fine
meshes at time t = 0.5s on a 0◦ channel and the corresponding
static-flowing transitions.

tion may occur in natural landslides or debris avalanches
when the flow in channelized into valley walls. However
as these natural flows are generally three dimensional,
they can barely be simulated by 2D flows. The lateral
wall issue is mainly addressed here to be able to compare
quantitatively simulation and laboratory experiments of
granular flows in a channel.

Our results show that precise quantitative agreement
with the dynamics and deposit of granular column col-
lapse over inclined planes requires to take into account
lateral wall effects that were poorly handled in24. By as-
suming a constant flow in the channel width direction,
a Coulomb friction on the lateral walls is rigorously in-
troduced in the variational formulation and, following
the augmented Lagrangian approach and the regulariza-
tion used for the Coulomb friction on the boundaries,
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solved likewise (see Appendix A). The resulting solu-
tions significantly improve the former ones wihtout any
adjustements on the parameters and allow to achieve ac-
curate simulations of granular column collapse on a wide
range of slopes (from 0◦ to 22◦). The transient thick-
ness profiles are significantly closer to the observed ones
when simulated with lateral friction and provides a quite
faithful tracking of the spreading of the granular mass.
In particular, lateral friction prevents the mass from the
upper-left corner to flow downstream too much. The
simulated runout distances lie within a 5% accuracy com-
pared to the experimental ones which are estimated to be
precise at ±2 cm. It follows that the simulated runout
distances for α = 10◦ and α = 16◦ are closer to the ob-
servation than the measurement precision. For α = 22◦,
the difference between the simulated and the observed
runout distance is around twice the measurement preci-
sion. The improvement is particularly significant at large
slopes. This result is all the more significant that realistic
geophysical granular flows mostly occur on slopes higher
than 16◦.

Higher slopes could likely be simulated with the
present model and the main limitation is that, the fluid
domain becoming very shallow for slopes larger than 22◦,
a highly refined mesh is necessary to achieve such simu-
lations without losing precision.

The ability of the model to capture the slow prop-
agation phase suggest thats its ingredients represent
quite well the physical processes involved. In the present
case we observe that, when calibrating the viscosity,
a constant viscosity Drucker-Prager model is able to
reproduce this slow velocity phase. In our case, we
show that the spatio-temporal variability of the viscosity
ηI does not induce remarkable differences of behavior
(thickness, velocity, pressure) compared to a constant
viscosity model. The observed front velocity during the
collapse proves to be a reliable tool to adjust the value
of the constant viscosity in the model. The question is
what is the physical meaning of this viscosity and as to
whether it can be measured directly in the experiments.

The present study and that of Ionescu et al.24 show
that quantitative simulation of granular collapses over
inclined planes could be only achieved by accounting for
the effects of (1) lateral wall friction and (2) the gate.
As a free-slip boundary condition on the uplifting gate
was considered here and in24, a more accurate simulation
would require to model the friction occurring between the
granular mass and the gate. Furthermore, the flow is not
constant in the Y -direction as assumed here. Taking into
account the 3D effects leading to smaller velocities near
the walls than within the center of the channel may also
improve the quantitative agreement with the experimen-
tal data.

From a numerical point of view, simulation of the front,
of the collapse near the upper-left corner, and of mass
conservation would be improved by higher mesh refine-
ment and adaptative time step.

However, going further in reducing the error between
simulation and experiments requires to develop models
that take into account dilatancy effects. Indeed, the
present work demonstrates that dilatancy is observed in
the experiments, in particular a volume increase at the
beginning of the collapse. This dilantancy can reach up
to 10% on slopes α = 22◦. Note that dilatancy effects
are stronger for collapses in a broader channel.

We have analyzed how the small scale instabilities also
called ill-posed behavior) associated to the mechanical
model affect the numerical simulation. These model
instabilities, characterized by Barker et al3 (see also
Schaeffer49, Schaeffer and Pitman50 and section C of the
Appendix), are present even in modeling usual and sim-
ple granular flows, as the column collapse studied here.

When we refine the mesh, the velocity field becomes
stratified and bands of high gradient in the velocity field
appear. These fictitious ”shear bands” are not related
to a physical instability and cover a thickness of two to
three elements (the smallest size of a short-wave instabil-
ity captured by a finite element technique). The model
instabilities are not avoided by considering variable vis-
cosity models, as the µ(I)- rheology. The existence of
the small-scale instabilities seems to be inherent to the
choice of incompressible Drucker-Prager plasticity model
(non-associated plasticity).

The short-wave instability does not affect the overall
results as the fluid shape, the static-flowing transition or
the velocity range. The triggering of these short-wave
instabilities occurs only for a mesh size of order of a few
grain diameters.
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Appendix A: Numerical Method

We describe here the numerical algorithm used to
solve the dynamic flow problem described above. This
numerical method is an extension of the one presented
in Ionescu et al.24 to include lateral friction effects. The
following appendix briefly presents the method and its
modification and we refer to Ionescu et al.24 for a more
comprehensive description.

The time discretization is achieved using an implicit
Euler scheme, and a set of nonlinear equations on the
velocity u, the deviatoric stress tensor S and the pressure
p is to be solved at each time step.

To overcome the difficulties related to the non-
differentiability of the viscoplastic and friction terms,
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an iterative decomposition-coordination formulation cou-
pled with the augmented Lagrangian method of Glowin-
ski and Le Tallec17 and Fortin and Glowinski14 is adapted
here. For that it is more useful to invert the constitutive
equation in order to express the strain-rate D as a func-
tion of the deviatoric stress S leading to:

D =
1

2η

[
1− µp

‖S‖

]
+

S, (A1)

with η = ηI or η = ηc. The above expressions was in-
troduced by Perzyna45 and Duvaut and Lions10 and is
called the visc-oplastic regularization method.

The treatment of the Coulomb friction condition is
done using the same type of regularization approach as
above (see Ionescu21, Ionescu22). A small frictional vis-
cosity ηf << 1 is introduced in the Coulomb friction law
(18) and (17) to get

uT = − 1

ηf

[
1− µf [−σn]+

|F fb |

]
+

F fb , (A2)

u = − 1

ηf

[
1− µfw[p]+

|F fw |

]
+

F fw . (A3)

This formulation of the friction law has the same
mathematical structure as the viscoplastic constitutive
equation (A1) and we can use the same iterative
decomposition-coordination formulation. In the present
case, the regularization frictional viscosity coefficient
has been set to ηf = 0.1 Pa s m-1.

The treatment of the free-surface and the associated
time-moving domain within a Navier-Stokes problem
is achieved through an Arbitrary Lagrangian-Eulerian
(ALE) method which is rather classical and thus not de-
scribed here (see for instance Hughes et al.20, Maury39,
Maronnier et al.37, Duarte et al.9).

1. Time discretization

Let ∆t be the time step and uk, Sk and pk be the
values of the unknowns at time k. The implicit Euler
scheme applied to problem (9) with viscoplastic flow law
(A1) gives the following set of nonlinear equations on uk,

Sk, pk, F fkb and F fkw :

ρ

(
uk − uk−1

∆t
+ uk · ∇uk

)
− divSk

+∇pk + F fkw = ρg in Ω, (A4)

div(uk) = 0 in Ω, (A5)

D(uk) =
1

2η(‖D(uk)‖, pk)

[
1− µpk

‖Sk‖

]
+

Sk, (A6)

uk =
−1

ηf

[
1− µfw[pk]+

|F fkw |

]
+

F fkw (A7)

ukT = − 1

ηf

[
1− µf [−σkn]+

|F fkb |

]
+

F fkb , (A8)

while the boundary conditions read

(−pk Id +Sk)n = 0 on Γs, (A9)

uk · n = 0, (−pk Id +Sk)T = F fkb on Γb. (A10)

2. The algorithm at each time step

Let r, rf , rw > 0 be the augmented Lagrangian param-

eters. Let the strain rate multipliers γ̇k,n−1 : Ω→ R3×3
S ,

the slip rate multipliers δk,n−1 : Γb → R2 and the lateral
slip rate multiplier λk,n−1 : Ω→ R2, be known.

Step 1. The first step consists in solving the following
linear Stokes-like problem for the velocity field uk,n and
the pressure pk,n:

div(uk,n) = 0, (A11)

ρ

(
uk,n − uk−1

∆t
+ uk,n−1 · ∇uk,n

)
−

div
(
rD(uk,n)

)
+∇pk,n − 2

w
rwu

k,n = ρg + (A12)

div
(
Sk,n−1 − rγ̇k,n−1

)
+

2

w
(F fk,n−1

w − rwλk,n−1),

with the boundary conditions(
rD(uk,n)− pk,n Id +Sk,n−1 − rγ̇k,n−1

)
n = 0, on Γs,

uk,n · n = 0, on Γb,(
rD(uk,n)− pk,n Id +Sk,n−1 − rγ̇k,n−1

)
T

=

−rfuk,nT + rfδ
k,n−1 + F fk,n−1

b , on Γb.

Step 2. First we update the viscosity coefficient η =
η(‖D(uk,n)‖, pk,n) and the yield limit κ = µpk,n. Then,
we compute the strain rate multipliers γ̇k,n and the slip
rate multipliers δk,n

γ̇k,n =
1

2η + r

[
1− µ[pk,n]+
‖Sk,n−1 + rD(uk,n)‖

]
+

(Sk,n−1 + rD(uk,n)), (A13)

δk,n = − 1

ηf + rf

[
1− µf [−σk,n−1

n ]+

|F fk,n−1
b − rfuk,nT |

]
+

(F fk,n−1
b − rfuk,nT ), (A14)
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λk,n = − 1

ηw + rw

[
1− µfw[pk,n]+

|F fk,n−1
w − rwuk,n|

]
+

(F fk,n−1
w − rwuk,n), (A15)

according to the decomposition-coordination formulation
coupled with the augmented Lagrangian method.

Step 3. Finally, we update the stress deviator Sk,n,

the tangential stress σk,nT and the lateral stress σZ using

Sk,n = Sk,n−1 + r(D(uk,n)− γ̇k,n),

F fk,nb = F fk,n−1
b − rf (uk,nT − δk,n).

F fk,nw = F fk,n−1
w − rw(uk,n − λk,n).

In the present paper, the problem is solved using a
finite element formulation. The computational domain
Ω is discretized using triangular finite elements. The fi-
nite element spaces for the discretization of uk,n and pk,n

are respectively P2 continuous and P1 continuous. The
variables Sk,n and γ̇k,n are discretized using P1 discon-

tinuous finite elements. The variables F fk,nb and δk,n on

the one hand, and F fk,nw and λk,n on the other hand, are
discretized using P2 continuous finite elements. The solu-
tion of the Stokes like problem at step 1 is rather standard
and we address the reader to the litterature for the many
techniques available (see for instance Pironneau46). The
whole implementation of the solver has been achieved
using the software FreeFem++19.

Appendix B: Analytical pressure in the gravity related frame

Let us consider the topography related frame (X,Z)
and the velocity field (U(X,Z),W (X,Z))T in this frame.
We denote by α the (constant) slope angle of the topog-
raphy with respect to the gravity related frame (x, z) and
by (u(x, z), w(x, z))T the velocity field in this frame. We
have then {

x = X cosα+ Z sinα,
z = −X sinα+ Z cosα,

(B1)

or equivalently {
X = x cosα− z sinα,
Z = x sinα+ z cosα.

(B2)

The analytical pressure in (X,Z) is given by

p(X,Z) = ρg
(

cosα− sinα∂Xh(X)

−2| sinα| ∂XU(X,Z)

|∂ZU(X,Z)|

)
(h(X)− Z) , (B3)

where h(X) = Zs, the height of the free-surface in (X,Z)
(i.e. the local thickness of the flow at X). Indeed,

h(X) − Z is the distance between the point (X,Z) and
the free surface in the direction of the Z axis. If we de-
note similarly by hv(x) = zs the vertical height of the
free-surface at x, it follows from (B2) that

X = x cosα− hv(x) sinα,

h(X) = x sinα+ hv(x) cosα, (B4)

where the first line in (B4) indeed relates x and X for a
point in the free surface. Differentiating these relations
yields

∂Xh(X) =
sinα+ ∂xhv(x) cosα

cosα− ∂xhv(x) sinα
. (B5)

This formula is expressed in terms of the horizontal co-
ordinate x = X cosα + h(X) sinα of the point on the
free surface. This value is different from the coordinate
x(X,Z) defined in (B1). Assume however that ∂xhv is
almost constant (meaning that the free surface is almost
a straight line), the formula (B5) can be used anyway.
With the same assumption we compute

h(X)− Z = (hv(x)− z)(cosα+ ∂Xh sinα). (B6)

For the computation of the velocity derivatives, the
change of variable gives

U(X,Z) = u(x, z) cosα− w(x, z) sinα, (B7)

and using the chain rule,

∂XU = (∂xu cosα− ∂zu sinα) cosα

− (∂xw cosα− ∂zw sinα) sinα, (B8)

∂ZU = (∂xu sinα+ ∂zu cosα) cosα

− (∂xw sinα+ ∂zw cosα) sinα. (B9)

We finally obtain the value of p(x, z) by applying (B3)
with h(X)−Z computed by (B6) and dropping terms in
O(ε3),

p(x, z) = ρg
(

cosα

−2| sinα| ∂XU(X,Z)

|∂ZU(X,Z)|

)
(hv(x)− z) cosα , (B10)

with ∂XU , ∂ZU computed by (B8), (B9), noticing that
the terms in ∂Xh(X) simplify.

Instead of taking α to be the slope angle of the channel,
it is also possible to take for α in (B10) the angle that
defines locally a plane parallel to the free surface, that
is tanα = −∂xhv(x). Our computations with this local
slope angle (not shown) give results very similar to those
obtained for constant α shown on Figure 18.

Appendix C: Ill-posedness (linear stability) analysis for the
constant viscosity Drucker-Prager fluid

We consider the constant viscosity viscoplastic model

ρ(∂tu+ u · ∇u) +∇p− divS = ρg, (C1)
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with divu = 0 and

S = µ1p
D

‖D‖
+ 2ηcD. (C2)

Denoting p̌ = p/ρ and ν = ηc/ρ it can be written also as

∂tu+ u · ∇u = div

(
µ1p̌

D

‖D‖
+ 2νD

)
−∇p̌+ g. (C3)

Then as in eq. (2.22) in Barker et al.3 we can expand the
stress terms and get denoting A = D/‖D‖

∂tu+ u · ∇u =
(

µ1p̌
2‖D‖ + ν

)
∆u− µ1p̌

2‖D‖A∂
2u

+(µ1A− Id)∇p̌+ g.
(C4)

with (A∂2u)i =
∑
jklAijAkl∂

2
jluk.

Following the arguing of Barker et al.3, in order to
study the well-posedness we linearize (C4) around a par-
ticular solution u0, p̌0 and write u ' u0 + û, p̌ ' p̌0 + p̂.
Considering the high wavenumber limit, we retain only
the principal part of the linearized equations on û, p̂,
which are div û = 0 and

∂tû =
( µ1p̌

2‖D‖
+ ν
)

∆û− µ1p̌

2‖D‖
A∂2û+ (µ1A− Id)∇p̂.

(C5)
Since we are in the high wavenumber limit, we can
consider that the coefficients, related to the base so-
lution, are constant, and we look for normal modes
û = exp(iξ · x + λt)ũ, p̂ = exp(iξ · x + λt)p̃. We get
the equations

iξ · ũ = 0,

λũ = −
( µ1p̌

2‖D‖
+ ν
)
|ξ|2ũ+

µ1p̌

2‖D‖
Aξ(Aξũ)

+i(µ1Aξ − ξ)p̃.

(C6)

Taking the scalar product of the second equation with ξ
we get the value of p̃,

p̃ = −i µ1p̌

2‖D‖
(Aξξ)(Aξũ)

|ξ|2 − µ1Aξξ
. (C7)

Replacing p̃ by its value in (C6) yields the eigenvalue
problem Lũ = λũ, with

L = µ1p̌
2‖D‖

(
Aξ + Aξξ

|ξ|2−µ1Aξξ
(µ1Aξ − ξ)

)
(Aξ)T

−
(

µ1p̌
2‖D‖ + ν

)
|ξ|2 Id .

(C8)

But since ξ · ũ = 0 and we are in two dimensions, ξ⊥

is automatically an eigenvector with eigenvalue λ = ξ⊥ ·
Lξ⊥/|ξ|2, thus

λ =
µ1p̌

2‖D‖

(
Aξ · ξ⊥ +

Aξξ

|ξ|2 − µ1Aξξ
µ1Aξ · ξ⊥

)Aξ · ξ⊥
|ξ|2

−
(

µ1p̌
2‖D‖ + ν

)
|ξ|2

=
µ1p̌

2‖D‖
(Aξ · ξ⊥)2 + (1 + ν2‖D‖/µ1p̌)(µ1|ξ|2Aξξ − |ξ|4)

|ξ|2 − µ1Aξξ
.

(C9)

If λ > 0 there is ill-posedness since λ scales like |ξ|2.
Since AT = A, trA = 0, ‖A‖ = 1, it follows that A is
an orthogonal symmetry. Thus assuming that µ1 < 1,
the denominator of (C9) is positive. Therefore we have
to look at the positivity of the numerator or equivalently
of

N = q|ξ|2Aξξ − |ξ|4 + r(Aξ · ξ⊥)2, (C10)

with

q = µ1, r =
1

1 + ν 2‖D‖
µ1p̌

=
1

1 + ηc
2‖D‖
µ1p

. (C11)

The expression of N in (C10) is the same as that in eq.
(2.36) in3, except that the values of q and r are different.
The arguing of Barker et al.3 yields then the condition of
ill-posedness (for which N > 0), which is

r > 1/2 and q2 > 4r(1− r). (C12)

In particular, the constant viscosity model is linearly ill-

posed for µ1 not too small when ηc
2‖D‖
µ1p

< 1. Moreover,

in the limit ‖D‖ → 0, the linearized ill-posedness occurs
as soon as µ1 > 0.
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1982.

15Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut,
F., 2010. Numerical modeling of landquakes, Geophys. Res. Lett.,
37, L15305.

16L. Girolami, V. Hergault, G. Vinay, and A. Wachs, A three-
dimensional discrete-grain model for the simulation of dam-break
rectangular collapses: Comparison between numerical results and
experiments, Granular Matter 14 (2012), 381-392.

17R. Glowinski, and P. Le Tallec, Augmented Lagrangian and Op-
erator Splitting method in Non-Linear Mechanics, SIAM Studies
in Applied Mathematics, 1989.

18J. Hadamard, Sur les problèmes aux dérivées partielles et leur
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