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In this paper we deal with the long time existence for the Cauchy problem associated to some asymptotic models for long wave, small amplitude gravity surface water waves. We generalize some of the results that can be found in the literature devoted to the study of Boussinesq systems by implementing an energy method on spectrally localized equations. In particular, we obtain better results in terms of the regularity level required to solve the initial value problem on large time scales and we do not make use of the positive depth assumption.

Introduction

The abcd systems

The following abcd Boussinesq systems were introduced in [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory[END_REF] as asymptotic models for studying long wave, small amplitude gravity surface water waves:

(I -εb∆) ∂ t η + div V + aε div ∆V + ε div (ηV ) = 0, (I -εd∆) ∂ t V + ∇η + cε∇∆η + ε 1 2 ∇ |V | 2 = 0. (1.1) 
In system (1.1) ε is a small parameter while

η = η (t, x) ∈ R, V = V (t, x) ∈ R n ,
with (t, x) ∈ [0, ∞) × R n are approximations of the free surface of the water and of the uid's velocity respectively. As it will soon be clearer, we mention that the only values of n for which (1.1) is physically relevant are n = 1, 2. The above family of systems is derived from the classical mathematical formulation of the water waves problem: considering a layer of incompressible, irrotational, perfect uid owing through a canal with at bottom represented by the plane:

{(x, y, z) : z = -h}, where h > 0 and assuming that the free surface resulting from an initial perturbation of the steady state can be described as being the graph of a function η over the at bottom, the water waves problem is governed by the following system of equations:

         ∆φ + ∂ 2 z φ = 0 in -h ≤ z ≤ η (x, y, t) , ∂ z φ = 0 at z = -h, ∂ t η + ∇φ∇η -∂ z φ = 0 at z = η (x, y, t) , ∂ t φ + 1 2 |∇φ| 2 + |∂ z φ| 2 + gz = 0 at z = η (x, y, t) (WW)
where φ stands for the uid's velocity potential and g is the acceleration of gravity. The operators ∆ and ∇ are taken with respect to (x, y). Of course, in many applications the above system of equations raises a signicant number of problems both theoretically and numerically. This is the reason why an important number of approximate models have been established, each of them dealing with some particular physical regimes. The abcd systems of equations deals with the so called Boussinesq regime which we will explain now. We consider the following quantities: A = max x,y,t |η| the maximum amplitude encountered in the wave motion, l the smallest wavelength for which the ow has signicant energy and c 0 = √ gh the kinematic wave velocity. The Boussinesq regime is characterized by the parameters:

α = A h , β = h l 2 , S = α β , (1.2) 
which are supposed to obey the following relations:

α 1, β 1 and S ≈ 1.
Supposing actually that S = 1 and choosing ε = α = β, the systems (1.1) are derived back in [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory[END_REF]. The unknown functions (η, V ) in (1.1) represent the deviation of the free surface from the rest state while V is an O ε 2 approximation of the velocity ∇φ taken at a certain depth. Actually, the zeros on the right hand side of (1.1) represent the O ε 2 terms neglected in establishing (1.1). The parameters a, b, c, d are also restricted by:

a + b + c + d = 1 3 . (1.3) 
Asymptotic models taking into account dierent topographies of the bottom were also derived, see for instance [START_REF] Chazel | Inuence of bottom topography on long water waves[END_REF], Section 2, for bottoms given by the surface:

{(x, y, z) : z = -h + εS(x, y)},

where S is smooth enough or [START_REF] Chen | Equations for bi-directional waves over an uneven bottom[END_REF] for slowly variating bottoms i.e. the function S = S (t, x, y) depends also on time. A systematic study of asymptotic models for the water waves problem along with their rigorous justication can be found for instance in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF].

The study of the local well-posedness of the abcd systems is the subject under investigation in several papers see for instance [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory[END_REF], [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory[END_REF], for space dimension n = 1 or [START_REF] Anh | On the Boussinesq/full dispersion and Boussinesq/Boussinesq systems for internal waves[END_REF], [START_REF] Bona | Propagation of long-cested water waves[END_REF] (the BBM-BBM case b = d > 0, a = c = 0), [START_REF] Linares | Well-Posedness of strongly dispersive two-dimensional surface wave Boussinesq systems[END_REF] (the KdV-KdV case b = d = 0, a = c > 0) for dimension n = 2. In [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory[END_REF] it is shown that the linearized equation near the null solution of (1.1) is well posed in two generic cases, namely:

a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0 (1.4)
or a = c ≥ 0 and b ≥ 0, d ≥ 0.

(1.5)

It was proved in [START_REF] Bona | Long wave approximation for water waves[END_REF] (see also [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]) that the error estimate between the solution of (1.1) and the water wave system is cumulating in time like O ε 2 t . Thus, solutions of (1.1) that exist on time intervals of order O 1 ε are good approximation for (WW) as the error remains of small order i.e. O (ε). Actually, due to the previous mentioned error estimate, on time scales larger then O 1 ε 2 the solution (η, V ) stops being relevant as an approximation for the original system. The question of long O 1 ε -time existence of solutions of (1.1) did not receive a satisfactory answer until in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] where, the case (1.4) was treated and long time existence for the Cauchy problem was systematically proved, provided that the initial data lies in some Sobolev spaces. The diculty comes from the lack of symmetry (the εη div V term from the rst equation of the abcd-system) of (1.1). Because of the dispersive operators -εb∆∂ t + a div ∆, -εd∆∂ t + c∇∆, classical symmetrizing techniques for hyperbolic systems of PDE's fail to be successful.

Global existence is known to hold true for (1.1) in dimension n = 1 for some particular cases: the case

a = b = c = 0, d > 0,
studied by Amick [START_REF] Amick | Regularity and uniqueness of solutions to the Boussinesq system of equations[END_REF] and Schonbek [START_REF] Schonbek | Existence of solutions for the Boussinesq system of equations[END_REF] and in the case

b = d > 0, a ≤ 0, c < 0,
assuming some smallness condition on the initial data, see [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory[END_REF]. In both cases, it is assumed that:

inf x∈R {1 + εη 0 (x)} > 0
a condition that makes perfect sense from a physical point of view as 1 + εη (t, x) represents the total height of the water above the bottom in x at time t . The latter case uses the Hamiltonian structure of the system, namely, when b = d we have:

d dt η 2 + (1 + εη) V 2 -εc (∂ x η) 2 -εa (∂ x V ) 2 dx = 0. (1.6) 

The main result

The aim of this paper is to generalize most of the results presented in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF], namely, we address the long time existence issue for the general abcd systems. More precisely we wish to construct solutions for (1.1) for which the time of existence is bounded from below by a O 1 ε -order quantity. The key ingredient is that we establish energy-type estimations for spectrally localized equations and by doing so we require a lower regularity index than the one used in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF]. Also, we avoid using the non-cavitation condition

1 + εη 0 (x) ≥ α > 0, (1.7) 
imposed on the initial datum η 0 or the curl free condition on the initial data V 0 used in [START_REF] Bona | Propagation of long-cested water waves[END_REF]. As opposed to the method used in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF], ours permits us to treat in a unied manner most of the cases corresponding to the values of the a, b, c, d parameters. In order to carry on our approach we need some restrictions on the a, b, c, d parameters. More precisely, we will consider the case (1.4) such that b+d > 0 excluding the following two cases:

a = d = 0, c < 0, b > 0. a = b = 0, c < 0, d > 0. (1.8)
In Section 5.1 we put forward the basic ingredients in order to obtain long time existence for the former two cases. In view of (1.3), b + d > 0 is not restrictive as far as a, c are less or equal to 0. First, we will slightly change the form of (1.1) noticing that the divergence free part of V remains constant during time. Indeed, formally, if η, V is a solution of (1.1) with initial data

η |t=0 = η 0 , V|t=0 = V0 , then ∂ t V = -∇ (I -εd∆) -1 η + cε∆η + ε 1 2 V 2 , (1.9) 
and consequently we have that:

∂ t P V = 0,
where

P V = F -1     I - i=1,n ξ i ξ |ξ| 2   F V  
is the Leray projector over divergence free vector elds. Thus, we get that:

P V = P V0 not = W.
Of course, we have that div W = 0.

By setting

V0 = V 0 + W , V = V + W
we infer that the system veried by the couple (η, V ) is the following:

   (I -εb∆) ∂ t η + div V + aε div ∆V + εW ∇η + ε div (ηV ) = 0, (I -εd∆) ∂ t V + ∇η + cε∇∆η + ε 1 2 ∇ |W | 2 + ε∇W V + ε∇V W + ε 1 2 ∇ |V | 2 = 0, η |t=0 = η 0 , V |t=0 = V 0 .
(1.10) Also because of (1.9) we get that curl V = 0 at any time meaning that for all l, k ∈ 1, n we have:

∂ l V k = ∂ k V l .
(1.11)

The advantage of working with system (1.10) instead of (1.1) is two-folded. On one side certain commutators involving V behave better if its curl is 0 and on the other side, for some values of the a, b, c, d parameters e.g. a = c = d = 0, b > 0 we need less regularity on the initial data V 0 . Let us establish some notations. The spaces L p (R n ) with p ∈ [1, ∞] will denote the classical Lebesgue spaces. Given s ∈ R we will consider the following set of indices:

   s 1 = s + sgn (b) -sgn (c) , s 2 = s + sgn (d) -sgn (a) , s 3 = s + 1 -sgn (a) , (1.12)
where the sign function sgn is given by:

sgn (x) =    1 if x > 0, 0 if x = 0, -1 if x < 0,
and a, b, c, d are chosen as in (1.4). We will denote by H s (R n ) the classical Sobolev space of regularity index s with the norm

η 2 H s = R n 1 + |ξ| 2 s |η (ξ)| 2 dξ. (1.13)
For any vector, matrix or 3-tensor eld with components in H s (R n ) we denote its Sobolev norm by the square root of the sum of the squares of the Sobolev norms of its components. For any pair

(η, V ) ∈ H s1 (R n ) × (H s2 (R n ))
n we will use the notation

(η, V ) 2 s = η 2 H s + ε(b -c) ∇η 2 H s + ε 2 (-c)b ∇ 2 η 2 H s + + V 2 H s + ε(d -a) ∇V 2 H s + ε 2 (-a)d ∇ 2 V 2 H s , where ∇ 2 η = ∂ 2 ij η i,j and ∇ 2 V = ∂ 2 ij V k i,j,k . Clearly, H s1 (R n )×(H s2 (R n )) n endowed with (•, •) s is a Banach space which is continuously imbedded in L 2 (R n ) × L 2 (R n ) n .
Our approach is based on an energy method applied to spectrally localized equations. We rst derive a priori estimates and we establish local existence and uniqueness of solutions for the general abcd system. Before we state the main result let us formalize the notion of long time existence of solutions for (1.10) in the next denitions. Denition 1.1. Let T > 0 a positive real number. We will say that T is bounded from below by a O1 ε -order quantity if there exists another positive real number C, independent of ε such that:

T ≥ C ε .
Let us consider a Banach space (X,

• X ) which is continuously imbedded in L 2 (R n ) × L 2 (R n ) n . Denition 1.2. Let us consider W ∈ H 1 (R n ) n .
We say that we can establish long time existence and uniqueness of solutions for the equation (1.10) in X if for any (η 0 , V 0 ) ∈ X there exists a positive time T > 0, an unique solution 1 (η, V ) ∈ C ([0, T ] , X) of (1.10) and a function F : (0, +∞) → (0, +∞) independent of ε such that:

T ≥ F ( (η 0 , V 0 ) X ) ε .
Remark 1.1. Of course, the function F appearing in the preceding denition is allowed to depend on a,b,c,d,W and on the dimension n.

We are now in the position of stating our long time existence result:

Theorem 1. Let a, b, c, d as in (1.4) excluding the two cases (1.8), b + d > 0. Let us consider s such that s > n 2 + 1 with n ≥ 1. Let us also consider s 1 , s 2 and s 3 dened by (1.12) and W ∈ (H s3 ) n . Then, we can establish long time existence and uniqueness of solutions for the equation (1.10) in

H s1 ×(H s2 )
n . Moreover, if we denote by T (η 0 , V 0 ), the maximal time of existence then there exists some T ∈ [0, T (η 0 , V 0 )) which is bounded from below by an O 1 ε -order quantity and a function G : R → R such that for all t ∈ [0, T ] we have:

(η, V ) s ≤ G ( (η 0 , V 0 ) s ) ,
where G may depend on a, b, c, d, s, n but not on ε.

Theorem 1 is the consequence of a more general result that we obtain later in this paper. In fact, our method enables us (without any extra eort) to establish long time existence and uniqueness of solutions in the more general Besov spaces, thus achieving the critical regularity s = n 2 +1, see Theorem 3.

The rest of the paper is organized as follows. In Section 2 we establish all the basic energy estimates that we will need in order to prove Theorem 1. In Section 3 we prove that (1.10) admits an unique solution and we establish an explosion criterion. The method used to construct the solution assures an existence time that is bounded below by a quantity of order O 1 √ ε . Finally in Section 4 we prove Theorem 1 namely we show that the solution of (1.10) constructed in Section 3 persists on a time of order O 1 ε . The proof will be a by-product of some rened energy estimates that we prove in Section 2 and the explosion criteria established in Section 3. In Section 5.1 we discuss about the cases (1.8). We end the paper with Section 5.2 where we discuss the possibility of applying our method to the abcd systems in the case of a general bottom topography derived in [START_REF] Chazel | Inuence of bottom topography on long water waves[END_REF], Section 2.

Notations

Because our proof makes use of elementary tensor calculus let us introduce some basic notations. For any vector eld U : R n → R n we denote by ∇U : R n → M n (R) and by ∇ t U : R n → M n (R) the n × n matrices dened by:

(∇U ) ij = ∂ i U j , ∇ t U ij = ∂ j U i .
In the same manner we dene ∇2 U : R n → R n × R n × R n as:

∇ 2 U ijk = ∂ 2 ij U k .
We will suppose that all vectors appearing are column vectors and thus the (classical) product between a matrix eld A and a vector eld U will be the vector 2 :

(AU ) i = A ij U j .
We will often write the contraction operation between ∇ 2 U and a vector eld V by

∇ 2 U : V ij = ∂ 2 ij U k V k
If U, V : R n → R n are two vector elds and A, B : R n → M n (R) two matrix elds we denote:

U V = U i V i , A : B = A ij B ij , U, V L 2 = U i V i , A, B L 2 = A ij B ij U 2 L 2 = U, U L 2 , A 2 
L 2 = A, A L 2 ∇ 2 U 2 L 2 = ∇U : ∇U = ∂ ij U k 2
Also, the tensorial product of two vector elds U, V is dened as the matrix eld U ⊗ V : R n → M n (R) given by:

(U ⊗ V ) ij = U i V j .
We have the following derivation rule: if u is a scalar eld, U , V are vector elds and A : R n → M n (R) then:

∇ div (uU ) = ∇ 2 uU + ∇u div U + ∇U ∇u + u∇ div U ∇ (U V ) = ∇U V + ∇V U ∇(AV ) = ∇ 2 A : V + ∇V A t
If we suppose that curl V = 0 then the following integration by parts identity holds true:

∇V : U, ∇V L 2 = (∇V : U ) : ∇V = ∂ 2 ij V k U k ∂ i V j = ∂ 2 ik V j U k ∂ i V j = - 1 2 ∂ k U k ∂ i V j 2 = - 1 2 div U (∇V : ∇V ). (1.14)
Let C be the annulus {ξ ∈ R n : 3/4 ≤ |ξ| ≤ 8/3}. Let us choose two radial functions χ ∈ D(B(0, 4/3)) and ϕ ∈ D(C) valued in the interval [0, 1] and such that:

∀ξ ∈ R n , χ(ξ) + j≥0 ϕ(2 -j ξ) = 1.
Let us denote by h = F -1 ϕ and h = F -1 χ. For all u ∈ S , the nonhomogeneous dyadic blocks are dened as follows:

∆ j u = 0 if j ≤ -2, ∆ -1 u = χ (D) u = h u, (1.15) 
∆ j u = ϕ 2 -j D u = 2 jd R n h (2 q y) u (x -y) dy if j ≥ 0.
The high frequency cut-o operator S j is dened by

S j u = k≤j-1 ∆ k u.
Let us dene now the nonhomogeneous Besov spaces.

Denition 1.3. Let s ∈ R, r ∈ [1, ∞].
The Besov space B s 2,r is the set of tempered distributions u ∈ S such that:

u B s 2,r := 2 js ∆ j u L 2 j∈Z r (Z) < ∞. Let us mention that H s (R n ) = B s 2,2 (R n
) and that we have the following continuous embedding

B s 2,1 → H s → B s 2,∞ → H s ,
for all s < s. Some basic properties about Besov spaces can be found in the Appendix. For more details and full proofs we refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF].

Let us consider ε ≤ 1 and s > 0, r ∈ [1, ∞]. For all (η, V ) ∈ B s1 2,r (R n ) × B s2 2,r (R n ) n we introduce
the following quantities:

U 2 j = U 2 j (η, V ) = η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j (1.16) + V 2 j + ε (d -a) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j , and 
U 2 s = U 2 s (η, V ) = η 2 B s 2,r + ε (b -c) ∇η 2 B s 2,r + ε 2 (-c) b ∇ 2 η 2 B s 2,r
(1.17)

+ V 2 B s 2,r + ε (d -a) ∇V 2 B s 2,r + ε 2 (-a) d ∇ 2 V 2 B s 2,r
.

where (η j , V j ) := (∆ j η, ∆ j V ) are the frequency-localized dyadic blocks dened by relation (1.15). It is

easy to check that U s (η, V ) is a norm on the space B s1 2,r (R n ) × B s2 2,r (R n ) n .
Also, it transpires that:

2 js U j j∈Z r ≈ U s .
Some times we will also use the notation

(η, V ) s = U s (η, V ) , for all (η, V ) ∈ B s1 2,r (R n ) × B s2 2,r (R n ) n . We observe that B s1 2,r (R n ) × B s2 2,r (R n ) n , (•, •) s is a
Banach space. In order to ease the notations we will rather write B s 2,r instead of B s 2,r (R n ). Another quantity that will play an important role in the following analysis is:

N 2 j = N 2 j (η, V ) = (1 + ε η L ∞ ) η 2 j + ε (b -c) (1 + ε η L ∞ ) |∇η j | 2 + ε 2 (-c)b (1 + ε η L ∞ ) ∇ 2 η j : ∇ 2 η j + (1 + εη + ε η L ∞ ) V 2 j + ε (d -a + dεη + dε η L ∞ ) (∇V j : ∇V j ) + ε 2 (-a)d (1 + ε η L ∞ ) ∇ 2 V j : ∇ 2 V j , (1.18) 
which satises:

U j (η, V ) N j (η, V ) (1 + 2ε η L ∞ ) 1 2 U j (η, V ) (1.19)
Denoting by

N s = N s (η, V ) = 2 js N j (η, V ) j∈Z r (Z) (1.20)
we obviously have that

U s (η, V ) N s (η, V ) (1 + 2ε η L ∞ ) 1 2 U s (η, V ) . (1.21) 2

Energy-type identities

We begin by localizing equation (1.10) in Fourier space thus obtaining that:

   (I -εb∆) ∂ t η j + div V j + aε div ∆V j + εW ∇η j + εV ∇η j + εη div V j = εR 1j (I -εd∆) ∂ t V j + ∇η j + cε∇∆η j + ε∇V j W + ε∇V j V = εR 2j η j|t=0 = ∆ j η 0 , V j|t=0 = ∆ j V 0 (2.1)
where the remainder terms are given by 3 :

R 1j = [W, ∆ j ] ∇η + [V, ∆ j ] ∇η + [η, ∆ j ] div V R 2j = [W, ∆ j ] ∇V + [V, ∆ j ] ∇V -1 2 ∇∆ j |W | 2 -∆ j (∇W V ) . (2.2)
3 From now on, we agree that if A, B are two operator then the operator [A, B] is given by:

[A, B] = AB -BA.
Let us establish our rst useful identity. We multiply the rst equation in (2.1) by η j and the second one with V j and by adding them up and integrating in space we get that 4 :

1 2 ∂ t η j 2 L 2 + εb ∇η j 2 L 2 + V j 2 L 2 + εd ∇V j 2 L 2 + aε η j div ∆V j + cε V j ∇∆η j (2.3) +ε ηη j div V j = ε 2 div V η 2 j + V 2 j + ε R 1j η j + ε R 2j V j .
Let us denote by T 1 the right hand side of the above identity:

T 1 = ε 2 div V η 2 j + V 2 j + ε R 1j η j + ε R 2j V j . (2.4)
Next, we wish to derive similar identities involving the quantities ∇η j , ∇ 2 η j and ∇V j , ∇ 2 V j . In order to do so, let us observe that applying ∇ to the rst equation in (1.10) gives us:

(I -εb∆) ∂ t ∇η + ∇ div V + aε∇ div ∆V + ε∇W ∇η + ε∇ 2 ηW + ε∇ div (ηV ) = 0
and that by applying ∆ j we end up with:

(I -εb∆) ∂ t ∇η j + ∇ div V j + aε∇ div ∆V j + ε∇ 2 η j W + ε∇ 2 η j V + εη∇ div V j (2.5) +ε div V j ∇η + ε∇V j ∇η = -ε∆ j (∇W ∇η) + εR 3j ,
where

R 3j = [W, ∆ j ] ∇ 2 η + [V, ∆ j ] ∇ 2 η + [η, ∆ j ] ∇ div V + [∇η, ∆ j ] div V + [∇η, ∆ j ] ∇V.
We multiply (2.5) with -cε∇η j and by integration we get 5 :

-cε 2 ∂ t |∇η j | 2 + εb∇ 2 η j : ∇ 2 η j -cε ∇ div V j ∇η j -acε 2 ∇ div ∆V j ∇η j (2.6) -cε 2 η∇ div V j ∇η j = T 2
with T 2 given by

T 2 = cε 2 (∇ 2 η j W )∇η j + cε 2 (∇ 2 η j V )∇η j +cε 2 div V j ∇η∇η j + cε 2 (∇V j ∇η)∇η j + cε 2 ∆ j (∇W ∇η) ∇η j -cε 2 R 3j ∇η j . (2.7) 
We proceed similarly with the second equation in (1.10) and we obtain: 4 Observe that here we use the fact that curl V = 0. Indeed, under (1.11) we have

(I -εd∆) ∂ t ∇V + ∇ 2 η + εc∇ 2 ∆η + ε 1 2 ∇ 2 |W | 2 + ε ∇ 2 W : V + ∇V ∇ t W
∇V j V V j = 1 2 V ∇ |V j | 2 = - 1 2 div V |V j | 2 .
5 Here, we use the fact that div W = 0. We get that:

ε W ∇η j η j = - ε 2 div W η 2 j = 0. +ε ∇ 2 V : W + ∇W ∇ t V + ε ∇ 2 V : V + ∇V ∇ t V = 0.
We localize the last equation and we get that:

(I -εd∆) ∂ t ∇V j + ∇ 2 η j + εc∇ 2 ∆η j + ε 1 2 ∆ j ∇ 2 |W | 2 + ε∆ j ∇ 2 W : V (2.8) +ε∆ j ∇V ∇ t W + ε∇ 2 V j : W + ε∆ j ∇W ∇ t V + ε∇ 2 V j : V + ε∇V j ∇ t V = εR 4j ,
where:

R 4j = [W, ∆ j ] ∇ 2 V + [V, ∆ j ] ∇ 2 V + [∇ t V, ∆ j ]∇V.
We contract (2.8) with -aε∇V j and by integration we get that:

-aε 2 ∂ t ∇V j : ∇V j + εd∇ 2 V j : ∇ 2 V j -aε ∇ 2 η j : ∇V j -acε 2 ∇ 2 ∆η j : ∇V j = T 3 (2.9)
with T 3 given by:

T 3 = aε 2 ∇ 2 V j : W : ∇V j + aε 2 ∇ 2 V j : V : ∇V j + aε 2 ∇V j ∇ t V : ∇V j -aε 2 R 4j : ∇V j +aε 2 1 2 ∆ j ∇ 2 |W | 2 + ∆ j ∇W ∇ t V + ∆ j ∇ 2 W : V + ∆ j ∇V ∇ t W : ∇V j (2.10)
Let us add up identities (2.6) and (2.9) to get that 6 :

∂ t -cε 2 |∇η j | 2 + εb∇ 2 η j : ∇ 2 η j + -aε 2 ∇V j : ∇V j + εd∇ 2 V j : ∇ 2 V j -aε ∇ 2 η j : ∇V j -cε ∇ div V j ∇η j -cε 2 η∇ div V j ∇η j = T 2 + T 3 .
Finally add up (2.3) to the last identity in order to obtain 7 :

1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + 1 2 ∂ t |V j | 2 + ε (d -a) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j +ε ηη j div V j -cε 2 η∇ div V j ∇η j = T 1 + T 2 + T 3 .
(2.11)

Rened energy-type identities

As we have already seen in (1.6), the abcd system possesses a formally conserved energy. The types of estimates that we establish in this section, resemble very much to this conserved energy and will be the equivalent of the ones obtained in [START_REF] Bona | Propagation of long-cested water waves[END_REF] pages 617 and 625, with ∆ j η and ∆ j V instead of η and V . Of course this is the key ingredient for obtaining long time existence results that allow initial data to lie in larger spaces. 6 Observe that by integration by parts we get -acε 2 ∇ div ∆V j : ∇η j -acε 2 ∇ 2 ∆η j : ∇V j = 0.

7 Observe that the terms aε η j div ∆V j -aε ∇ 2 η j : ∇V j and cε V j ∇∆η j -cε ∇ div V j : ∇η j are both 0.

Having established identity (2.11) we observe that the terms ε ηη j div V j and -cε 2 η∇ div V j ∇η j prevent us from directly applying a Gronwall type argument and establishing long time existence. In order to repair this inconvenience let us multiply the second equation of (2.1) with εηV j . We thus get:

ε (I -d∆) ∂ t V j , ηV j L 2 + ε η∇η j V j + cε 2 η∇∆η j V j = -ε 2 (∇V j W ) (ηV j ) -ε 2 (∇V j V ) (ηV j ) + ε 2 ηR 2j V j .
Observing that the rst term writes:

ε (I -d∆) ∂ t V j , ηV j L 2 = 1 2 ∂ t εη |V j | 2 + ε 2 dη∇V j : ∇V j - ε 2 ∂ t η |V j | 2 -ε 2 d 2 ∂ t η∇V j : ∇V j + ε 2 d ∂ t ∇V j , ∇η ⊗ V j L 2
we write that

1 2 ∂ t εη |V j | 2 + ε 2 dη∇V j : ∇V j + ε η∇η j V j + cε 2 η∇∆η j V j = T 4 (2.12)
with T 4 given by:

T 4 = -ε 2 (∇V j W ) ηV j -ε 2 (∇V j V ) ηV j + ε 2 ηR 2j V j + + ε 2 ∂ t η |V j | 2 + ε 2 d 2 ∂ t η∇V j : ∇V j -ε 2 d ∂ t ∇V j , ∇η ⊗ V j L 2 . (2.13) 
We add up (2.11) and (2.12) in order to obtain:

1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + 1 2 ∂ t (1 + εη) |V j | 2 + ε (d -a + dεη) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j = T 0 + T 1 + T 2 + T 3 + T 4 , (2.14) 
with

T 0 = ε ∇ηη j V j -cε 2 ∇η∆η j V j + cε 2 ∇η∇η j div V j .

Estimates for the T i 's

Having established the energy identity (2.14), we proceed by conveniently bounding the RHS term. We want to obtain a bound of the form:

T 0 + T 1 + T 2 + T 3 + T 4 ≤ εP (U j , U s )
with P (x, y) some polynomial function with coecients not depending on ε. We suppose that

s > n 2 + 1 or s = n 2 + 1 and r = 1.
Moreover, C > 0 will denote a generic positive constant depending only on the dimension n and on s.

All the estimates established here are valid for the a, b, c, d parameters satisfying (1.4) with b + d > 0.

The case:

a = d = 0, b > 0, c < 0 (2.15)
needs more attention and we will investigate it in Section 2.4, thus for the moment we do all the computation supposing that case (2.15) does nor occur.

We claim that we can bound T 0 + T 1 + T 2 + T 3 + T 4 in such a way that the following estimate holds true:

1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + 1 2 ∂ t (1 + εη) V 2 j + ε (d -a + dεη) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j ≤ εCU j U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + HU s + U 2 s , (2.16) 
where C > 0 depends only on a,b,c,d,n and s but not on ε, (c j (t)) j is a sequence with 2 js c j (t) j ∈ r (Z), having norm 1 and nally H is dened by:

H = W B s 2,r + ∇W B s 2,r -sgn (a) √ ε ∇ 2 W B s 2,r
.

Let us detail this below. Regarding T 0 , we begin by observing that:

ε ∇ηη j V j ≤ ε ∇η L ∞ η j L 2 V j L 2 ≤ εU 2 j U s .
Next, if a = d = 0 then b > 0 and we get that 8 :

-cε 2 ∆η∇η j V j + cε 2 ∇η∇η j div V j = -cε 2 ∆η∇η j V j -cε 2 ∇ 2 η∇η j V j -cε 2 ∇ 2 η j ∇ηV j ≤ -cε 2 ∆η L ∞ ∇η j L 2 V j L 2 + ∇ 2 η L ∞ ∇η j L 2 V j L 2 + ∇η L ∞ ∇ 2 η j V j L 2 ≤ εC max -c b -c , -c b U 2 j U s .
If at least one of a, d is not 0 then we write:

-cε 2 ∇η∆η j V j + cε 2 ∇η∇η j div V j = cε 2 ∇ 2 ηV j ∇η j + cε 2 (∇V j ∇η) ∇η j + +cε 2 ∇η∇η j div V j ≤ -cε 2 ∇ 2 η L ∞ V j L 2 ∇η j L 2 + ∇η L ∞ ∇V j L 2 ∇η j L 2 + ∇η L ∞ ∇η j L 2 div V j L 2 ≤ εC max -c b -c , -c d -a U 2 j U s .
We choose

C 1 abcd =    max -c b-c , -c b if d -a = 0, max -c b-c , -c d-a if d -a > 0.
(2.17) 8 From now on, we adopt the convention 0 0 = 0.

Consequently, we have:

T 0 ≤ εCC 1 abcd U 2 j U s . (2.18)
Next, let us analyze T 1 . According to Proposition 6.7 and Proposition 6.2 we get that:

R 1j L 2 ≤ Cc 1 j (t) ∇W B s-1 2,r η B s 2,r + ∇V B s-1 2,r η B s 2,r + ∇η B s-1 2,r V B s 2,r , R 2j L 2 ≤ Cc 2 j (t) ∇W B s-1 2,r + ∇V B s-1 2,r V B s 2,r + W B s 2,r + V B s 2,r ∇W B s 2,r
, with 2 js c i j (t) ∈ r (Z) , i = 1, 2, with norm 1. In order to avoid mentioning each time, from now on, for all natural number, i ∈ N, c i j (t) j∈Z will be a sequence such that 2 js c i j (t) j∈Z ∈ r (Z) with norm 1. Recall that H stands for the following quantity:

H = W B s 2,r + ∇W B s 2,r -sgn (a) √ ε ∇ 2 W B s 2,r (2.19) 
and rewrite the previous inequalities (of course the constant C = C (n, s) changes whenever necessary) as:

R 1j L 2 ≤ Cc 1 j (t) U s (H + U s ) , (2.20) 
R 2j L 2 ≤ Cc 2 j (t) H 2 + U s (U s + H) .
(2.21)

We get that

T 1 = ε 2 div V η 2 j + V 2 j + ε R 1j η j + ε R 2j V j ≤ ε div V L ∞ η j 2 L 2 + V j 2 L 2 + εCc 3 j (t) U j H 2 + U s (U s + H) ≤ Cε U 2 j U s + c 3 j (t) U j H 2 + HU s + U 2 s . ( 2 

.22)

We turn our attention towards T 2 :

T 2 = cε 2 (∇ 2 η j W )∇η j + cε 2 (∇ 2 η j V )∇η j + cε 2 div V j ∇η∇η j + cε 2 ∇V j ∇η∇η j + cε 2 ∆ j (∇W ∇η) ∇η j -cε 2 R 3j ∇η j .
According to Proposition 6.2 and Proposition 6.7 we get that

∆ j (∇W ∇η) L 2 + R 3j L 2 ≤ Cc 4 j (t) ∇W B s 2,r ∇η B s 2,r + ∇W B s-1 2,r ∇η B s 2,r + ∇V B s-1 2,r ∇η B s 2,r + ∇η B s-1 2,r ∇V B s 2,r + ∇ 2 η B s-1 2,r V B s 2,r ≤ Cc 4 j (t) ∇W B s 2,r ∇η B s 2,r + W B s 2,r ∇η B s 2,r + η B s 2,r ∇V B s 2,r + ∇η B s 2,r V B s 2,r . 
(2.23)

We observe that it is here that we need the restriction (2.15) on the parameters. Indeed if a = d = 0 and c < 0, then we only have

V ∈ B s 2,r hence U s cannot control ∇V B s 2,r
. Let us observe that:

(∇ 2 η j W )∇η j = - 1 2 |∇η j | 2 div W = 0 and (∇ 2 η j V )∇η j = - 1 2 |∇η j | 2 div V.
We infer that:

T 2 = cε 2 div V j ∇η∇η j + cε 2 (∇V j ∇η)∇η j + cε 2 ∆ j (∇W ∇η) ∇η j -cε 2 R 3j ∇η j ≤ -c 2 ε 2 div V L ∞ ∇η j 2 L 2 + 2 ∇η L ∞ ∇η j L 2 ∇V j L 2 + Cc 4 j (t) ∇η j L 2 ∇W B s 2,r ∇η B s 2,r + W B s 2,r ∇η B s 2,r + η B s 2,r ∇V B s 2,r + ∇η B s 2,r V B s 2,r ≤ εC max -c b -c , -c d -a U 2 j U s + c 4 j (t) U j HU s . (2.24)
We let

C 2 abcd = max -c b -c , -c d -a . ( 2 

.25)

Let us estimate T 3 . As above, owing to Proposition 6.7 we may bound R 4j in the following manner:

-aε 2 R 4j L 2 ≤ -aε 2 Cc 5 j (t) ∇W B s-1 2,r ∇V B s 2,r + ∇V B s-1 2,r ∇V B s 2,r + ∇∇ t V B s-1 2,r V B s 2,r ≤ -aε 2 Cc 5 j (t) W B s 2,r ∇V B s 2,r + V B s 2,r ∇V B s 2,r ≤ Cε 3 2 -a √ d -a c 5 j (t) U s (H + U s ) . (2.26) 
Also, we can write due to Proposition 6.2:

-aε 2 1 2 ∆ j ∇ 2 |W | 2 L 2 + ∆ j ∇W ∇ t V L 2 + ∆ j ∇ 2 W : V L 2 + ∆ j ∇V ∇ t W L 2 ≤ -aε 2 Cc 6 j (t) ∇ 2 W B s 2,r W B s 2,r + ∇W 2 B s 2,r + ∇W B s 2,r ∇V B s 2,r + ∇ 2 W B s 2,r V B s 2,r + ∇W B s 2,r ∇V B s 2,r ≤ Cε 3 2 max -a, -a √ d -a c 6 j (t) H 2 + HU s .
Then, using the integration by parts identity (1.14) we get that:

T 3 = aε 2 ∇ 2 V j : W : ∇V j + aε 2 ∇ 2 V j : V : ∇V j +aε 2 ∇V j ∇ t V : ∇V j -aε 2 R 4j : ∇V j +aε 2 1 2 ∆ j ∇ 2 |W | 2 + ∆ j ∇W ∇ t V + ∆ j ∇ 2 W : V + ∆ j ∇V ∇ t W : ∇V j ≤ -aε 2 1 2 div V L ∞ ∇V j 2 L 2 + ∇ t V L ∞ ∇V j 2 L 2 + +Cε max -a √ d -a , -a d -a c 5 j (t) ε -1 2 U j U s (H + U s ) + c 6 j (t) ε -1 2 U j H 2 + HU s ≤ εC max -a √ d -a , -a d -a U 2 j U s + c 7 j (t) U j H 2 + HU s + U 2 s (2.27)
and as before, let us denote by

C 3 abcd = max -a √ d -a , -a d -a .
(2.28)

Finally let us turn our attention towards T 4 . Let us write:

T 4 = G 4 + B 4 ,
with

B 4 = ε 2 ∂ t η |V j | 2 + ε 2 d 2 ∂ t η∇V j : ∇V j -ε 2 d ∂ t ∇V j , ∇η ⊗ V j L 2
and observe that by integration by parts and (2.21)

G 4 = -ε 2 (∇V j W ) ηV j -ε 2 (∇V j V ) ηV j + ε 2 ηR 2j V j ≤ ε 2 2 (div (ηW ) + div (ηV )) |V j | 2 + Cε 2 c 2 j (t) V j L 2 η L ∞ H 2 + HU s + U 2 s ≤ Cε U 2 j HU s + U 2 s + c 8 j (t) U j U s H 2 + HU s + U 2 s . (2.29) 
Let us now analyze the term B 4 . We begin with

ε 2 ∂ t η |V j | 2 ≤ ε ∂ t η L ∞ V j 2 L 2 ≤ ε 2 U 2 j ∂ t η L ∞
We have that:

∂ t η L ∞ = (I -bε∆) -1 [(I + aε∆) div V + ε div (η(W + V ))] L ∞ ≤ (I -bε∆) -1 (I + aε∆) div V L ∞ + ε (I -bε∆) -1 div (η(W + V )) L ∞ ≤ (I -bε∆) -1 (I + aε∆) div V B n 2 2,1 + ε W η B s 2,r + ε ηV B s 2,r (2.30) 
If b > 0 or a = b = 0, then because the operator (I -bε∆) -1 (I + aε∆) maps L 2 to L 2 with norm independent of ε, we get that:

∂ t η L ∞ ≤ C max 1, -a b U s + HU s + U 2 s
If b = 0, a < 0 then d > 0 and we see that we have

-aε div ∆V B d 2 2,1 ≤ -aε ∇ 2 V B d 2 +1 2,1 ≤ -aε ∇ 2 V B s 2,1 ≤ -a d U s . (2.31)
We set

C 4 abcd = max 1, -a b if b > 0 or a = b = 0, max 1, -a d if b = 0 and a < 0. (2.32) Thus, we get that ε 2 ∂ t η |V j | 2 ≤ εCC 4 abcd U 2 j U s + HU s + U 2 s .
(2.33)

In a similar fashion we can treat the second term of B 4 thus obtaining

ε 2 d 2 ∂ t η∇V j : ∇V j ≤ C d d -a C 4 abcd U 2 j U s + HU s + U 2 s , (2.34) 
and we set

C 5 abcd = d d -a C 4 abcd . (2.35)
Finally, the last term of B 4 is estimated as follows:

-ε 2 d ∂ t ∇V j , ∇η ⊗ V j L 2 ≤ ε 2 d ∇η L ∞ ∂ t ∇V j L 2 V j L 2 ,
and using

∂ t ∇V j = -(I -εd∆) -1 ∇ (∇η j + cε∇∆η j + ε∇V j W + ε∇V j V -εR 2j )
we observe that

εd ∂ t ∇V j L 2 ≤ √ d η j L 2 -cε ∇η j L 2 + ε W L ∞ ∇V j L 2 +ε V L ∞ ∇V j L 2 + ε R 2j L 2 ≤ CC 6 abcd U j (1 + H + U s ) + c 2 j (t) H 2 + HU s + U 2 s ,
where

C 6 abcd = max √ d, -c √ d sgn (d) √ b -c , d d -a , (2.36) 
thus, we conclude that

-ε 2 d ∂ t ∇V j , ∇η ⊗ V j L 2 ≤ εCC 6 abcd U j U j U s + HU s + U 2 s + +c 2 j (t) U s H 2 + HU s + U 2 s .
(2.37)

Combining estimates (2.33), (2.34), (2.37) we obtain:

B 4 ≤ εC Cabcd U j U j (U s + HU s + U 2 s ) + c 9 j (t) U s H 2 + HU s + U 2 s , (2.38) 
where Cabcd = max i=1,6

C i abcd (2.39)
is the maximum of all constants depending on a, b, c, d that appear in relations (2.17), (2.25), (2.28), (2.32), (2.35), (2.36). Thus, supposing that we are not in the case:

a = d = 0 and c < 0, b > 0,
we are able to successfully bound the T i 's. Finally, after adding up the estimations (2.18), (2.22), (2.24), (2.27), (2.29), (2.38) we obtain that there exists a positive constant C > 0 depending only on n and s but not on ε such that

1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + 1 2 ∂ t (1 + εη) V 2 j + ε (d -a + dεη) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j ≤ εC Cabcd U j U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + HU s + U 2 s , (2.40) 
where (c j (t)) j is a sequence with 2 js c j (t) j ∈ r (Z), having norm 1 and Cabcd is dened in (2.39). Actually for the sake of simplicity, from now on we will not carry on the distinction between constants that depend on the a, b, c, d parameters and the ones depending on the dimension n and regularity index s.

Another useful estimation

At this point, working with the non-cavitation hypothesis:

1 + εη 0 (x) ≥ α > 0, (2.41) 
using estimate (2.16) and a bootstrap argument would be sucient in order to obtain long time existence result similar to the one obtained in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] (with some restriction on the value of ε depending upon the initial data and α). However, proceeding in a slightly dierent manner we can avoid the use of (2.41) (although, all physically relevant data will verify it as 1 + εη represents the total height of the water over the at bottom). We also stress out that the estimates established in this section are only available for the parameters a, b, c, d verifying (1.4) with the exception of the two cases (1.8).

Let us investigate the following quantity:

∂ t ε 2 η L ∞ U 2 j = I 1 + I 2 ,
where

2I 1 = ε η L ∞ ∂ t U 2 j , 2I 2 = εU 2 j ∂ t η L ∞ .
Owing to (2.11) we see that:

I 1 = 1 2 ε η L ∞ (T 1 + T 2 + T 3 ) + 1 2 ε η L ∞ -ε ηη j div V j + cε 2 η∇ div V j ∇η j ≤ Cε 2 U j U s U j U s + c j (t) H 2 + HU s + U 2 s + Cε 2 η 2 L ∞ η j L 2 div V j L 2 + Cε 3 η 2 L ∞ ∇ div V j L 2 ∇η j L 2 ≤ Cε 2 U j U s U j U s + c j (t) H 2 + HU s + U 2 s + Cε 3 2 U 2 j U 2 s + Cε 3 2 U 2 j U 2 s ≤ CεU j U j U 2 s + c j (t) U s H 2 + HU s + U 2 s .
(2.42) Remark 2.1. Let us notice that the term cε 2 η∇ div V j ∇η j raises some important issues. In order to successfully estimate it (and thus in order to have the validity of (2.42)), we need the restriction (1.8) on the parameters a, b, c, d. The idea is that when c = 0, we must have9 

sgn (b) + sgn (d) -sgn (a) ≥ 2.
In view of the fact that b + d > 0, it transpires that we must exclude the cases:

a = d = 0, b > 0, c < 0 and a = b = 0, d > 0, c < 0.
Also, it is worth announcing that establishing (2.42) isn't the only place where the restriction on the parameters is needed. As it will be soon revealed, in order to obtain local existence of solutions we will again have to bound -cε 2 η∇ div V j ∇η j and the above considerations will have to apply.

In order to handle I 2 we use the fact that the function t → η (t) L ∞ is locally Lipschitz we get that a.e. ∂ t η (t) L ∞ exists and besides, a.e. in time we have

|∂ t η (t) L ∞ | = lim s→t η (t) L ∞ -η (s) L ∞ t -s ≤ lim s→t η (t) -η (s) t -s L ∞ ≤ ∂ t η (t) L ∞ ≤ ∂ t η (t) B n 2 2,1
.

Thus, owing to (2.30), (2.31) we get that: 

I 2 ≤ 1 2 εU 2 j ∂ t η L ∞ ≤ CεU 2 j U s + HU s + U 2 s . ( 2 
∂ t ε 2 η L ∞ U 2 j ≤ CεU j U j U s + HU s + U 2 s + c j (t) U s H 2 + HU s + U 2 s . ( 2 

.44)

Finally let us observe that by adding (2.16) with (2.44) we obtain that:

∂ t N 2 j ≤ CεU j U j U s + HU s + U 2 s + c j (t) (1 + U s ) H 2 + HU s + U 2 s (2.45)
where N j is the quantity dened in (1.18).

2.4

The case b > 0, c < 0 and a = d = 0

As pointed out in Section 2.2 , we are not able to establish (2.16) for the case (2.15). However, if we proceed slightly dierent we can repair this inconvenience. Let us give some details of this aspect. As we have seen, the problem comes when estimating [η, ∆ j ] ∇ div V (see (2.23)). In order to bypass this problem, let us rewrite equation (2.6) in the following manner

-cε 2 ∂ t |∇η j | 2 + εb∇ 2 η j : ∇ 2 η j -cε ∇ div V j ∇η j (2.46) -cε 2 ∆ j (η∇ div V ) ∇η j = T 5
where

T 5 = cε 2 ∇ 2 η j W : ∇η j + cε 2 ∇ 2 η j V : ∇η j +cε 2 div V j ∇η∇η j + ∇V j ∇η∇η j + cε 2 ∆ j (∇W ∇η) ∇η j -cε 2 Rj3 ∇η j and Rj3 = [W, ∆ j ] ∇ 2 η + [V, ∆ j ] ∇ 2 η + [∇η, ∆ j ] div V + [∇η, ∆ j ] ∇V.
We add (2.46) with (2.3) and (2.12) in order to obtain

1 2 ∂ t η 2 j + ε(b -c) |∇η j | 2 + ε 2 b (-c) ∇ 2 η j : ∇ 2 η j + (1 + εη) |V j | +cε 2 η∇∆η j V j -cε 2 ∆ j (η∇ div V ) ∇η j = ε ∇ηη j V j + T 1 + T 4 + T 5 .
Let us write that:

cε 2 η∇∆η j V j = -cε 2 ∇η∆η j V j -cε 2 η∆η j div V j = -cε 2 ∇η∆η j V j -cε 2 ∆η j [η, ∆ j ] div V -cε 2 ∆η j ∆ j (η div V ) = -cε 2 ∇η∆η j V j -cε 2 ∆η j [η, ∆ j ] div V + cε 2 ∇η j ∆ j (∇η div V ) + cε 2 ∇η j ∆ j (η∇ div V ) = -cε 2 ∇η∆η j V j -cε 2 ∆η j [η, ∆ j ] div V + cε 2 ∇η j ∇η div V j + cε 2 ∇η j [∆ j , ∇η] div V + cε 2 ∇η∆ j (η∇ div V ) .
Thus, we get: 

cε 2 η∇∆η j V j -cε 2 ∇η∆ j (η∇ div V ) = -cε 2 ∇η∆η j V j -cε 2 ∆η j [η, ∆ j ] div V + cε 2 ∇η j ∇η div V j + cε 2 ∇η j [∆ j , ∇η] div V = -cε 2 ∇η∆η j V j -cε 2 ∆η j [η, ∆ j ] div V -cε 2 ∇ 2 η j ∇ηV j -cε 2 ∇ 2 η∇η j V j + ∇η j [∆ j , ∇η] div V ≤ -cε 2 ∇η L ∞ ∆η j L 2 V j L 2 + ∆η j L 2 c j (t) ∇η B s-1 2,r V B s 2,r + + ∇η L ∞ ∇ 2 η j L 2 V j L 2 + ∇ 2 η L ∞ ∇η j L 2 V j L 2 + + ∇η j L 2 c j (t) ∇ 2 η B s-1 2,r V B s 2,r ≤ -cCε U 2 j U s + c j (t) U j U 2 s . ( 2 
1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + (1 + εη) V 2 j ≤ CεU j U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + U s H + U 2 s .
(2.48) 3

Existence and uniqueness

We begin by dening what kind of solutions we are looking for:

   (I -εb∆) ∂ t η + div V + aε div ∆V + εW ∇η + ε div (ηV ) = 0, (I -εd∆) ∂ t V + ∇η + cε∇∆η + ε 1 2 ∇ |W | 2 + ε∇W V + ε∇V W + ε 1 2 ∇ |V | 2 = 0, η |t=0 = η 0 , V |t=0 = V 0 . Denition 3.1. Let us consider a positive time T > 0 and (η 0 , V 0 ) ∈ L 2 × L 2 n and W ∈ H 1 (R n ) n . A pair (η, V ) ∈ C [0, T ] , L 2 × L 2 n is called a solution to (1.10) on [0, T ] if for any (φ, ψ) ∈ C 1 ([0, T ] , S × S n
) and for all t ∈ [0, T ], the following identities hold true:

t 0 η, (I -εb∆) ∂ t φ L 2 + t 0 V, (I + aε∆)∇φ L 2 + ε t 0 η, ∇ (W φ) L 2 + ε t 0 ηV, ∇φ L 2 = η(t), (I -εb∆) φ(t) L 2 -η 0 , (I -εb∆) φ(0) L 2 and t 0 V, (I -εd∆) ∂ t ψ L 2 + t 0 η, (I + cε∆) div ψ L 2 + ε t 0 |W | 2 2
, div ψ

L 2 + ε t 0 V, ∇ t W ψ L 2 + +ε t 0 V, div (ψ ⊗ W ) L 2 + ε t 0 |V | 2 2 , div ψ L 2 = V (t), (I -εb∆) ψ(t) L 2 -V 0 , (I -εb∆) ψ(0) L 2 .
Let us state now the following local existence and uniqueness theorem which serves as an intermediary result for Theorem 1: Theorem 2. Let a, b, c, d be chosen as in (1.4) excluding the two cases (1.8)

, b + d > 0, r ∈ [0, ∞] and s ∈ R such that: s > n 2 + 1 or s = n 2 + 1 and r = 1. (3.1) 
Furthermore, let us consider s 1 , s 2 and s 3 dened by relation (1.12) and W ∈ B s3 2,r n .Then, for all

(η 0 , V 0 ) ∈ B s1 2,r × B s2 2,r
n with curl V 0 = 0, there exists a positive T > 0 and an unique solution

(η, V ) ∈ C [0, T ], B s1 2,r × B s2 2,r n if r < ∞ or (η, V ) ∈ L ∞ [0, T ], B s1 2,∞ × B s2 2,∞ n ∩ β>0 C [0, T ], B s1-β 2,∞ × B s2-β 2,∞ n if r = ∞,
of equation (1.10). Moreover, if we denote by T (η 0 , V 0 ) the maximal time of existence then, if T (η 0 , V 0 ) < ∞, we have that:

lim t→T (η0,V0) U s (t) = ∞ if r < ∞, (3.2) lim sup t→T (η0,V0) U s (t) = ∞ if r = ∞. (3.3)
Of course, the local existence result of the above theorem is not optimal. For some particular choices of the a,b,c,d parameters we can solve the Cauchy problem for initial data in larger spaces, see for instance [START_REF] Anh | On the Boussinesq/full dispersion and Boussinesq/Boussinesq systems for internal waves[END_REF], [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory[END_REF], [START_REF] Bona | Propagation of long-cested water waves[END_REF]. However, the lower bound on the time of existence is at most of order

O ε -1 2
. Initially, this is also the case of the solution constructed in Theorem 2. As mentioned above this time scale is not satisfactory from a practical point of view. However, as a by-product of the explosion criteria (3.2)-(3.3) of the solution of (1.10) and some rened energy estimate, we can improve the lower bound of the T (η 0 , V 0 ) thus establishing O 1 ε -long time existence. Having established all the estimates that we need, let us proceed by proving Theorem 2.

Proof. We will use the so called Friedrichs method. For all m ∈ N, let us consider E m the low frequency cut-o operator dened by:

E m f = F -1 χ B(0,m) f .
We dene the space

L 2 m = f ∈ L 2 : Supp f ⊂ B (0, m)
which, endowed with the • L 2 -norm is a Banach space. Let us observe that due to Bernstein's lemma, all Sobolev norms are equivalent on L 2 m . For all m ∈ N, we consider the following dierential equation on

L 2 m :    ∂ t η = F m (η, V ) , ∂V = G m (η, V ) , η |t=0 = E m η 0 , V |t=0 = E m V 0 , (3.4) 
where

(F m , G m ) : L 2 m × L 2 m n → L 2 m × L 2 m
n are dened by:

F m (η, V ) = -E m (I -εb∆) -1 [(I + aε∆) div V + εW ∇η + ε div (ηV )] , (3.5) 
G m (η, V ) = -E m (I -εd∆) -1 (I + cε∆) ∇η + ε 2 ∇ |V + W | 2 . (3.6) 
It transpires that due to the equivalence of the Sobolev norm, (F m , G m ) is continuous and locally Lipschitz on L 2 m × L 2 m n . Thus, the classical Picard theorem ensures that there exists a nonnegative time T m > 0 and a unique solution

(η m , V m ) : C 1 [0, T m ], L 2 m × L 2 m n . Moreover, if T m is nite, then: lim t→Tm (η m , V m ) L 2 = ∞.
Another important aspect is that because of the property E 2 m = E m we get that the estimate obtained in (2.11) still holds true for (η m , V m ), namely

1 2 ∂ t η m j 2 + ε (b -c) ∇η m j 2 + ε 2 (-c)b ∇ 2 η m j : ∇ 2 η m j (3.7) + 1 2 ∂ t V m j 2 + ε (d -a) ∇V m j : ∇V m j + ε 2 (-a)d ∇ 2 V m j : ∇ 2 V m j +ε η m η m j div V m j -cε 2 η m ∇ div V m j ∇η m j = T 1 + T 2 + T 3
with T 1 , T 2 , T 3 dened as in relations (2.4), (2.7), (2.10) but with (η m , V m ) instead of (η, V ). Considering U m j and U m s the quantities dened in (1.16) and (1.17) with (η m , V m ) instead of (η, V ). Also, for the T i 's we dispose of the estimates (2.22), (2.24) and (2.27) with U m j and U m s instead of U j and U s and thus we gather that:

T 1 + T 2 + T 3 ≤ εCU m j U m j U m s + c j (t) H 2 + HU m s + (U m s ) 2 .
Also, let us notice that 10 :

-ε η m η m j div V m j ≤ ε 1 2 C U m j 2 U m s .
10 Observe that due to (1.12) at least one of η, V has regularity level B s+1 2,r and thus, eventually by an integration by parts we can obtain the announced estimate.

Next, observe that 11 :

cε 2 η m ∇ div V m j ∇η m j ≤ ε 1 2 C U m j 2 U m s .
We thus gather that:

1 2 ∂ t U m j 2 ≤ ε 1 2 CU m j U m j U m s + c j (t) H 2 + HU m s + (U m s ) 2
and by a Gronwall-type argument we obtain that for all t ∈ [0, T m ]:

U m j (t) ≤ U m j (0) + ε 1 2 C t 0 U m j U m s + c j (τ ) H 2 + HU m s + (U m s ) 2 dτ,
thus multiplying with 2 js and performing an r (Z)-summation, owing to Minkowsky's theorem, we get that:

U m s (t) ≤ U m s (0) + Cε 1 2 t + ε 1 2 C max (1, H) t 0 U m s + (U m s ) 2 dτ.
We denote by H = max (1, H). Thus, Gronwall's lemma along with the explosion criterion for ODE's gives us that:

ln 1 + 1 U m s (0) ε 1 2 CH ≤ T m
where T m is the maximal time of existence for (3.4). Also, due to the nature of the cut-o operator E m , it transpires that: U m s (0) ≤ U s (0) , and consequently that:

ln 1 + 1 Us(0) ε 1 2 CH ≤ T m . (3.8) 
In particular, for each time T > 0 such that the above inequality is strictly satised we obtain due to Gronwall's lemma that for all t ∈ [0, T ]

U m s (t) ≤ 1 e ln(1+ 1 Us(0) )-ε 1 2 CH T -1 (3.9) 
and thus, the solution (η m , V m ) is uniformly bounded on [0, T ]. Next, from relations (3.4) and (3.5) we get that (∂ t η m ) m∈N is uniformly bounded on [0, T ] in B s-1 2,r . Indeed, the rst term is

(I -bε∆) -1 (I + aε∆) div V m ∈ B s4 2,r with 12 s 4 = s + 2sgn(b) + sgn (d) + sgn(a) -1 ≥ s -1.
In view of (3.1), B s-1 2,r is an algebra and thus the last two terms of (3.5) are also at least in B s-1 2,r . Thus, in view of the uniform estimates (3.9), we get that (∂ t η m ) m∈N is uniformly bounded on [0, T ] in B s-1 2,r . Next, considering for all p ∈ N a smooth function φ p such that:

Supp (φ p ) ⊂ B (0, p + 1) φ p = 1 on B (0, p)
it follows, in view of Proposition 6.5 that for each p ∈ N, the sequence (φ p η m ) m∈N is uniformly equicontiniuous on [0, T ] and that for all t ∈ [0, T ], the set {φ p η m (t) : m ∈ N} is relatively compact in B s-1 2,r . Thus, the Ascoli-Arzela Theorem combined with Cantor's diagonal process provides us a subsequence of (η m ) m∈N 13 and a tempered distribution η ∈ C ([0, T ] , S ) such that for all φ ∈ D (R n ):

φη m → φη in C [0, T ] , B s-1 2,r
.

Moreover, owing to Proposition 6.3 and (3.9) we get that η ∈ L ∞ T B s1 2,r and using interpolation we get that

φη m → φη in C [0, T ] , B s1-γ 2,r
for all γ > 0. Of course, by the same argument one can get

V ∈ L ∞ T B s2 2,r
n such that for all

ψ ∈ (D (R n )) n : ψV m → φV in C [0, T ] , B ss-γ 2,r
n for all γ > 0. We claim that the properties enlisted above permit us to pass to the limit when m → ∞ in the equation veried η m and V m . By the Fatou property of Besov spaces we get that

(η, V ) ∈ L ∞ t (B s1 2,r × B s2 2,r n ).
It remains to verify that (η, V ) has the announced regularity. Suppose that r < ∞. From η's equation we see that

∂ t η ∈ L ∞ t (B s-1 2,r ) and thus, η ∈ C [0, T ], B s-1 2,r
which also implies that S j η ∈ C [0, T ], B s1 2,r for all j ∈ Z. The conclusion follows as the sequence of B s1 2,r -valued functions (S j η) j∈Z tends uniformly to η. Indeed, for all , j ∈ Z, we have

∆ (η -S j η) = 0 if ≤ j -2, therefore we have η -S j η L ∞ t (B s 1 2,r ) ≤   ≥j-1 2 rs1 η 0 r L 2   1 r + ε 1 2 C U s 2 L ∞ t (B s 1 2,r ) + H 2 t 0   ≥j-1 2 rs1 (U j (τ ) + c j (τ )) r   1 r
and as a consequence of Proposition 6.3 and the dominated convergence theorem we nd that is continuously embedded in B s1 2,∞ and repeating the above argument permits us to conclude that (η, V ) has the desired regularity. This completes the proof of existence. Uniqueness, is a consequence of the following stability estimate: let us consider two solutions of (1.10), η 1 , V 1 , η 2 , V 2 and observe that the dierence

lim j→∞ η -S j η L ∞ t (B s 1 2,r ) = 0, which implies that η ∈ C [0, T ], B s1 2,r . A similar argument shows that V ∈ C [0, T ], B s2
(δη, δV ) = η 1 -η 2 , V 1 -V 2
satises the following system:

   (I -εb∆) ∂ t δη + div δV + aε div ∆δV + εW ∇δη + ε div δηV 1 + ε div η 2 δV = 0 (I -εd∆) ∂ t δV + ∇δη + cε∇∆δη + ε∇W (δV ) + ε∇(δV )W + ε∇(δV )V 1 + ε∇V 2 δV = 0 δη |t=0 = 0, δV |t=0 = 0. (3.10) We consider U 1 s = U s η 1 , V 1 and U 2 s = U s η 2 , V 2 , see (1.17).
For the sake of simplicity we will prove stability estimates in the classical Sobolev space X = H r1 × (H r2 ) n with:

r 1 = sgn (b) -sgn (c) , r 2 = sgn (d) -sgn (a) .
We endow X with the norm:

η, V 2 X = η 2 L 2 + ε (b -c) ∇η 2 L 2 -ε 2 bc ∇ 2 η 2 L 2 + V 2 L 2 + ε (d -a) ∇V 2 L 2 -ε 2 da ∇ 2 V 2 L 2
Observe that due to the fact that s 1 , s 2 are chosen so as to satisfy (1.12) with s chosen as in (3.1), we have that

H r1 × (H r2 ) n is continuously embedded in B s1 2,r × B s2 2,r
n . Multiplying the rst equation in (3.10) with η, the second equation with V and adding up the results we get that:

1 2 ∂ t δη 2 L 2 + ε (b -c) ∇δη 2 L 2 + δV 2 L 2 + ε (d -a) ∇δV 2 L 2 + εa ∆ div δV δη +εc ∆∇δηδV ≤ C √ ε H + U 1 s + U 2 s δη, δV 2 X .
Now, let us multiply the rst equation in (3.10) with cε∆η, the second equation with aε∆V and adding up the results we obtain:

1 2 ∂ t -cε ∇δη 2 L 2 -ε 2 bc ∇ 2 δη 2 L 2 -εa ∇δV 2 L 2 -ε 2 da ∇ 2 δV 2 L 2 + εa ∇δη∆δV + εc div δV ∆δη ≤ C √ ε H + U 1 s + U 2 s δη, δV 2 X .
Thus, adding up the above relations gives us:

∂ t δη, δV 2 X ≤ C √ ε H + U 1 s + U 2 s δη, δV 2 X .
Hence, Gronwall's lemma ensures the desired result.

Proving the blow-up criteria is classic. Let us suppose that T (η 0 , V 0 ) < ∞ and that lim sup

t→T (η0,V0) U s (t) < ∞.
Then, U s (t) remains bounded on [0, T (η 0 , V 0 )) say:

U s (t) ≤ M,
for all t ∈ [0, T (η 0 , V 0 )). We see that for any t 0 ∈ [0, T (η 0 , V 0 )) we can construct, using the same method as before a solution to (1.10) with initial data (η (t 0 ) , V (t 0 )) on a time interval that according to (3.8) satises the following lower bound:

T new -t 0 ≥ ln 1 + 1 Us(t0) ε 1 2 CH ≥ ln 1 + 1 M ε 1 2 CH .
Of course, choosing t 0 close enough to T (η 0 , V 0 ) we can obtain T new > T (η 0 , V 0 ) such that gluing together the new solution with the (η, V ) |[0,t0] and in view of the uniqueness we get a contradiction on the maximality of T (η 0 , V 0 ). This concludes the proof of the announced result.

4

The proof of Theorem 1

We are now in the position of establishing the announced long time existence result. Actually, we prove long time existence and uniqueness in the framework of the more general Besov space. More precisely, Theorem 1 is just a particular case of the following: n . Moreover, if we denote by T (η 0 , V 0 ), the maximal time of existence then there exists some T ∈ [0, T (η 0 , V 0 )) which is bounded from below by an O 1 ε -order quantity and a function G : R → R such that for all t ∈ [0, T ] we have:

U s (η, V ) ≤ G (U s (η 0 , V 0 ))
where U s (η, V ) is dened in relation (1.17).

Let us consider the unique maximal solution (η, V ) of (1.10) that we constructed in the proof of Theorem 2. Of course, the estimate (2.45) holds true for this solution thus we have that:

∂ t N 2 j ≤ CεU j U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + U s H + U 2 s . (4.1) 
We recall that N j is the following quantity:

N 2 j (t) = (1 + ε η L ∞ ) η 2 j + ε (b -c) (1 + ε η L ∞ ) |∇η j | 2 + ε 2 (-c)b (1 + ε η L ∞ ) ∇ 2 η j : ∇ 2 η j + (1 + εη + ε η L ∞ ) V 2 j + ε (d -a + dεη + dε η L ∞ ) (∇V j : ∇V j ) + ε 2 (-a)d (1 + ε η L ∞ ) ∇ 2 V j : ∇ 2 V j .
and that we have:

U j (t) ≤ N j (t) ≤ (1 + 2ε η (t) L ∞ ) 1 2 U j (t) (4.2) 
thus we immediately get that

∂ t N 2 j ≤ CεN j U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + U s H + U 2 s
and by time integration we get that:

U j (t) ≤ N j (t) ≤ N j (0) + Cε t 0 U j U s + HU s + U 2 s + c j (t)(1 + U s ) H 2 + U s H + U 2 s dτ.
Multiplying the last inequality with 2 js and performing a r (Z) summation yields:

U s (t) ≤ N 0 + Cε t 0 H 2 + U s H + H 2 + U 2 s (1 + H) + U 3 s dτ, ≤ N 0 + CεtH 2 + εC 1 + H + H 2 t 0 U s + U 3 s dτ, ≤ N 0 + CεtH 2 + εC 1 + H 2 t 0 U s + U 3 s dτ, (4.3) 
for all t ∈ [0, T (η 0 , V 0 )) where

N 0 = 2 js N j (0) j∈Z r (Z) ≤ (1 + 2ε η 0 L ∞ ) 1 2 (η 0 , V 0 ) B s 2,r . 
Having established (4.3) we are in the position of nding a lower bound of order O 1 ε for the time of existence. Indeed by Gronwall's lemma, and taking in account the explosion criterion of Theorem 2 we get that, supposing T (η 0 , V 0 ) is nite:

lim sup t→T (η0,V0) U s (t) = +∞. (4.4) 
Hence, via Gronwall's lemma, we have:

1 2 ln 1 + 1 (N 0 + εCH 2 T (η 0 , V 0 )) 2 ≤ εC 1 + H 2 T (η 0 , V 0 ) . (4.5) 
If

εCH 2 T (η 0 , V 0 ) ≥ N 0 i.e. T (η 0 , V 0 ) ≥ N 0 εCH 2
, then, we have nothing else to prove. If this is not the case, the LHS member of (4.5) is larger then

1 2 ln 1 + 1 4N 2 0
and we get that:

T (η 0 , V 0 ) ≥ 1 2 ln 1 + 1 4N 2 0 εC (1 + H 2 )
.

Thus, T (η 0 , V 0 ) is always bounded from bellow by a quantity of order O 1 ε . We now prove that on a O 1 ε -order time interval we dispose of uniform bounds for the solution of (1.10). Let us consider

T = sup T ∈ [0, T (η 0 , V 0 )) : ∀t ∈ [0, T ] , U s (t) ≤ 2 N 0 + εCtH 2 .
Then, from (4.3), we deduce that for all t ≤ T we have

U s (t) ≤ N 0 + εCT H 2 + εC 1 + H 2 1 + 4 N 0 + εCT H 2 2 t 0 U s (τ ) dτ
and according to Gronwall's lemma we get that:

U s (t) ≤ N 0 + εCT H 2 exp εT C 1 + H 2 1 + 4 N 0 + εCT H 2 2 . Now, if there exists a β ∈ (0, 2) such that exp εT C 1 + H 2 1 + 4 N 0 + εCT H 2 2
≤ β, then a continuity argument will lead us to the conclusion that T = T (η 0 , V 0 ) which will imply that T (η 0 , V 0 ) = ∞. Thus, for all t ∈ 0, N0 εCH 2 we get that 

U s (t) ≤ 4N 0 ≤ (1 + 2εU s (η 0 , V 0 )) 1 2 U s (η 0 , V 0 ) . ( 4 
then, combining (4.7) with (4.9), we get that:

T ≥ ln 2 εC (1 + H 2 ) (1 + 16N 2 0 )
and thus, using the denition of T , we get that for all t ∈ 0,

ln 2 εC(1+H 2 )(1+16N 2 0 ) U s (t) ≤ 2 N 0 + H 2 ln 2 (1 + H 2 ) (1 + 16N 2 0 ) , ≤ 2 N 0 + ln 2 (1 + 16N 2 0 ) (4.10) ≤ 2 (1 + 2εU s (η 0 , V 0 )) 1 2 U s (η 0 , V 0 ) + ln 2 (1 + 16U 2 s (η 0 , V 0 )) . (4.11) 
Thus, one can choose

     F (x) = min (1+2|x|) 1 2 x CH 2 , ln 2 
C(1+H 2 )(1+16x 2 ) , G(x) = max 2 (1 + 2 |x|) 1 2 x + ln 2 1+16x 2 , 4 (1 + 2 |x|) 1 2 x ,
in order to conclude that T ≥ F (U 0 ) and for all t ∈ [0, T ] we have:

U s (t) ≤ G (U 0 ) .
Remark 4.1. Theorem 1 is just the restatement of the above result when r = 2. Remark 4.2. Observe that the above arguments allow us to derive similar uniform bounds for the quantities 2 js N j j∈Z r (Z) . Final remarks

The results of this paper generalize a part of the long time existence results for the abcd Boussinesq systems that can be found in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF]. Theorem 3 has also a homogeneous counterpart i.e. one can replace the nonhomogeneous Besov space B s1 2,r × B s2 

The remaining cases

As we have seen earlier our method requires the restrictions (1. However the Friedrichs method is not well-suited in this case because when establishing (2.16) we multiplied the frequency localized equation of V j with ηV j . Thus we would run into trouble when establishing the (2.16)-type estimate for the approximations (η m , V m ) introduced in Theorem 2, (3.4). Nevertheless, one can imagine another strategy in order to bypass this inconvenience namely establishing a convergence scheme for (1.10). In order to keep a certain homogeneity in this paper we will just give some brief details of how this strategy would work. Let us take W = 0 to x the ideas. Consider the linear systems:

   (I -εb∆) ∂ t η m+1 + div V m+1 + aε div ∆V m+1 + ε div η m V m+1 = 0, (I -εd∆) ∂ t V m+1 + ∇η m+1 + cε∇∆η m+1 + ε∇V m+1 V m = 0, η m+1 |t=0 = S m+1 η 0 , V m+1 |t=0 = S m+1 V 0 , (L m+1 )

with S m = j≤m-1 ∆ j , and η 0 , V 0 = (0, 0). We claim that it is possible to establish the following (2.16)-type estimate:

1 2 ∂ t η m+1 2 + ε (b -c) ∇η m+1 2 + ε 2 (-c)b∇ 2 η m+1 : ∇ 2 η m+1 + 1 2 ∂ t (1 + εη m ) V m+1 2 + ε (d -a + dεη m ) ∇V m+1 2 + ε 2 (-a)d∇ 2 V m+1 : ∇ 2 V m+1 ≤ εP 1 η m+1 , V m+1 B s 2,r , √ ε ∇ η m+1 , V m+1 B s 2,r , ε ∇ 2 η m+1 , V m+1 B s 2,r × P 2 (η m , V m ) B s 2,r , √ ε ∇ (η m , V m ) B s 2,r , ε ∇ 2 (η m , V m ) B s 2,r
, where P 1 and P 2 are two polynomials of degree 2 with coecients depending only on the a, b, c, d parameters, on the dimension n and on the regularity index s but not on ε. Afterwards, Gronwall's lemma combined with some stability estimates and a continuity argument would allow us to obtain long time existence for (1.10) in the remaining two cases. Of course, we would use in a decisive manner the non-cavitation condition (5.1).

5.2 The abcd-system with smooth general topography

As we have mentioned in the introduction abcd-type models have been established in [START_REF] Chazel | Inuence of bottom topography on long water waves[END_REF] for a bottom given by the surface:

{(x, y, z) : z = -h + εS(x, y)},

where S is smooth enough. In this case the abcd-system reads    (I -εb∆) ∂ t η + div V + aε div ∆V + ε div ((η -S)V ) = 0, (I -εd∆)

∂ t V + ∇η + cε∇∆η + ε 1 2 ∇ |V | 2 = 0, η |t=0 = η 0 , V |t=0 = V 0 .
(5.2)

We claim that our method applies to this system with some minor modications. Let us give a few details. For the sake of simplicity we will suppose that curl V 0 = 0. By localizing the above equation in Fourier space and proceeding in the same manner as in Section 2 we can see that the terms preventing us from establishing long time existence are ε (η -S) η j div V j and -cε 2 (η -S) ∇ div V j ∇η j .

In order to repair this inconvenience we proceed as in Section 2.1, the only dierence being that we must multiply the localized equation of V with (η -S) V j rather than simply ηV j . Thus, we can obtain an estimate similar to (2.16) for the following quantity

1 2 ∂ t η 2 j + ε (b -c) |∇η j | 2 + ε 2 (-c)b ∇ 2 η j : ∇ 2 η j + 1 2 ∂ t (1 + ε(η -S)) V 2 j + ε (d -a + dε(η -S)) (∇V j : ∇V j ) + ε 2 (-a)d ∇ 2 V j : ∇ 2 V j ≤ εG(U s )
where G should be some polynomial function with its coecients not depending on ε. Afterwards proceeding like in the rest of the paper, and taking S ∈ B s 2,r with some s large enough, one can obtain long time existence results for (5.2) similar to those obtained in Theorem 1.

  r = ∞, we know that for every positive β, B s1-β 2,1

.

  For a denition and some basic properties about homogeneous Besov spaces see[START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF], Chapter 2. To our knowledge, space in which one can prove long time existence for the abcd systems. Let us also point out that as opposed to classical Sobolev spaces, working with Besov spaces enables us to attain the critical regularity index s = n 2 + 1.

a

  = d = 0, b > 0, c < 0 and a = b = 0, d > 0, c < 0.

  Theorem 3. Let a, b, c, d as in(1.4) excluding the two cases (1.8), b + d > 0. Let us take r ∈ [1, ∞] and s such that Let us also consider s 1 , s 2 and s 3 dened by(1.12) and W ∈ B s3

	s >	n 2	+ 1 or s =	n 2	+ 1 and r = 1,
	2,r establish long time existence and uniqueness of solutions (see Denition 1.2) for the equation (1.10) n . Then, we can in B s1 2,r × B s2 2,r

with n ≥ 1.

  8) imposed on the parameters a, b, c, d in order to obtain the local existence theory as well as estimate (2.42), see Remark 2.1. However, the general estimations (2.16) (see Section 2.4) are valid for all the parameters (1.4) with b + d > 0. Using (2.16) and supposing that 1 + εη 0 ≥ α > 0,(5.1)we can obtain long time existence for any solutions of (1.10) in the cases:

The solution should be understood in the tempered distribution sense. See Denition 3.1.

From now on we will use the Einstein summation convention over repeted indices.

One of the unknown functions η, V must have at least B s+2 2,r -regularity level while the other one needs B s+1 2,r -regularity level.

Again, because of (1.12) if c = 0 then at least one of η, V has regularity level B s+2 2,r while the other one has regularity level B s+1 2,r see Remark (2.1). Thus, eventually by an integration by parts, we get the announced result.

remember that b + d > 0

Still denoted (η m ) m∈N for the sake of simplicity.
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Appendix: Littlewood-Paley theory

We present here a few results of Fourier analysis used through the text. The full proofs along with other complementary results can be found in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]. In the following if Ω ⊂ R n is a domain then D (Ω) will denote the set of smooth functions on Ω with compact support and S will denote the Schwartz class of functions dened on R n . Also, we consider S is the set of tempered distributions on R n . Proposition 6.1. Let C be the annulus {ξ ∈ R n : 3/4 ≤ |ξ| ≤ 8/3}. There exist two radial functions χ ∈ D(B(0, 4/3)) and ϕ ∈ D(C) valued in the interval [0, 1] and such that:

)

)

the set C = B(0, 2/3) + C is an annulus and we have

Also the following inequalities hold true:

)

From now on we x two functions χ and ϕ satisfying the assertions of the above proposition. The following two lemmas represent some basic properties of the dyadic operators. Lemma 6.1. For any u ∈ S we have:

Lemma 6.2. For any u ∈ S and v ∈ S we have that:

Besov spaces

The following propositions are a list of important basic properties of Besov spaces that are used in the paper. Proposition 6.2. A tempered distribution u ∈ S belongs to B s 2,r if and only if there exists a sequence (c j ) j such that 2 js c j j ∈ r (Z) with norm 1 and an universal constant C > 0 such that for any j ∈ Z we have

r is a Banach space which is continuously embedded in S .

• The inclusion B s 2,r ⊂ B s 2,r is continuous whenever s < s or s = s and r > r .

• We have the following continuous inclusion

Remark 6.1. Taking advantage of the Fourier-Plancherel theorem and using 6.7 one sees that the classical Sobolev space H s coincides with B s 2,2 . Proposition 6.4. Let us consider m ∈ R and a smooth function f : R n → R such that for all multi-index α, there exists a constant C α such that:

Then the operator f (D) is continuous from B s 2,r to B s-m 2,r . Proposition 6.5. Let 1 ≤ r ≤ ∞, s ∈ R and ε > 0. For all φ ∈ S, the map u → φu is compact from B s 2,r to B s-ε 2,r . Proposition 6.6. Let s > 0 and 1 ≤ r ≤ ∞. Then B s 2,r ∩ L ∞ is an algebra. Moreover, we have:

In particular, if s > n 2 or s = n 2 and r = 1, B s 2,r is an algebra.

We end this section with the following result concerning a commutator-type estimate. For a more general form of this result and its proof see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF] 

where α is any multi-index with |α| = 1. Then, the following estimate holds true:

.

14 C 0 is the space of continuous bounded functions which decay at innity.