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This study takes place in the framework of non destructive testing. Based on energy invariants, one can derive boundary quantities which could help to detect damages in a structure. Since only a small part of a structure is equipped with sensors, a lot of information may be lost through the boundary where there is no sensor. In this paper we study several control strategies in order to drive most of the information contained in the energy invariant used, to the sensors.

1. Introduction. Let us consider an open, nonempty, bounded and connected set Ω ⊂ R 2 with a boundary Γ = ∂Ω as shown on figure 1. There are at least two parts on the boundary Γ. One denoted by Γ m , equipped with strain sensors and the complementary -say Γ fwhich is unequipped. On all the boundary, homogeneous Neumann boundary conditions are prescribed. The unit normal to Γ outward Ω is denoted by ν. We assume that there is a hole inside Ω occupying the open set T with boundary ∂T . The goal of the method that we describe in this paper, consists in detecting this hole from boundary measurements. The difficulty is that only a part of the external boundary of Ω is equipped with sensors. Therefore, a part of the information is lost. One can find such situation in [START_REF] Baronian | Numerical method for scattering by inhomogeneities in 3D elastic wave guides[END_REF] and [START_REF] Gardahaut | Ultrasonic wave propagation in dissimilar metal welds-Application of a ray-based model and comparaison with experimental results[END_REF]. One suggestion is to use an optimal control strategy in order to avoid if possible this loss of information through the unequipped boundary on Γ \ ∂T . A control is then set on a sub-open set of Ω say O 1 -denoted by f and is computed in order to minimize the loss. In fact, the cost of the optimal control is introduced with a small parameter -say εand when it tends to zero, we discuss the exact controllability of the quantity on Γ \ ∂T which is the loss of information that we try to cancel. The paper is organized as follows.

Introduction;

2. The mathematical model; 3. The invariant used; 4. The criterion used and the optimality relations; 5. Robustness of the optimal control; 6. Computation of approximate or exact control(s); 7. Conclusion. Finally, we refer to [START_REF] Dumont-Fillon | Contrôle non destructif par les ondes de Love et Lamb[END_REF], [START_REF] Galvagni | The reflection of guided waves from simple supports in pipes[END_REF], [START_REF] Lowe | Characteristics of the reflection of Lamb waves from defects in plates and pipes, Review of Progress in Quantitative NDE[END_REF], [START_REF] Marty | Modelling of ultrasonic guided wave field generated by piezoelectric transducers[END_REF] for a state of the art on the NDT subject. We introduce two functions f and g with compact supports respectively in O 1 and O 2 . Notice that in what follows g is a given data whereas f is a control.

We write Γ = Γ f ∪ Γ m ∪ ∂T. It is assumed that in neighborhoods of the connection points between Γ f and Γ m the unit normal ν satisfies ν.e 1 = 0 on Γ f and ν.e 2 = 0 on Γ m . This implies that all the angles at the corners between Γ f and Γ m are ± π 2 .

Furthermore, in all the paper, χ O denotes the charactheristic function of a set O. 

            
Find u ∈ H 1 (Ω) such that:

-ω 2 u -div(c 2 ∇u) = f + g in Ω, ∂u ∂ν = 0 on Γ.

(

) 1 
As soon as ω 2 is not solution of the following eigenvalue problem (concerning the values of λ, one can refer to [START_REF] Dunford | Linear operators, Part 1: General theory[END_REF], [START_REF] Raviart | Approximation des équations aux dérivées partielles[END_REF]):

find w ∈ H 1 (Ω), λ ∈ R + , ∀v ∈ H 1 (Ω), Ω c 2 ∇w.∇v = λ Ω wv, (2) 
Fredholm's theorem (see [START_REF] Brezis | Analyse fonctionnelle[END_REF], [START_REF] Kato | Perturbation theory for linear operators[END_REF]) enables one to ensure that there is a unique solution to (1) for any couple

(f, g) ∈ L 2 (O 1 ) × L 2 (O 2 )
. The set of eigenvalues λ n solution of the previous model ( 2) is denoted by Λ = {λ n , n ∈ N}. Let us point out that λ 0 = 0. The wave velocity c can be discontinuous for instance in case of a heterogeneous material. For sake of simplicity, it is assumed that it is constant in a neighbourhood of the boundary of Ω.

Remark 1. From classical results, one can prove some regularity results for u but the functional framework (space H 1 (Ω)) only enables one to define u on the boundary of Ω as a function of the space H 1/2 (Γ). Thus, the derivative of u along Γ belongs to the space H -1/2 (Γ) (see [START_REF] Brezis | Analyse fonctionnelle[END_REF], [START_REF] Raviart | Approximation des équations aux dérivées partielles[END_REF]). Nevertheless, using the domain derivative tool introduced by J.

Hadamard [START_REF] Hadamard | Sur une méthode de calcul des variations[END_REF], it is possible to derive estimates on this term in L 2 norm. Let us explain how in the next subsection.

2.2. Energy estimates on u. Let us introduce a vector field θ of R 2 whose components are denoted by θ α and are assumed to be at least in the space W 1,∞ (Ω). In all this section, we assume that the support of θ is contained in a close neighbourhood of the boundary Γ f where there is no sensor (see figure 2). Furthermore, we assume that this neighbourhood doesn't meet the closure of the sets O 1 , O 2 and T.

FIGURE 2. The support of the vector field θ

Let us introduce the bilinear continuous symmetrical form (D s θ is the symmetrical part of the jacobian matrix Dθ):

(u, v) ∈ H 1 (Ω) 2 → d(u, v) = ω 2 [ Γ uv θ.ν - Ω uv div(θ)] + Ω c 2 [(∇u.∇v) div(θ) -2(D s θ∇u.∇v)]. (3) 
We prove the following lemma: 2 and u solution of the Helmoltz's equation [START_REF] Baronian | Numerical method for scattering by inhomogeneities in 3D elastic wave guides[END_REF], one has

Lemma 2.1. (i) For every θ ∈ W 1,∞ (Ω), every (f, g) ∈ L 2 (Ω)
d(u, u) = Γ c 2 | ∂u ∂s | 2 θ.ν. (4) 
(ii) There exists θ ∈ W 1,∞ (Ω), such that for every (f, g) ∈ L 2 (Ω) 2 and u solution of the Helmoltz equation ( 1), one has

d(u, u) = Γ f c 2 | ∂u ∂s | 2 ν 2 1 . (5) 
(iii) There exists a positive constant c 0 such that for every (f, g) ∈ L 2 (Ω) 2 and u solution of the Helmoltz equation ( 1), one has

Γ c 2 | ∂u ∂s | 2 ≤ c 0 ||u|| 2 1,2,Ω . (6) 
Proof -(i) Assuming in a first step, a regularity of u (u ∈ H 2 (Ω) is sufficient), one obtains from (1) the following identities where Dθ is the Jacobian matrix associated to the vector field θ:

0 = -ω 2 Ω u∇u.θ - Ω div(c 2 ∇u)∇u.θ = -ω 2 Γ u 2 2 θ.ν + ω 2 2 Ω u 2 div(θ) - Γ c 2 ∂u ∂ν ∇u.θ + Γ c 2 2 |∇u| 2 θ.ν - Ω c 2 2 |∇u| 2 div(θ) + Ω c 2 (Dθ∇u.∇u).
From the boundary conditions satisfied by u, the previous expression leads to the next one:

Γ c 2 | ∂u ∂s | 2 θ.ν = ω 2 [ Γ u 2 θ.ν - Ω u 2 div(θ)] + Ω c 2 [|∇u| 2 div(θ)-2(Dθ∇u.∇u)]. (7) 
Equation ( 7) ends the proof of assertion (i).

Let us now turn to the second point (ii). Since the term on the lefthanside is an integral over all the boundary of the open set Ω, it could include a contribution from the boundary ∂T of the hole T . But θ is zero far from the neighbourhood of Γ f which doesn't meet the hole T . Therefore this boundary integral is restricted to Γ f ∪ Γ m . Let us choose θ as follows, using the coordinates shown on figure 2, denoting by O the neighbourhood Γ f and by x = (x 1 , x 2 ) a generic point in Ω:

η ∈ W 1,∞ (O) with η(x) = 0 if x / ∈ O, η(x) = 1 if x ∈ Γ f and ν 1 (x) = 0, η(x) = 0 if x ∈ Γ m , and θ =   ν 1 η(x) 0   . (8) 
On Γ f , the function ν 1 = (e 1 , ν) is assumed to be smooth enough (for instance C 1 (Γ f )) and zero in a close vicinity of the junctions between Γ f and Γ m . The function θ is then vanishing at the extremities of Γ f and on Γ m . Therefore one has from [START_REF] Galvagni | The reflection of guided waves from simple supports in pipes[END_REF]:

Γ f c 2 | ∂u ∂s | 2 ν 2 1 = ω 2 [ Γ f u 2 θ.ν - Ω u 2 div(θ)] + Ω c 2 [|∇u| 2 div(θ) -2(Dθ∇u.∇u)], (9) 
which is the point (ii) [START_REF] Dumont-Fillon | Contrôle non destructif par les ondes de Love et Lamb[END_REF]. Let us notice that one can easily obtain that there exists a positive constant say c 0 such that:

Γ f c 2 | ∂u ∂s | 2 ν 2 1 ≤ c 0 ||u|| 2 1,2,Ω . (10) 
The general case of solution with finite energy can be easily obtained with a density argument.

Let us now turn to the proof of the third point (iii). Let us notice that u is not globally H 2 (Ω) since the velocity is not constant. Its proof is based on suitable choices of vector fields θ in assertion [START_REF] Galvagni | The reflection of guided waves from simple supports in pipes[END_REF]. Let T be an open set with T ⊂ T. With θ ∈ C ∞ 0 (T) with θ = ν on ∂T , we get (5) on ∂T.

Let K ⊂ Γ f be a compact set with K ∩ ∂Γ f = ∅. With θ = ην on Γ f , η = 1 on K and η = 0 on Γ m , (7) leads to

∂u ∂s ∈ L 2 loc (Γ f ) and u ∈ H 1 (Ω) → ∂u ∂s ∈ L 2 loc (Γ f
) is linear and continuous. It is easy to obtain an analogous result on Γ m thus ∂u ∂s ∈ L 2 loc (Γ m ). The last point concerns the corners. Thanks to our hypothesis on the corners between Γ f and Γ m (the angles are ±π/2) and du to the fact that c is constant there, it is known that the function u is a H 2 -one near the corner. This easily ends Lemma's proof.

Remark 2. If u is not solution of the Helmoltz equation ( 1), the previous equality is not necessarily true. Remark 3. Lemma 2.1(ii) proves that d is a positive bilinear form (with the suitable choice of θ). One can ask if it is definite. We give a positive answer under some geometric conditions. If u is regular (say C 2 (Ω)) and if d(u, u) = 0 then ∂u ∂s = 0 on Γ f where ν 1 = 0. But u is locally (in the neighbourhood O f of Γ f ) solution of:

-ω 2 u -div(c 2 ∇u) = 0 in O f and ∂u ∂ν = 0 on Γ f .
The solution of this model can be computed using local coordinates (s, ξ) (see figure 3) assuming that the boundary Γ f is smooth enough. Let us set:

q = ∂u ∂s in O f .
It is solution of a partial differential equation on O f and satisfies both:

q = ∂q ∂ν = 0 on Γ f .
Then, one can conclude from Holmgrem theorem that q = 0 in O f and thus u is a function of the only coordinate ξ (see figure 3) in O f . Because u is therefore constant on Γ f , one has (R is the radius of curvature of Γ f and the velocity c is assumed to be constant for sake of simplicity) along the the line normal to

Γ f -c 2 ∂ 2 u ∂ξ 2 - c 2 R + ξ ∂u ∂ξ -ω 2 u = 0.
Let us consider for instance a point M 0 of Γ f where R = ∞ (inflection point). The equation satisfied by u becomes along the normal to Γ f at this point: 

-c 2 ∂ 2 u ∂ξ 2 -ω 2 u = 0,
∂u ∂ν (M 1 ) = ∂u ∂ξ (M 1 ) ν(M 0 ).ν(M 1 ) = 0.
Assuming that ν(M 0 ).ν(M 1 ) = 0, and that (D is the lenght between M 0 and M 1 ):

ω ∈ πc D Z, if the line doesn't meet the open set O 1 ∪ O 2 ,
and one can conclude thatu = 0 along this line and therefore, from Holmgrem's theorem again,

u = 0 on Ω -(O 1 ∪ O 2 ).
Of course, any regular functions with compact supports in O 1 and/or O 2 satisfies d(u, u) = 0 thus our remark seems to be optimal.

3. The invariant used. Let us come back to the analogous formula (7) but derived with now θ = e 1 (there is no more truncation η). Therefore one should add the terms on O 1 and O 2 which contain respectively the support of the two functions f and g. This leads to the following expression:

Γ c 2 | ∂u ∂s | 2 ν 1 -ω 2 Γ u 2 ν 1 - O1 f ∂u ∂x 1 - O2 g ∂u ∂x 1 = 0. (11) 
But the integral over Γ f includes two contributions: one where ν 1 = 0, and a second one denoted by Γ 1 f , where ν 1 = 0. The contributions on Γ m and on the boundary of the defect (the hole) ie ∂T , are taken into account in this expression. For any ω, f and g given, we define the functional G by:

G(ω, f, g) = Γm c 2 | ∂u ∂s | 2 ν 1 -ω 2 Γm u 2 ν 1 - O1 f ∂u ∂x 1 - O2 g ∂u ∂x 1 . ( 12 
)
This quantity can be mesured as far as u is measured on Γ m but also on O 1 and O 2 . In fact from [START_REF] Lions | Sur le contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles[END_REF] one can state that the term representing the loss of information in the global expression of G is:

∆(ω, f, g) = - Γ f ∪Γ ∂T c 2 | ∂u ∂s | 2 ν 1 + ω 2 Γ f ∪Γ ∂T u 2 ν 1 . (13) 
If one can ensure by a judicious choice of f that the integral over Γ f are zero, the functional G becomes an indicator of the presence of the hole. Indeed, let us notice that if there is no hole one can claim that G = 0. Conversely, if for every ω ∈ [ω 1 , ω 2 ], (ω 1 < ω 2 ) and for every g ∈ L 2 (O 2 ), one has G = 0 then it is possible to discuss the non existence of a defect as in [START_REF] Destuynder | Can we hear the echos of cracks?[END_REF] and [START_REF] Ph | Hole detection in 2D structure using NDT[END_REF]. For instance, if Γ f is flat, there would'nt be any contribution from the boundary Γ f in the expression of G.

The terms on Γ f can be viewed as a loss of information and more precisely as a perturbator with respect to the meaning of G. This is the reason why it is suggested in this paper to use the function f as a control variable in order to cancel this parasite term on Γ f . This control should be chosen such that the information measured on Γ m is still meaningful. In fact, one can observe that the term is vanishing if

[-ωu ± c ∂u ∂s ]ν 1 = 0 on Γ f .
Hence, we suggest to define a control f such that -for instance-

[-ωu + c ∂u ∂s ]ν 1 = 0 on Γ f .
4. The criterion used and the optimality relations. For any f ∈ L 2 (O 1 ) we define the criterion:

f ∈ L 2 (O 1 ) → J ε (f ) = 1 2 Γ f (-ωu + c ∂u ∂s ) 2 ν 2 1 ds + ε 2 O1 f 2 dx. ( 14 
)
It is a positive and strictly convex function of f . Furthermore, it is continuous from Lemma 2.1. In fact, for the numerical implementation and from [START_REF] Lowe | Characteristics of the reflection of Lamb waves from defects in plates and pipes, Review of Progress in Quantitative NDE[END_REF] it is more accurate to use the following expression for J ε even if for the continous formulation it is strictly the same. Let us make it explicit (τ 1 = (e 2 , ν) and R is the radius of curvature of Γ f ):

J ε (f ) = 1 2 Γ f (ω 2 u 2 ν 2 1 -2ωcu ∂u ∂s ν 2 1 + c 2 ( ∂u ∂s ) 2 ν 2 1 )ds + ε 2 O1 f 2 dx = Γ f ων 1 (ων 1 + cτ 1 R )u 2 + 1 2 Ω (c 2 |∇u| 2 -ω 2 u 2 )div(θ) - Ω c 2 (Dθ∇u.∇u) + ε 2 O1 f 2 dx. ( 15 
)
The advantage of this last expression is that it is stable in the space H 1 (Ω) which is the right one in a numerical approximation of the initial model [START_REF] Baronian | Numerical method for scattering by inhomogeneities in 3D elastic wave guides[END_REF]. Let us now introduce the model which can be used in order to increase the efficiency of the strategy for detecting defects. min

f ∈L 2 (O1) J ε (f ). (16) 
The classical optimization results (see [START_REF] Lions | Sur le contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles[END_REF], [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]) can be applied to the previous model and the solution is denoted by f ε . The corresponding solution is u ε .This leads to the result that we summarize hereafter:

Theorem 4.1. Let g ∈ L 2 (O 2 ) and ω 2 / ∈ Λ.
For sake of simplicity, it is also assumed that the wave velocity c, is constant on the boundary Γ f . For any ε > 0 there is a unique solution to the problem [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. Furthermore, we introduce the adjoint state p which is solution of:

                 -ω 2 p ε -div(c 2 ∇p ε ) = 0 in Ω, ∂p ε ∂ν = 0 on Γ m ∪ Γ ∂T , c 2 ∂p ε ∂ν = (ω 2 ν 2 1 + 2 τ 1 ν 1 ωc R )u ε -2 τ 1 ν 1 c 2 R ∂u ε ∂s -c 2 ν 2 1 ∂ 2 u ε ∂s 2 on Γ f , (17) 
where τ 1 = e 2 .ν and R is the radius of curvature of the boundary Γ f . The optimality condition for the solution f of ( 16) is:

p ε + εf ε = 0 in O 1 . (18) 
Thus the solution of ( 16) is equivalent to solve (1)-( 17) and [START_REF] Ribichini | Study and comparison of different EMAT configurations for SH wave inspection[END_REF].

Remark 4. In practical implementation it is easier and more stable to use the expression of J ε given at [START_REF] De La Barrière | Cours d'automatique théorique[END_REF]. But this expression is equivalent to [START_REF] Necas | Les méthodes directes en théorie des équations elliptiques[END_REF] for the continuous model. The solution method which can be used can be a direct solving of the linear system (1)-( 17) and [START_REF] Ribichini | Study and comparison of different EMAT configurations for SH wave inspection[END_REF]. Another possibility is to use the preconditioned (by the diagonal of the quadratic form with respect to f representing J ε ) conjugate gradient algorithm which is a very popular and efficient method.

5. Robustness of the optimal control. The question that we discuss in this section concerns the asymptotic behaviour of the solution f when ε → 0. Let us assume that there exists at least one control function f e ∈ L 2 (O 1 ) such that if u e is the solution of (1) with this choice for f , one has:

(-ωu e + c ∂u e ∂s )ν 1 = 0 on Γ f .
We say that f e is an exact control for the criterion chosen. In this case, one has the following result.

Theorem 5.1. Let f ε be the unique solution of problem [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. The corresponding solution to equation ( 1) is denoted by u ε . There exists a unique function-say f 0 ∈ L 2 (O 1 )and the corresponding solution u 0 of (1) which satisfy the following requirements:

               1. (-ωu 0 + c ∂u 0 ∂s )ν 1 = 0 on Γ f ; 2. lim ε→0 ||f ε -f 0 || 0,O1 = 0 and lim ε→0 ||u ε -u 0 || 1,Ω = 0; 3. f 0 is the minimal exact control in L 2 (O 1 ). ( 19 
)
Proof Let us first observe that:

J ε (f ε ) ≤ J ε (f e ).
Hence:

       ||f ε || 0,O1 ≤ ||f e || 0,O1 , Γ f |(-ωu ε + c ∂u ε ∂s )ν 1 | ds ≤ ε||f e || 2 0,O1 .
This enables one to deduce that there is a subsequence f ε and an element

f 0 ∈ L 2 (O 1 )
such that:

f ε f 0 in L 2 (O 1 )-weak.
Classically, u ε is weakly convergent to u 0 solution of (1) associated to f 0 , in the space H 1 (Ω). From the semi-continuity of convex functions, one can deduce that:

(-ωu 0 + c ∂u 0 ∂s )ν 1 = 0.
This proves that f 0 is an exact control.

From the property that f 0 is an exact control one deduces that on the one hand:

O1 |f ε | 2 ≤ O1 |f 0 | 2 ,
and on the other hand:

O1 |f ε -f 0 | 2 = O1 O1 |f ε | 2 -2 O1 f ε f 0 + O1 |f 0 | 2 ≤ O1 |f 0 | 2 -2 O1 f ε f 0 + O1 |f 0 | 2 = 2 O1 f 0 (f 0 -f ε ).
Therefore:

lim ε →0 ||f ε -f 0 || 0,O1 = 0.
Let us imagine that there are two accumulation points to the sequence f ε -say f 0 and f 1corresponding respectively to two subsequences of f ε denoted by f ε 0 and f ε 1 . Both are exact control and this leads to:

||f 0 || 0,O1 ≤ lim inf ε 0 →0 ||f ε 0 || 0,O1 ≤ ||f 1 || 0,O1 ≤ lim inf ε 1 →0 ||f ε 1 || 0,O1 ≤ ||f 0 || 0,O1 .
Or else:

||f 0 || 0,O1 = ||f 1 || 0,O1 .
In other words, because the functions f 0 and f 1 are both exact controls, one has:

J ε (f 0 ) = J ε (f 1 ).
But J ε is stricly convex, thus f 0 = f 1 . Finally we proved the uniqueness of the accumulation point and all the sequence f ε converges to this single point f 0 . From the inequality:

∀f e ∈ L 2 (O 1 ), (exact control), ||f 0 || 0,O1 ≤ lim ε→0 inf||f ε || 0,O1 ≤ ||f e || 0,O1
we also deduce that f 0 is the exact control with the minimal L 2 (O 1 )-norm. 2

Computation of approximate or exact control(s).

A first possibility consists in minimizing the functional J ε . But the result can't be stable if there is no exact control, at least as far as one is concerned with the continuous model. Let us discuss two direct methods for computing an approximation of an exact control (if it exists).

6.1. The asymptotic strategy. The first idea is to look for an asymptotic expansion of u ε , p ε , f ε for ε small enough. Let us set:

           u ε = u 0 + εu 1 + . . . , p ε = p 0 + εp 1 + . . . , f ε = f 0 + εf 1 + . . . . (20) 
Remark 5. At this step, nothing guaranties that f 0 exists but if it is the case, it is natural to use the same notation as the one used for denoting the limit of f ε discussed in the previous section. In fact, in the following of this section, we proceed by necessary conditions which should be satisfied by f 0 .

By introducing the assumed expressions (20) into the equations satisfied by (u ε , p ε , f ε ) and by equating the term of same power in the resulting expressions, one obtains:

1. Order 0:

                                             -ω 2 u 0 -div(c 2 ∇u 0 ) = f 0 χ O1 + gχ O2 in Ω ∂u 0 ∂ν = 0 on ∂Ω, -ω 2 p 0 -div(c 2 ∇p 0 ) = 0 in Ω ∂p 0 ∂ν = 0 on Γ m ∪ ∂T ; c 2 ∂p 0 ∂ν = (ω 2 ν 2 1 + 2 τ 1 ν 1 ωc R )u 0 -2 τ 1 ν 1 c 2 R ∂u 0 ∂s -c 2 ν 2 1 ∂ 2 u 0 ∂s 2 on Γ f , p 0 = 0 in O 1 . (21) 
2. Order 1:

                                             -ω 2 u 1 -div(c 2 ∇u 1 ) = f 1 χ O1 in Ω ∂u 1 ∂ν = 0 on ∂Ω, -ω 2 p 1 -div(c 2 ∇p 1 ) = 0 in Ω ∂p 1 ∂ν = 0 on Γ m ∪ ∂T, c 2 ∂p 1 ∂ν = (ω 2 ν 2 1 + 2 τ 1 ν 1 ωc R )u 1 -2 τ 1 ν 1 c 2 R ∂u 1 ∂s -c 2 ν 2 1 ∂ 2 u 1 ∂s 2 on Γ f , p 1 + f 0 = 0 in O 1 . (22) 
3. and so on . . .

6.1.1.

Treatment of the order 0. Assuming that the boundary Γ f is smooth enough, the first point is that from Holmgrem theorem one can state that p 0 is zero. This implies that:

(ω 2 ν 2 1 + 2 τ 1 ν 1 ωc R )u 0 -2 τ 1 ν 1 c 2 R ∂u 0 ∂s -c 2 ν 2 1 ∂ 2 u 0 ∂s 2 = 0 on Γ f .
Or else, using the variational formulation for p 0 :

(-ωu 0 + c ∂u 0 ∂s )ν 1 = 0 on Γ f . 6.1.2. Treatment of the order 1. From f 0 = -p 1 in O 1 , one deduces that u 0 should be solution of:

     -ω 2 u 0 -div(c 2 ∇u 0 ) = -p 1 χ O1 + gχ O2 in Ω, ∂u 0 ∂ν = 0 on ∂Ω.
Let us define the sub-open set of Γ f denoted by Γ 1 f and such that one has on this subset ν 1 = 0 (see figure (4)).

Let us point out that u 1 is unknown. The function p 1 will be defined as soon as ∂p 1 ∂ν on Γ 1 f will be known. Let us construct a relation concerning this term which will ensure that the condition on Γ 1 f concerning u 0 will be satisfied.

From the equation satisfied by u 0 one should have for any smooth enough function q:

-ω

2 Ω u 0 q - Ω div(c 2 ∇u 0 )q = - O1 p 1 q + O2 gq. ( 23 
) FIGURE 4. Definition of Γ 1 f
From two integrations by parts and assuming that for a given smooth enough function µ, (for instance in the space H 1 (Γ 1 f )), the function q is solution of:

-ω 2 q -div(c 2 ∇q) = 0 in Ω, ∂q ∂ν = -(c ∂µ ∂s + ωµ) on Γ 1 f , ∂q ∂ν = 0 on ∂Ω \ Γ 1 f ,
one obtains the following identity which should be satisfied by any function µ smooth enough in order to make sense to the expressions used:

∀µ ∈ H 1 (Γ 1 f ), - Γ 1 f c 2 u 0 (c ∂µ ∂s + ωµ) + O1 p 1 q = O2 gq. (24) 
But, at this step, nothing is done in order to prescribe the condition which should be satisfied by u 0 on Γ 1 f (where ν 1 = 0). Assuming for instance that µ ∈ H 1 0 (Γ 1 f ), one can rewrite the relation (24) as follows:

∀µ ∈ H 1 0 (Γ 1 f ), Γ 1 f c 2 (c ∂u 0 ∂s -ωu 0 )µ + O1 p 1 q = O2 gq. ( 25 
)
Now we apply the condition that we are wishing for u 0 . This implies that:

∀µ ∈ H 1 0 (Γ 1 f ), O1 p 1 q = O2 gq. (26) 
6.1.3. Characterization of an exact control. We are now able to characterize the exact control with L 2 (O 1 )-minimun norm. Let us introduce the linear form l(.) and the bilinear and continuous form β(., .) defined on the space

H 1 0 (Γ 1 f ) by:                                                  µ ∈ H 1 0 (Γ 1 f ), l(µ) = O2 gq(µ), (ξ, µ) ∈ H 1 0 (Γ 1 f ) → β(ξ, µ) = O1 p 1 (ξ)q(µ),
where p 1 (ξ) and q(µ) are respectively solutions of:

-ω 2 p 1 (ξ) -div(c 2 ∇p 1 (ξ)) = 0, -ω 2 q(µ) -div(c 2 ∇q(µ)) = 0 in Ω, ∂p 1 (ξ) ∂ν = 0, ∂q(µ) ∂ν = 0 on Γ m ∪ ∂T ∪ {Γ f \ Γ 1 f }, ∂p 1 ∂ν = -(c ∂ξ ∂s + ωξ), ∂q ∂ν = -(c ∂µ ∂s + ωµ) on Γ 1 f . ( 27 
)
We then consider the following problem:

   find ξ ∈ H 1 0 (Γ 1 f ) such that: ∀µ ∈ H 1 0 (Γ 1 f ), β(ξ, µ) = l(µ). (28) 
Let us assume that there is a solution -say ξto equation (28). By comparing ( 28) and ( 25), one deduces that:

∀µ ∈ H 1 0 (Γ 1 f ), Γ 1 f (c ∂u 0 ∂s -ωu 0 )µ = 0, or else c ∂u 0 ∂s -ωu 0 = 0. (29) 
This proves that -p 1 χ O1 in an exact control for u 0 . In fact, u 0 would satisfy the required condition on Γ 1 f . The main question is now to study the variational model (28). Unfortunately, this is a difficult problem that we are still not able to solve completely. On the one hand, the bilinear form β(., .) is symmetrical, positive and clearly continuous on

H 1 0 (Γ 1 f ). On the other hand, β(ξ, ξ) = 0 implies that p 1 (ξ) = 0 on the open set O 1 .
But, p 1 is solution of the equation ( 22). Thus -assuming that all the necessary hypotheses are satisfied, one can claim from Holmgrem's theorem that p 1 = 0 on Ω and finally that:

c ∂ξ ∂s + ωξ = 0 on Γ 1 f .
By solving this ordinary differential equation on each connected component of Γ 1 f , one obtains: ξ = Ce -ω c s , and from the boundary condition satisfied by ξ, one finally gets that ξ = 0. Hence, the kernel of β(., .) is reduced to {0}. Because the mapping:

ξ ∈ H 1 0 (Γ 1 f ), → β(ξ, ξ
) is a continous norm on the space H 1 0 (Γ 1 f ), one can define (see [START_REF] Necas | Les méthodes directes en théorie des équations elliptiques[END_REF]) the completed space V β of H 1 0 (Γ 1 f ) with respect to this norm. As soon as the function g belongs to the dual space V β , the Lax-Milgram theorem enables to claim that (28) has a unique solution in V β . The point is to characterize this completed space (V β and its dual V β ). This could be derived from an inverse inequality but it is not established excepted in very particular geometry (and will be the study of forthcoming paper). Nevertheless in practical applications one can use the fact that the solution of the acoustic model is close to an eigenmode as soon as the frequency used ( ω 2π

) is close to an eigenfrequency of the structure. This is the discussion suggested in the next subsection. 6.1.4. What happens when ω 2 is close to an eigenvalue of the model. Let us consider a particular case which is similar to a finite dimensional situation. This is the case when the pulsation ω is very close to the square root of an eigenvalue of the acoustic operator (see equation 2). This is the resonance case. The solution would be close to an eigenfunction of the Helmotz's operator and this is the property used on order to construct an approximate control. Let us assume for sake of brevity, that the eigenvalue λ i0 is single and let us set:

ω 2 = λ i0 -υ. (30) 
For any ξ ∈ H 1 0 (Γ 1 f ), (in fact one could extend the expression to ξ ∈ L 2 (Γ 1 f )), the solution p 1 is :

                       p 1 = i≥1 - Γ 1 f (c ∂ξ ∂s + ωξ)w i λ i -ω 2 w i = - Γ 1 f (c ∂ξ ∂s + ωξ)w i0 υ w i0 - i≥1, i =i0 Γ 1 f (c ∂ξ ∂s + ωξ)w i υ + λ i -λ i0 w i . (31) 
Hence assuming that |υ| << δ = min i≥1, i =i0 |λ i -λ i0 |, one has:

                     ||p 1 + Γ 1 f (c ∂ξ ∂s + ωξ)w i0 υ w i0 || 0,O1 ≤ ||p 1 + Γ 1 f (c ∂ξ ∂s + ωξ)w i0 υ w i0 || 0,Ω = [ i =i0 | Γ 1 f (c ∂ξ ∂s + ωξ)w i υ + λ i -λ i0 | 2 ] 1/2 ≤ 1 δ -|υ| ||p 1 c || 0,Ω , (32) 
where p 1 0 is defined by:

p 1 c = p 1 -p 1 i0 , with p 1 i0 = - Γ 1 f (c ∂ξ ∂s + ωξ)w i0 υ w i0 . (33) 
Let us choose a function ξ = αw i0 ν 1 ∈ H 1 0 (Γ 1 f ) where α is constant. The coefficient ν 1 ensures that this choice for ξ is effectively zero on the boundary of Γ 1 f as soon as the boundary Γ f is at least C 1 in order to avoid discontinuity of ν 1 . Then one has (R is the radius of curvature of the boundary Γ 1 f ; its is assumed to be zero at all the extremities of connected components of Γ 1 f ):

Γ 1 f (c ∂ξ ∂s + ωξ)w i0 = α Γ 1 f (ων 1 + cτ 1 2R )w 2 i0 .
Hence, assuming that ων 1 + cτ 1 2R = 0 (which is compatible with the fact that we choose ω for a given structure), one can claim that ||p 1 i0 || 0,1 1/υ. Finally, there is a constant c 1 such that with this choice of ξ, one has:

||p 1 -p 1 i0 || 0,O1 ≤ c 1 |υ| ||p 1 i0 || 0,O1 (34) 
The coefficient α is defined from (28) by:

α = O2 gp 1 i0 O1 (p 1 i0 ) 2 , ( 35 
)
and the approximation of the control f 0 is given by:

f 0 i0 = -αp 1 i0 χ O1 , (36) 
where p 1 i0 is defined by solving (22), and introducing ξ = ξ 0 = w i0 ν 1 in the expression of p 1 i0 given at (33).

Remark 6. Clearly the choice, made for ξ is restrictive. But if the frequency ω/2π is close to an eigenfrequency of the structure, it is justified as far as the the solution of the Helmoltz's equation of our model is also close to the corresponding eigenmode. It is possible, without any new difficulty, to expand the method with a finite number of eigenmodes, instead of only one has we did. But in such a case the choice of ξ is done in the finite dimensional space spanned by a choice of vectors w i ν 1 restricted to the boundary Γ 1 f (see [START_REF] De La Barrière | Cours d'automatique théorique[END_REF]). In this case, the coefficient α is replaced by a vector and defined by solving a linear system deduced from (28) as for (35).

Remark 7. The control can be one of the two methods described in this paper. The first one consists in finding the optimal control defined in section (4) at equation ( 16) with a particular choice of the parammeter ε. In fact, the Helmoltz's equation will be replaced in a numerical approximation by a finite element model or by a modal model using the eigenmodes computed from a finite element method. In fact, a splitting of the spectrum will be used in order to focus on the eigenmodes which will be concerned by the non destructive strategy suggested. From the analysis performed in section 5, the solution of the optimal control model (in the reduced basis spanned by the selected eigenvectors), one can claim that the solution converges as ε → 0 to the one of the limit model that has been studied in this subsection. 6.2. The simplist method. The goal of the control method that has been introduced in section 4, is to reduce the loss of information on the boundary Γ 1 f . The criterion J ε which has been introduced at (15) contains a regulation term on the control which represents the cost of the control. We studied in section 6 the asymptotic behaviour of the solution (optimal control) when the marginal cost ε tends to zero. In this section, we discuss another strategy which is not yet mathematically founded but which can be used as a simple -and even simplist-method. In the following we shall use the notation u 0 = u g + z where u g is solution of:

       u g ∈ H 1 (Ω), such that: ∀v ∈ H 1 (Ω), -ω 2 Ω u g v + Ω c 2 ∇u g .∇v = O2 gv, (37) 
and our goal is still to define z such that (-ωu 0 +c ∂u 0 ∂s )ν 1 would be as smallest as possible on Γ 1 f . We try in this section to avoid the difficulty connected to the small parameter ε. The basic idea is to try to solve the terms of order one for p 1 in the assumed asymptotic expansion (27). For any ξ ∈ L 2 (Γ f ), let us set p 1 ∈ H 1 (Ω) solution of:

                 -ω 2 p 1 -div(c 2 ∇p 1 ) = 0 in Ω, ∂p 1 ∂ν = 0 on Γ m ∪ ∂T ∪ {Γ f \ Γ 1 f }, ∂p 1 ∂ν = ξ on Γ 1 f . (38) 
Then, let us introduce z ∈ H 1 (Ω) solution of:

     -ω 2 z -div(c 2 ∇z) = -p 1 χ O1 in Ω, ∂z ∂ν = 0 on ∂Ω.
We introduce the mapping L from L 2 (Γ f ) into itself by (see 5 for the regularity property of ∂z ∂s on Γ f ):

ξ ∈ L 2 (Γ 1 f ) → L(ξ) = ν 1 (-ωz + c ∂z ∂s ).
For another function µ ∈ L 2 (Γ 1 f ), we define the function y defined similarly to z with ξ. Let us now consider two functions (ξ, µ) ∈ [L 2 (Γ 1 f )] 2 and let us define the symmetrical and positive bilinear form:

a(ξ, µ) = Γ 1 f (-ωz + c ∂z ∂s )(-ωy + c ∂y ∂s )ν 2 1 ,
and the linear form l(.):

µ ∈ L 2 (Γ 1 f ) → l(µ) = - Γ 1 f (-ωu g + c ∂u g ∂s )(-ωy + c ∂y ∂s )ν 2 1 .
There is a kernel K to a(., .) which is such that:

K = {µ ∈ L 2 (Γ 1 f ), (-ωy + c ∂y ∂s )ν 1 = 0 on Γ 1 f }. (39) 
From the linearity and continuity of the mapping:

µ ∈ L 2 (Γ 1 f ) → (-ωy + c ∂y ∂s )ν 1 ∈ L 2 (Γ 1 f ), one can claim that K is a closed sub-set of L 2 (Γ 1 f ). More precisely, K is a finite dimen- sional sub-space of L 2 (Γ 1 f ) because it corresponds to functions such that: y = A k e ω c s
on each connected component of Γ 1 f (and we assume that there is a finite number of such components). Let us denote by:

V = L 2 (Γ 1 f )/K c ( 40 
)
the completed space of L 2 (Γ 1 f )/K equipped with the norm (which is a semi-norm on L 2 (Γ 1 f )) defined by: µ ∈ L 2 (Γ 1 f ) → a(µ, µ). One can observe that: ∀µ ∈ K, l(µ) = 0.

Therefore, it makes sense to try to solve the following variational problem:    find ξ ∈ V such that:

∀µ ∈ V, a(ξ, µ) = l(µ).

(41)

It is equivalent to minimize over the space L 2 (Γ 1 f ) the functional:

G(ξ) = 1 2 a(ξ, ξ) -l(ξ),
or else, because z is a function of ξ:

min ξ∈L 2 (Γ 1 f ) 1 2 Γ 1 f | -ω(z + u g ) + c ∂(z + u g ) ∂s | 2 ν 2 1 .
If the minimum is zero, then the control f = -p(ξ)χ O1 is exact. Let us explain why. In this case, once ξ defined, we observe that the function h = u g + z satisfies the condition:

(-ωh + c ∂h ∂s )ν 1 = 0 on Γ f .

Hence the function p 1 obtained by solving (38) with the value of ξ found by solving (41) is such that f e = -p 1 χ O1 is an exact control. One could object that it is necessary to characterize the completed of the quotient space V /K c in order to ensure that we are able to compute practically f e as an element of the space L 2 (O 1 ). Obviously the question is simplified as far as one restricts the space L 2 (Γ 1 f ) to a finite dimensional subspace which is the case of a finite element approximation of the solution of (41). The goal of this section is to start a discussion and to underline the difference with the asymptotic method described in subsection 6.1 7. Conclusion. In this paper we have discussed the possibility to extend the strategy introduced in [START_REF] Destuynder | Can we hear the echos of cracks?[END_REF] for detecting defects in a rectangular structure. In the present, case the geometry can be more general but a control function has been introduced in order to restrict the loss of information through the lateral boundary of the open set Ω which is not equipped with sensors and which is not parallel to the axis x 1 . This control function is solution of an optimal control model and can be computed for any given excitation (named g in this paper) and for any -also given-frequency ω 2π . The main result is that the boundary criterion which permits this reduction, is stable because of an hidden regularity of the Helmoltz's equation. Furthermore, it has been proved that the control method is robust (stable) when the cost of the control (the parameter ε) tends to zero as far as the frequency is chosen close to an eigenfrequency of the structure.

Another step would be to prove an inverse inequality in order to characterize the functional space V β (see section 6) in which the function ξ of section 5 should be. But let us underline that this choice of frequency -quite close to an eigenfrequency of the structureenables one to get an almost finite dimensional control model for which the question is solved.
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 2 The mathematical model. Let us consider the open set Ω as shown on figure 1 and two open and nonempty sets O 1 and O 2 in Ω with O 1 ∪ O 2 ⊂ Ω and O 1 ∩ O 2 = ∅.
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 1 FIGURE 1. The open set Ω
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 3 FIGURE 3. Local coordinates near Γ f