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Bradley-Terry model in random environment :

does the best always win?

Raphael Chetrite Roland Diel Matthieu Lerasle

September 24, 2015

Abstract

We consider in this article a championship where the matches fol-

low a Bradley-Terry model in random environment. More precisely the

strengths of the players are random and we study the influence of their dis-

tributions on the probability that the best player wins. First we prove that

under mild assumptions, mainly on their moments, if the strengths are

unbounded, the best player wins the tournament with probability tending

to 1 when the number of players grows to infinity. We also exhibit a suf-

ficient convexity condition to obtain the same result when the strengths

are bounded. When this last condition fails, we evaluate the number of

players who can be champion and the minimal strength for an additional

player to win. The proofs are based on concentration inequalities and the

study of extreme values of sequences of i.i.d. random variables.

Keywords and phrases : Bradley-Terry model, random environment, paired com-

parison, complex systems.

AMS 2010 subject classification : 60K37, 60G70, 60K40

1 Introduction and Results

The result of a match in a sport competition is determined by a multitude
of factors such as the difference of strengths between opponents, the fitness
of players or coach, the players injuries or some psychological aspects such as
motivation or fear. This uncertainty is one of the main reasons for fascination
with sport.
The question here is the effect of this randomness on the determination of the
winner in a competition. It was inspired by the book [21]. We study a simple
toy model of competition. More precisely, we consider a championship, with
N players/teams, called {1, . . . , N }. During this competition, every player
faces all the others once. When i faces j, the result is described by a number
Xi,j that is equal to 1 when i beats j and 0 if j beats i, which implies the
relation Xi,j = 1 − Xj,i. The final result of the championship is described by
the numbers of victories of each player i, this ”score” is denoted by Si and
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verifies Si =
∑

j 6=i Xi,j . We call winner every player that ends up with the
highest score.
In our model, every Xi,j is a Bernoulli random variable. To describe its param-
eter, we introduce, for every player i, a positive real number Vi modeling its
intrinsic value, that is its ”strength” or its ”merit”. Given V

N
1 ≡ (V1, . . . , VN ),

the distribution of (Xi,j)1≤i<j≤N is described as follows : all matches are inde-
pendent and

∀1 ≤ i < j ≤ N, P
(

Xi,j = 1|VN
1

)

=
Vi

Vi + Vj
. (1)

This model was introduced by Bradley and Terry in [3] and was studied in the
statistical literature, see for example [6] or [19]. The vector VN

1 is fixed and the
problem is to estimate it given the observation of (Xi,j)1≤i<j≤N .
In this paper, VN

1 is a random vector whose distribution is described as follows.
Let U

N
1 = (U1, . . . , UN ) denote i.i.d. random variables with tail distribution

function Q and support suppQ, let also U denote a copy of U1 independent
of UN

1 . To avoid trivial issues, suppose that all Ui are almost surely positive.
For any i ∈ {1, . . . , N }, Vi denotes the i-th order statistic1 of the vector U

N
1 ,

in particular V1 ≤ . . . ≤ VN . It means that the larger the index of a player
is, the ”stronger” he is. Moreover, the set {V1, . . . , VN } is equal to the set
{U1, . . . , UN } counted with multiplicity, which guarantees that, for any function

f ,
∑N

i=1 f(Vi) =
∑N

i=1 f(Ui).
Throughout the article, P denotes the annealed probability of an event with
respect to the randomness of V

N
1 and (Xi,j)1≤i<j≤N , while PV denotes the

quenched probability measure given V
N
1 , that is P

(

· |VN
1

)

. In particular,

∀1 ≤ i < j ≤ N, PV (Xi,j = 1) =
Vi

Vi + Vj
.

We are interested in the asymptotic probability that the ”best” player wins,
that is that the player N with the largest strength VN ends up with the best
score. The following annealed result shows that, usually, this probability is
asymptotically 1 when the number of players N → ∞.

Theorem 1 ”Usually, the best player wins....

Assume that there exists β ∈ (0, 1/2) and x0 > 0 in the interior of suppQ such
that Q1/2−β is convex on [x0,∞) and that E

[

U2
]

< ∞. Then,

P ( the player N wins ) ≥ P

(

SN > max
1≤i≤N−1

Si

)

−−−−→
N→∞

1 .

1More precisely,

Vi = min
k∈{1,...,N}

{

Uk

∣

∣ ∃I ⊂ {1, . . . , N}, |I| = i and ∀l ∈ I, Ul ≤ Uk

}

.
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• When the support of the distribution of U is R+, the convexity condition
is not very restrictive as it is satisfied by standard continuous distributions
with tails function Q(x) ≃ e−xa

, Q(x) ≃ x−b or Q(x) ≃ (log x)−c. The
moment condition E

[

U2
]

< ∞ is more restrictive in this context but still
allows for natural distributions of the merits as exponential, exponential
of Gaussian or positive parts of Gaussian ones. It provides control of the
explosion of maximal strengths. It is likely that it can be improved, but it
is a technical convenience allowing to avoid a lot of tedious computations.

• When suppQ is finite, we can always assume by homogeneity that it is
included in [0, 1], since the distribution of (Xi,j)1≤i<j≤N given V

N
1 is not

modified if all Vi are multiplied by the same real number λ. The moment
condition is always satisfied and the only condition is the convexity one.
It is then only satisfied if limu→0 Q(1 − u) = 0, which can naturally be
understood since there would be many players with the same strength
equal to one if it were not the case. Furthermore, suppose that Q(1−u) ∼
uα when u → 0. Then, the convexity condition holds iff α > 2.

We now want to check the tightness of the bound 2 and then in a weak sense
the tightness of the convexity assumption. For this purpose, let us introduce
the following condition.

Assumption 1 The maximum of suppQ is 1 and there exists α ∈ [0, 2) such
that, when u → 0,

logQ(1− u) = α log(u) + o(log u) . (A)

Let us stress here that Q may satisfy (A) even if it is not continuous. Moreover,
α is allowed to be equal to 0, in particular, Q(1) may be positive. Notice that
some standard distributions satisfy Assumption (A), for example the uniform
distribution satisfies (A) with α = 1, the Arcsine distribution satisfies it with
α = 1/2 and any Beta distribution B(a, b) satisfies it as long as the parameter
b < 2 with α = b.
The next quenched result studies under (A), the size of the set of possible
winners.

Theorem 2 ... But sometimes not, and the Cinderella player ap-

pears”

Assume (A). For any r ∈ R+, let

Gr = {k ∈ {1, . . . , N } , s.t. k ≥ N − r}

denote the set of r best players. For any γ < 1− α/2 then, P almost-surely,

PV (none of the Nγ best players wins ) = PV

(

max
i∈GNγ

Si < max
i∈GN

Si

)

→ 1 .

For any γ > 1− α/2 then, P almost-surely,

PV (one of the Nγ best players wins ) = PV

(

max
i/∈GNγ

Si < max
i∈GN

Si

)

→ 1 .
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• The first part of the theorem shows that, when Q(1 − u) ∼ uα, with
α < 2, then none of Nγ ”best” players, for any γ ∈ (0, 1− α/2) wins the
competition. In particular, the ”best” one does not either. In this sense,
the bound 2 in the asymptotic development of Q around 1 is tight.

In this case, the winner is sometimes called the Cinderella team to refer
to situations where competitors achieve far greater success than would
reasonably have been expected. One recent example is the surprising
victory of Montpellier in French soccer championship in 2011/2012.

• The second result in Theorem 2 shows the sharpness of the bound 1−α/2 in
the first result. Heuristically, this theorem shows that under Assumption
(A), N1−α/2 players can be champion.

Under Assumption (A), the best player among the original ones does not win
the championship. Therefore, we may wonder what strength vN+1 an additional
tagged player, say player N + 1, should have to win the competition against
players distributed according to a Q satisfying (A)? The following quenched
result discusses the asymptotic behavior of the event {player N + 1 wins} with
respect to its strength vN+1. To maintain consistency with the previous results,
we still use the notations

Si =
N
∑

j=1,j 6=i

Xi,j for i ∈ {1, . . . , N + 1} .

With this convention, SN+1 describes the score of the player N + 1 and the
score of each player i ∈ {1, . . . , N } is equal to Si +Xi,N+1.

Theorem 3 Isolate dominant player : when is he unbeatable ?

Assume (A) and let ϑU = E
[

U/(U + 1)2
]

and ǫN =
√
2− α ϑ

−1/2
U

√

logN
N .

Unbeatable player If lim infN→∞
vN+1−1

ǫN
> 1, then, P-almost surely

PV (player N + 1 wins ) ≥ PV

(

SN+1 > 1 + max
i=1,...,N

Si

)

→ 1 .

Beatable player If lim supN→∞
vN+1−1

ǫN
< 1, then, P-almost surely

PV (player N + 1 does not win ) ≥ PV

(

SN+1 < max
i=1,...,N

Si

)

→ 1 .

• This result gives the minimal strength 1 + ǫN allowing the tagged player
to win the championship with asymptotic probability 1.

• It is interesting to notice that, for a given α, ǫN is a non increasing function
of ϑU . Therefore, when U is stochastically dominated by U ′, that is P(U ≥
a) ≤ P(U ′ ≥ a) for any a ∈ [0, 1], we have ϑU ≤ ϑU ′ , hence ǫUN ≥ ǫU

′

N .
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In other words, it is easier for the tagged player to win against opponents
distributed as U ′ than as U even if the latter has a weaker mean than
the former. This result may seem counter-intuitive at first sight. In the
following example in particular, it is easier for the additional player to win
the competition in case 1 than in case 2, since both distributions satisfy
(A) with α = 0.

1. All players in {1, . . . , N } have strength 1.

2. The players in {1, . . . , N } have strength 1 with probability 1/2 and
strength 1/2 with probability 1/2.

Actually the score of the tagged player is smaller when he faces stronger
opponents as expected, but so is the best score of the other good players.

Remark that the first theorem is an annealed result while the others are quenched.
Indeed, the first theorem requires to control precisely the difference of strengths
between the best player and the others when all the players are identically dis-
tributed, this seems complicated in the quenched case. This problem does not
appear in the other results: for example, in Theorem 3, the strength of the
tagged player is deterministic and the strengths of others are bounded by 1.

Bradley-Terry model (1) has been introduced in the fifties [3, 6] for paired
comparisons and later generalized to allow ties [7, 18] or to incorporate within-
pair order effects [8], see [4] for a review. It has been recently used to model
sport tournaments, [5, 20]. More generally, randomness in competitions has been
studied widely in statistical physics litterature (see for example [1, 2, 5, 13, 20]).
Let us detail two previous works related to ours:

• Ben-Naim and Hengartner in [1] study the number of teams which can win
a competition which is the purpose of Theorem 1 and Theorem 2. These
authors consider a simple model where the probability of upset p < 1

2 is
independent of the strength of players:

∀1 ≤ i < j ≤ N, PV (Xi,j = 1) = p1i<j + (1− p) 1i>j .

For this model, they heuristically show with scaling techniques coming
from polymer physics [9] that, for large N , the number of teams which
can be champion behaves as

√
N .

• Simons and Yao [19] estimate the merits V
N
1 based on the observations

of (Xi,j)1≤i<j≤N . They prove consistency and asymptotic normality for
the maximum likelihood estimator. It is interesting to notice that this
estimator sorts the players in the same order as the scores Si (see [12]).
In particular, the final winner is always the one with maximal estimated
strength. Our results show that usually this player has also maximal
strength when the merits are unbounded but it is not the case anymore
when (A) holds.

The remaining of the paper presents the proofs of the main results. Section 2
gives the proof of Theorem 1 and Section 3 the one of Theorems 2 and 3.
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2 Proof of Theorem 1

Denote by ZN = maxi∈{ 1,...,N−1} Si. The key to our approach is to build
random bounds sN and zN depending only on V

N
1 such that,

P
(

SN ≥ sN
)

→ 1, P
(

ZN ≤ zN
)

→ 1 and P
(

sN > zN
)

→ 1 . (2)

It follows that,

P (SN > ZN ) ≥ P
(

SN ≥ sN , ZN ≤ zN , sN > zN
)

≥ 1− P
(

SN < sN
)

− P
(

ZN > zN
)

− P
(

sN < zN
)

→ 1 .

The construction of sN and zN is the subject of the next subsection, it is
obtained thanks to concentration inequalities. The concentration of SN is easy,
the tricky part is to build zN . First, we use the bounded difference inequality to
concentrate ZN around its expectation. The upper bound on its expectation is
given by the sum of the expected score of player N−1 and a deviation term that
is controlled based on an argument used by Pisier in [17]. Finally, the control
of P

(

sN > zN
)

derives from an analysis of the asymptotics of VN−1 and VN .

2.1 Construction of sN and z
N

The expectation of the score SN of the best player is given by

EV [SN ] =

N−1
∑

i=1

VN

VN + Vi

and the concentration of SN is given by Hoeffding’s inequality, see [14]:

PV

(

SN ≤
N−1
∑

i=1

VN

VN + Vi
−
√

Nu

2

)

≤ e−u .

Hence, the first part of (2) holds for any uN → ∞ with

sN =

N−1
∑

i=1

VN

VN + Vi
−
√

NuN . (3)

The following lemma implies the concentration of ZN around its expectation.
As we will use it in a different context in other proofs, we give a slightly more
general result.

Lemma 4 Let I ⊂ [N ] and let Z = maxi∈I Si. For any u > 0,

PV

(

Z ≥ EV [Z ] +

√

N

2
u

)

≤ e−u

and

PV

(

Z ≤ EV [Z ]−
√

N

2
u

)

≤ e−u .
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Proof: The proof is based on the bounded difference inequality stated in The-
orem 13 of the appendix (see [11], [15] or [16]). To apply this result, we have
to decompose properly the set of independent random variables (Xi,j)1≤i<j≤N .
To do so, we use the round-robin algorithm which we briefly recall.
First, suppose N even. Denote by σ the permutation on {1, . . . , N} such that
σ(1) = 1, σ(N) = 2 and σ(i) = i+ 1, if 1 < i < N and define the application

A : {1, . . . , N − 1} × {1, . . . , N} → {1, . . . , N}

by A(k, i) = σ−(k−1)(N + 1 − σ(k−1)(i)). Then, for any k ∈ {1, . . . , N − 1},
A(k, ·) is an involution with no fixed point and for any i ∈ {1, . . . , N}, A(·, i)
is a bijection from {1, . . . , N − 1} to {1, . . . , N} \ {i}. The first variable of
function A has to be thought as “steps” in the tournament. At each step, every
competitor plays exactly one match and A(k, i) represents here the opponent
of player i during the kth step. We denote by Zk the variables describing the
results of the kth step, that is Zk = (Xi,A(k,i), i < A(k, i)). The variable Z

can be expressed as a (measurable) function of the Zk, Z = Ψ(Z1, . . . , ZN−1).

Moreover, for any k = 1, . . . , N − 1 and any z1, . . . , zN−1, z̃k in {0, 1}N/2
, the

differences

∣

∣Ψ(z1, . . . , zk, . . . , zN−1)−Ψ(z1, . . . , z̃k, . . . , zN−1)
∣

∣

are bounded by 1. If N is odd, we only have to add a ghost player and Z can be
expressed in the same way as a measurable function of N independent random
variables with differences bounded by 1. Therefore, in both cases, the bounded
difference inequality applies and gives the result. 2

It remains to compare the expectations of ZN and of SN . This requires to
control the size of VN−1 and VN .
Let Q−1 denote the generalized inverse of Q: for y ∈ (0, 1),

Q−1(y) = inf
{

x ∈ R
∗
+, Q(x) ≤ y

}

.

Remark that the convexity assumption implies that, if M is the supremum of
suppQ, the function Q is a continuous bijection from [x0,M) to (0, Q(x0)] such
that limx→M Q(x) = 0 so, on (0, Q(x0)], Q

−1 is the true inverse of Q.

Lemma 5 For any function h defined on R+ such that lim+∞ h = +∞, let

ahN =

{

Q−1
(

h(N)
N

)

if h(N)
N < 1

0 otherwise

bhN = Q−1

(

1

Nh(N)

)

Ah
N =

{

ahN ≤ VN−1 ≤ VN ≤ bhN
}

.

Then lim
N→∞

P
(

Ah
N

)

= 1.
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Proof: If h(N)/N ≥ 1, P
(

VN−1 < ahN
)

= 0 so the lower bound is trivial. If
h(N)/N < 1 and h(N) ≥ 1, since x ∧Q(x0) ≤ Q(Q−1(x)) ≤ x,

P
(

VN−1 < ahN
)

= (1 −Q(ahN))N +N(1−Q(ahN ))N−1Q(ahN)

≤ 2h(N)

(

1− h(N)

N
∧Q(x0)

)N−1

.

Hence, P
(

VN−1 < ahN
)

→ 0. Moreover, for any N such that 1/(Nh(N)) ≤ x0,

P
(

VN > bhN
)

= 1− P
(

U < bhN
)N

= 1−
(

1− 1

Nh(N)

)N

→ 0 .

2

Lemma 6 There exists a non-increasing deterministic function y → η(y) on

R+ such that lim+∞ η = 0 and limN→∞ P (BN ) = 1, where BN =
{

VN√
N

≤ η(N)
}

.

Proof: Since E
[

U2
]

=
∫∞
0 yQ(y)dy < ∞, limx→+∞

∫∞
x yQ(y)dy = 0. As Q is

non increasing,

3

8
x2Q(x) =

∫ x

x/2

ydyQ(x) ≤
∫ x

x/2

yQ(y)dy → 0 .

Therefore Q(x) = o(1/x2) when x → +∞. This implies that Q−1(y) = o(1/
√
y)

when y → 0 and there is a non-decreasing function y → u(y) defined on R+

such that lim0 u = 0 and Q−1(y) ≤ u(y)/
√
y. For any N large enough, choosing

y =

√
u(1/N)

N

Q−1

(

√

u(1/N)

N

)

≤
√

Nu(1/N).

Setting η(y) =
√

u(1/y), Lemma 5 used with h(x) = 1/
√

u(1/x) gives the
result. 2

We also need the following result:

Lemma 7 Define EN (V ) =
1

N

N−1
∑

i=1

ViVN−1

VN−1 + Vi
and

CN =

{

1

4
E [U ] ≤ EN (V ) ≤ 2E [U ]

}

.

Then, limN→∞ P (CN ) = 1.

Proof: Remark that for i ∈ {1, . . . , N − 1}, 1 ≤ 1 + Vi

VN−1
≤ 2, hence

EN (V ) ≥ 1

2N

N−1
∑

i=1

Vi =
1

2N

N
∑

i=1

Ui −
VN

2N
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and

EN (V ) ≤ 1

N

N−1
∑

i=1

Vi ≤
1

N

N
∑

i=1

Ui .

Lemma 6 ensures that VN/N converges in probability to 0 and therefore the
proof is easily conclude using the Weak Law of Large Numbers. 2

We are now in position to bound EV [ZN ].

Lemma 8 For N large enough, on BN ∩ CN ,

EV [ZN ] ≤
N−1
∑

i=1

VN−1

VN−1 + Vi
+

√

8E [U ]
N logN

VN−1
.

Proof: Write

Z ′
N = ZN −

N−1
∑

i=1

VN−1

VN−1 + Vi
.

For any λ > 0, Jensen’s inequality and the argument of Pisier in [17] give

EV [Z ′
N ] ≤ 1

λ
logEV

[

eλZ
′
N

]

≤ 1

λ
log

(

N−1
∑

i=1

EV

[

e
λ
(

Si−
∑N−1

i=1

VN−1
VN−1+Vi

)
]

)

Let S =
∑N−1

i=1 Xi, whereXi are independent Bernoulli variables with respective
parameters VN−1/(VN−1+Vi). Every Si is stochastically dominated by S, thus

EV [Z ′
N ] ≤ 1

λ
log

(

NEV

[

e
λ
(

S−∑N−1
i=1

VN−1
VN−1+Vi

)
])

.

Let

λN =

√

VN−1 logN

2NE [U ]
,

for N large enough, on BN ∩ CN , λN ≤ 3/(8e2) < 1. Lemma 12 in appendix
evaluates the Laplace transform of Bernoulli distribution and gives here

EV

[

e
λN

(

S−∑N−1
i=1

VN−1
VN−1+Vi

)
]

≤ e
λ2
N

∑N−1
i=1

VN−1Vi

(VN−1+Vi)
2

.

Therefore,

EV [Z ′
N ] ≤ logN

λN
+

2λNN

VN−1
E [U ] =

√

8E [U ]
N logN

VN−1
.

2
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Lemmas 4, 6, 7 and 8 give the second part of (2) for any uN → ∞ with

zN =

N−1
∑

i=1

VN−1

VN−1 + Vi
+

√

8E [U ]
N logN

VN−1
+
√

NuN . (4)

To prove the third item of (2), it remains to prove that there exists some uN →
∞ such that the probability of the following event tends to one:

N−1
∑

i=1

(

VN

Vi + VN
− VN−1

Vi + VN−1

)

>

√

8E [U ]
N logN

VN−1
+ 2
√

NuN . (5)

2.1.1 Proof of (5)

The proof relies on a precise estimate of the difference VN − VN−1.

Lemma 9 Let

DN =

{

VN−1 ≤ VN

(

1−
(

VN−1√
N

)1−β
)}

.

Then P (DN ) → 1 as N → ∞.

Proof: In the proof, Cβ denotes a deterministic function of β which value can
change from line to line and F = 1−Q denotes the c.d.f. of U .
Let η be the function defined in Lemma 6 and denote h = η−β . As x0 is in the
interior of the support of Q, there exists a constant c < 1 such that x0/c also
lies in the interior of suppQ. Let ahN , bhN be defined as in Lemma 5 and consider
the event

FN =
{

(x0/c) ∨ ahN ≤ VN−1 ≤
√
N(1/2 ∧ η(N)) ∧ bhN

}

.

According to Lemma 5 and Lemma 6, limN→∞ P (FN ) = 1. Moreover,

P (Dc
N ) ≤ P (Dc

N ∩ FN ) + P (F c
N )

= E [1FNP (Dc
N |VN−1 ) ] + P (F c

N ) .

The cumulative distribution function of the random variable VN given VN−1 is
1−Q/Q(VN−1) and then

P (Dc
N |VN−1 ) =

Q(VN−1)−Q

(

VN−1

(

1−
(

VN−1/
√
N
)1−β

)−1
)

Q(VN−1)
.

On the event FN , the convexity of Q gives

P (Dc
N |VN−1 ) ≤

(

VN−1/
√
N
)1−β

1−
(

VN−1/
√
N
)1−β

VN−1F
′(VN−1)

Q(VN−1)

10



and VN/
√
N is smaller than 1/2, thus

P (Dc
N |VN−1 ) ≤ Cβ

V 2−β
N−1F

′(VN−1)

N (1−β)/2Q(VN−1)
. (6)

Moreover, by convexity of Q1/2−β , the function F ′/Q1/2+β is non-increasing,
hence, by Hölder’s inequality, for any x ≥ x0/c,

x2−2β F ′(x)

Q(x)1/2+β
≤ Cβ

∫ x

cx

y1−2βF ′(y)

Q(y)1/2+β
dy

≤ Cβ

(∫ ∞

0

y2F ′(y)dy

)1/2−β (∫ x

cx

F ′(y)

Q(y)
dy

)1/2+β

≤ Cβ

(

log

(

Q(cx)

Q(x)

))1/2+β

.

As seen in the proof of Lemma 6, limy→∞ y2Q(y) = 0, hence Q(cx) ≤ Cβ,1/x
2

for some constant Cβ,1. Therefore for any x ≥ x0/c,

x2−2β F ′(x)

Q(x)1/2+β
≤ Cβ

(

log

(

Cβ,1

x2Q(x)

))1/2+β

.

The function g(x) = (x2Q(x))β/4
(

log
Cβ,1

x2Q(x)

)1/2+β

is upper bounded, this

yields the following inequality:

x2−3β/2F ′(x) ≤ CβQ(x)1/2+3β/4 .

This last bound applied to x = VN−1 combined with (6) leads to:

P (Dc
N |VN−1 ) ≤

Cβ (VN−1)
β/2

N (1−β)/2 (Q(VN−1) )
1/2−3β/4

on FN .

Now on FN the following bounds also hold:

VN−1 ≤
√
Nη(N) and Q(VN−1) ≥

η(N)β

N
;

hence,

1FNP (Dc
N |VN−1 ) ≤ Cβη(N)3β

2/4 .

We conclude the proof by integration of the last inequality. 2

Let h(x) = x/2 and consider the event

GN = Ah
N ∩BN ∩ CN ∩DN

=

{

VN−1 ≥ Q−1(1/2),

√
N

VN
≥ 1

η(N)
, VN − VN−1 ≥ VN

(

VN−1√
N

)1−β

,

E [U ]

4
≤ EN (V ) ≤ 2E [U ]

}

.

11



According to Lemmas 5, 6, 7 and 9, P (GN ) converges to 1 when N → ∞ so
we only have to prove that (5) holds on the event GN . And on GN ,

N−1
∑

i=1

(

VN

Vi + VN
− VN−1

Vi + VN−1

)

≥ VN − VN−1

2VN

N−1
∑

i=1

Vi

VN−1 + Vi

≥
√
N

( √
N

VN−1

)β
EN (V )

2
≥ E [U ]

8

√
N

( √
N

VN−1

)β

.

Thus, for N large enough, on GN ,

∑N−1
i=1

(

VN

Vi+VN
− VN−1

Vi+VN−1

)

√

8E [U ] N logN
VN−1

≥
√

E [U ]

83
(VN−1)

1/2−β Nβ/2

√
logN

≥
√

E [U ]

83
(

Q−1(1/2)
)1/2−β Nβ/2

√
logN

≥ 2 (7)

and

N−1
∑

i=1

(

VN

Vi + VN
− VN−1

Vi + VN−1

)

≥ E [U ]

8

√
N

( √
N

VN−1

)β

≥ E [U ]

8

√
N

1

η(N)β
.

Hence, for a constant c small enough and uN = c/ (η(N) )
2β
, on GN ,

2
√

NuN <
1

2

N−1
∑

i=1

(

VN

Vi + VN
− VN−1

Vi + VN−1

)

. (8)

Bounds (7) and (8) imply (5); this concludes the proof of Theorem 1.

3 Proof of Theorem 2 and Theorem 3

Remark that in both theorems, each variable Si for i ∈ {1, . . . , N } has the same
definition, it corresponds to the score of a player with strength Vi playing against
opponents with respective strength {Vj, j ∈ {1, . . . , N } \ { i}}. Therefore in
both proofs, the notation ZN = maxi∈{ 1,...,N } Si represents the same quantity.
We build bounds sN− < sN+ and zN− < zN+ depending only on V

N
1 such that,

PV

(

sN− ≤ SN+1 ≤ sN+
)

→ 1, PV

(

zN− ≤ ZN ≤ zN+
)

→ 1, P− a.s. , (9)

and such that, when lim infN→∞
vN+1−1

ǫN
> 1, P-almost surely, for any N large

enough, sN− > 1 + zN+ , while when lim supN→∞
vN+1−1

ǫN
< 1, P-almost surely,

for any N large enough, sN+ < zN− . In the first case, it follows that, on
{

sN− > 1 + zN+
}

,

PV (SN+1 > 1 + ZN ) ≥ PV

(

SN+1 ≥ sN− , ZN ≤ zN+
)

≥ 1− PV

(

SN+1 < sN−
)

− PV

(

ZN > zN+
)

.

12



The result in the second case is obtained with a similar argument. This will
establish Theorem 3.
For Theorem 2, given γ0 < 1− α/2 < γ1, we build random bounds zN0 and zN1
depending only on V

N
1 such that P-almost surely,

PV

(

max
i∈GNγ0

Si ≤ zN0

)

→ 1, P

(

max
i/∈GNγ1

Si ≤ zN1

)

→ 1 . (10)

and
P
(

lim inf
{

zN0 < zN−
})

= P
(

lim inf
{

zN1 < zN−
})

= 1 .

On
{

zN0 < zN−
}

,

PV

(

max
i∈GNγ0

Si < ZN

)

≥ PV

(

max
i∈GNγ0

Si < zN0 , zN− < ZN

)

≥ 1− PV

(

max
i∈GNγ0

Si ≥ zN0

)

− PV

(

zN− < ZN

)

.

On
{

zN1 < zN−
}

,

PV

(

max
i/∈GNγ1

Si < ZN

)

≥ PV

(

max
i/∈GNγ1

Si < zN1 , zN− < ZN

)

≥ 1− PV

(

max
i/∈GNγ1

Si ≥ zN1

)

− PV

(

zN− < ZN

)

.

Together, these inequalities yield directly Theorem 2.
The construction of sN− and sN+ will derive from the concentration of SN+1 given
by Hoeffding’s inequality [14]: for any u > 0,

PV

(

SN+1 ≤
N
∑

i=1

vN+1

Vi + vN+1
−
√

Nu

2

)

≤ e−u . (11)

PV

(

SN+1 ≥
N
∑

i=1

vN+1

Vi + vN+1
+

√

Nu

2

)

≤ e−u . (12)

We will now build the bounds zN0 , zN1 , zN− and zN+ . To do so, we study the
concentration of ZN , maxi∈GkN

Si and maxi/∈GℓN
Si. The construction of these

bounds is based on the same kind of arguments as the ones used in the previous
section. The construction of zN− requires a lower bound on EV [ZN ] which is
obtained by comparison with the maximum of copies of the Si that are inde-
pendent, see Lemma 11.

3.1 Construction of zN0 , zN1 , zN− and z
N
+

Lemma 4 gives the concentration of ZN , maxi∈GNγ0
Si and maxi/∈GNγ1

Si around
their respective expectations which are evaluated in the following lemma.

13



Lemma 10 P almost-surely,

EV [ZN ] = NE

[

1

1 + U

]

+
√

(2− α)ϑUN logN + o(
√

N logN) ,

EV

[

max
i/∈GNγ1

Si

]

≤ NE

[

1

1 + U

]

−N1/2+νϑU + o
(

N1/2+ν
)

,

where ν = γ1−(1−α/2)
2α > 0. In addition, P almost-surely,

EV

[

max
i∈GNγ0

Si

]

≤ NE

[

1

1 + U

]

+
√

2γ0ϑUN logN + o(
√

N logN) .

Proof:

Upper bounds:

Define Z ′
N = ZN −

∑N
k=1

1
1+Vk

. The law of iterated logarithm ensures that,
P-almost surely,

N
∑

k=1

1

1 + Vk
=

N
∑

k=1

1

1 + Uk
= NE

[

1

1 + U

]

+ o
(

√

N logN
)

. (13)

To bound E [ZN ], it is then sufficient to prove that

EV [Z ′
N ] ≤

√

(2− α)ϑUN logN + o(
√

N logN) .

Let ǫ > 0 and IǫN =
{

i s.t. Vi ≥ 1−N−1/2+ǫ
}

. By Jensen’s inequality and
the argument of Pisier in [17], for any λ > 0,

EV [Z ′
N ] ≤ 1

λ
log









∑

i∈Iǫ
N

+
∑

i/∈Iǫ
N



EV

[

e
λ
(

Si−
∑N

k=1
1

1+Vk

)
]



 .

Let S =
∑N

k=1 Xk where, given V
N
1 , the Xk are independent Bernoulli variables

with respective parameters 1/(1 + Vk) and S′ =
∑N

k=1 Yk, where the Yk are
independent Bernoulli variables with respective parameters

1−N−1/2+ǫ

1−N−1/2+ǫ + Vk
.

The variable S represents the score obtained by a player with strength 1 playing
against all the others, so it clearly dominates stochastically each Si. Likewise,
S′ represents the score obtained by a player with strength 1−N−1/2+ǫ playing
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against all the others, so it dominates stochastically each Si, with i /∈ IǫN .
Therefore,

EV [Z ′
N ] ≤ 1

λ
log

(

|IǫN |EV

[

eλ(S−EV [S ] )
]

+ |(IǫN )c|EV

[

e
λ
(

S′−
∑N

k=1
1

1+Vk

)
])

.

(14)

Let λN = C
√

logN/N where C is a constant that will be defined later. For any
1 ≤ k ≤ N ,

EV [Yk ]−
1

1 + Vk
≤ − N ǫ

√
N

Vk

(1 + Vk)2

which gives following the upper bound:

EV

[

e
λN

(

S′−
∑N

k=1
1

1+Vk

)
]

≤
N
∏

k=1

EV

[

eλN (Yk−EV [Yk ] )
]

e
−λN

Nǫ
√

N

Vk
(1+Vk)2 .

By Lemma 12, for N large enough,

EV

[

e
λN

(

S′−
∑N

k=1
1

1+Vk

)
]

≤
N
∏

k=1

e
λ2
N
2 −λN

Nǫ
√

N

Vk
(1+Vk)2

= e
−CNǫ√logN

(

1
N

∑N
k=1

Uk
(1+Uk)2

−C
√

log N
2Nǫ

)

.

As the strong law of large numbers shows that, P-almost surely,

lim
N→∞

1

N

N
∑

k=1

Uk

(1 + Uk)2
− C

√
logN

2N ǫ
= ϑU > 0

we obtain

EV

[

e
λN

(

S′−
∑N

k=1
1

1+Vk

)
]

= o
(

e−Nǫ
)

, P− a.s. . (15)

We turn now to the other term in the right hand side of (14): using Lemma 12
and the law of the iterated-logarithm, P-almost-surely,

EV

[

e
λN

(

S−
∑N

k=1
1

1+Vk

)
]

=
N
∏

k=1

EV

[

eλN (Xk−E[Xk ] )
]

≤ e
λ2
N
2

∑N
k=1 Var(Xk )+O

(

log3/2 N√
N

)

≤ e
Nλ2

N
2 ϑU+O

(

log3/2 N√
N

)

. (16)

It remains to control |IǫN |. By (A), P-almost surely,

P

(

U > 1− 1/N1/2−ǫ
)

= N−α/2+ǫαeo(logN) ,

15



then it is easy to prove, applying Borel-Cantelli’s lemma, that

|IǫN | = N1−α/2+ǫαeo(logN), P− almost surely . (17)

Therefore, (15), (16) and (17) prove that, P-almost-surely

EV [Z ′
N ] ≤ (1− α/2 + αǫ)

logN

λN
+

NλN

2
ϑU + o

(

logN

λN

)

.

Hence, choosing C =
√

(2−α+2αǫ)
ϑU

that is λN =
√

(2−α+2αǫ)
ϑU

logN
N , we get

EV [Z ′
N ] ≤

√

(2− α+ 2αǫ)ϑUN logN + o(
√

N logN) P-a.s. .

As the result holds for any ǫ > 0 small enough, this gives the upper bound on
EV [ZN ].

Proceeding as in the proofs of (14) and (16), but choosing now λN =
√

γ0 logN
NϑU

,

we get the upper bound for EV

[

maxi∈GNγ0
Si

]

.
Applying (17) with ǫ = ν, we get that, P-almost surely, for N large enough,

|GNγ1 | = Nγ1 = N1−α/2+2αν > N1−α/2+ανeo(logN) = |IνN | .

Therefore, for any i /∈ GNγ1 , Vi ≤ 1 − 1/N1/2−ν . We can prove as in the other
cases that P-almost surely,

EV

[

max
i/∈GNγ1

Si −
N
∑

k=1

1− 1/N1/2−ν

1− 1/N1/2−ν + Vk

]

= O(
√

N logN) .

It remains to remark that, P-almost surely, by (13) and the strong law of large
numbers,

N
∑

k=1

1− 1/N1/2−ν

1− 1/N1/2−ν + Vk
=

N
∑

k=1

1

1 + Vk
− 1/N1/2−ν

N
∑

k=1

Vk

(1 + Vk)2
+ o

(

N1/2+ν
)

= NE

[

1

1 + U

]

−N1/2+νϑU + o
(

N1/2+ν
)

.

This concludes the proof of the upper bound on EV

[

maxi/∈GNγ1
Si

]

.

Lower bound on EV [ZN ]

Let us start with the following lemma which says that ZN stochastically domi-
nates the maximum of independent copies of the variables Si.

Lemma 11 For any a > 0 we have, P-almost surely,

PV (ZN ≤ a) ≤
N
∏

i=1

PV (Si ≤ a) .
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Proof: We proceed by induction, we provide a detailed proof of the first step,
the other ones follow the same lines. Let X̃2,1 denote a copy ofX2,1, independent

of (Xi,j)1≤i<j≤N and let S1
2 = X̃2,1 +

∑N
i=3 X2,i, M2 = S1 ∨ S2, M̃2 = S1 ∨ S1

2 ,
A = {maxi≥3 Si ≤ a}. Write {ZN ≤ a} = {M2 ≤ a}∩A. Simple computations
show that:

PV (ZN ≤ a ) =PV

({

Z̃N ≤ a
})

− PV

({

M̃2 = a
}

∩
{

M2 = M̃2 + 1
}

∩ A
)

+ PV

({

M̃2 = a+ 1
}

∩
{

M2 = M̃2 − 1
}

∩A
)

.

In addition,

{

M2 − M̃2 = 1
}

=

{

X1,2 = X̃2,1 = 0 ,

N
∑

i=3

X2,i ≥
N
∑

i=3

X1,i

}

and

{

M2 − M̃2 = −1
}

=

{

X1,2 = X̃2,1 = 1 ,

N
∑

i=3

X2,i ≥ 1 +

N
∑

i=3

X1,i

}

Now, recall that X1,2 and X̃1,2 are independent of
∑N

i=3 X2,i,
∑N

i=3 X1,i and A,
then

PV

({

M̃2 = a
}

∩
{

M2 = M̃2 + 1
}

∩ A
)

= PV

(

X1,2 = X̃2,1 = 0
)

PV

({

N
∑

i=3

X2,i = a,

N
∑

i=3

X1,i ≤ a

}

∩ A

)

and

PV

({

M̃2 = a+ 1
}

∩
{

M2 = M̃2 − 1
}

∩ A
)

= PV

(

X1,2 = X̃2,1 = 1
)

PV

({

N
∑

i=3

X2,i = a,

N
∑

i=3

X1,i ≤ a− 1

}

∩ A

)

.

As PV

(

X1,2 = X̃2,1 = 0
)

= PV

(

X1,2 = X̃2,1 = 1
)

we obtain

PV (ZN ≤ a ) ≤ PV

(

Z̃N ≤ a
)

.

2

Let I0N =
{

i s.t. Vi ≥ 1−N−1/2
}

and S =
∑N

i=2 Xi where the Xi are inde-

pendent and Xi ∼ B(1/(1 + Vi/(1 − N−1/2)). The variable S is stochastically
dominated by any Si with i ∈ I0N . It follows from Lemma 11 that,

PV (ZN < a ) ≤
N
∏

i=1

PV (Si < a ) ≤
∏

i∈I0
N

PV (Si < a) ≤ PV (S < a )
|I0

N |
.
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For any ǫ ∈ (0, 1− α/2), denote γN =
√

(2− α− 2ǫ)ϑUN logN . The previous
inequality yields

EV [ZN ] ≥ (γN + EV [S ])PV (ZN − EV [S ] ≥ γN )

≥ (γN + EV [S ])(1− PV (S − EV [S ] < γN )|I
0
N |) .

Denote λN =
√

logN
N . By Lemma 12, for any u ∈ R+ and any N such that

uλN ≤ 1,

logEV

[

euλN (S−E[S ])
]

=

N−1
∑

i=1

(

u2λ2
N

2

Vi

(1 + Vi)2
+O(λ3

N )

)

=
u2

2
ϑU logN +O

(

(logN)3/2√
N

)

P-a.s. .

The last line is obtained thanks to the law of iterated logarithm. Hence,

lim
N→∞

1

logN
logEV

[

e
u logN

S−EV [S ]
√

N log N

]

=
u2

2
ϑU .

The same argument applied on the variables −Xi shows that the previous in-
equality actually holds for any u ∈ R. Therefore, using Theorem 14 in Appendix

with the sequence of random variables ζN = S−EV [S ]√
N logN

,

lim inf
N

1

logN
logPV (S − EV [S ] > γN ) ≥ −1 + α/2 + ǫ .

In particular, since log |I0N | ∼ (1− α/2) logN , for N large enough

PV (S − EV [S ] < γN )|I
0
N | ≤

(

1−N−1+α/2+ǫ/2
)|I0

N |

≤ e−Nǫ/4

.

Since, by the law of iterated logarithm,

EV [S ] =

N
∑

i=1

1− 1/
√
N

1− 1/
√
N + Ui

− 1

1 + V1

≥ NE

[

1

1 + U

]

+ o(
√

N logN) ,

we obtain that, for any ǫ > 0,

EV [ZN ] ≥ NE

[

1

1 + U

]

+
√

(2− α− 2ǫ)ϑUN logN + o
(

√

N logN
)

which concludes the proof. 2
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3.2 Conclusion of the proof of Theorem 3

Choosing u = log logN in (11), a slight extension of the law of iterated logarithm
gives that, P-almost surely, with PV -probability going to 1,

SN+1 ≥
N
∑

i=1

vN+1

Vi + vN+1
−
√

NuN

2
= NE

[

vN+1

U + vN+1

]

+ o
(

√

N logN
)

and

SN+1 ≤
N
∑

i=1

vN+1

Vi + vN+1
+

√

NuN

2
= NE

[

vN+1

U + vN+1

]

+ o
(

√

N logN
)

.

Therefore, there exists ǫ1N → 0 such that the first statement of (9) holds P-
almost surely with

sN± = NE

[

vN+1

U + vN+1

]

± ǫ1N
√

N logN .

By Lemma 4 with u = log logN , and Lemma 10, P-almost surely, with PV -
probability going to 1,

ZN = NE

[

1

1 + U

]

+
√

(2 − α)ϑUN logN + o
(

√

N logN
)

.

Therefore, there exists ǫ2N → 0 such that the second statement of (9) holds with

zN+ + 1 = NE

[

1

U + 1

]

+
√

(2− α)ϑUN logN + ǫ2N
√

N logN ,

zN− = NE

[

1

U + 1

]

+
√

(2− α)ϑUN logN − ǫ2N
√

N logN .

Moreover,

E

[

vN+1

U + vN+1
− 1

1 + U

]

= (vN+1 − 1)E

[

U

(U + 1)(U + vN+1)

]

.

Hence, denoting ǫ3N = ǫ1N + ǫ2N , the inequality sN− > zN+ + 1 is verified if

(vN+1 − 1)E

[

U

(U + 1)(U + vN+1)

]

≥
(

√

(2− α)ϑU + ǫ3N

)

√

logN

N

that is if

vN+1 − 1

ǫN

E

[

U
(U+1)(U+vN+1)

]

ϑU
≥ 1 +

ǫ3N
√

(2 − α)ϑU

. (18)
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where ǫN =
√
2− α ϑ

−1/2
U

√

logN
N is the value appearing in the statement of

Theorem 3. We now prove by contradiction that

lim inf
N→∞

vN+1 − 1

ǫN

E

[

U
(U+1)(U+vN+1)

]

ϑU
> 1 . (19)

Suppose there is a subsequence of vN+1 (that we still call vN+1) such that (19)
is not true. As lim inf(vN+1 − 1)/ǫN > 1, it means that for N sufficiently large,
vN+1 ≥ 1 + δ for some δ > 0. But in this case, the LHS of (19) clearly goes to
infinity as N → ∞. That contradicts our initial assumption and then (18) is
verified for N large enough.
The proof that sN+ < zN− when lim inf(vN+1 − 1)/ǫN < 1 follows the same
arguments.

3.3 Conclusion of the proof of Theorem 2

By Lemma 4 with u = log logN and Lemma 10, P-almost surely, with PV -
probability going to 1,

max
i∈GNγ0

Si ≤ NE

[

1

1 + U

]

+
√

2γ0ϑUN logN + o
(

√

N logN
)

.

Since γ0 < 1− α/2, the first item of (10) holds for N large enough with

zN0 = NE

[

1

1 + U

]

+

√

(

γ0 + 1− α

2

)

ϑUN logN .

It is clear that zN0 < zN− forN large enough since, by definition γ0+1− α
2 < 2−α.

By Lemma 4 with u = log logN and Lemma 10, P-almost surely, with PV -
probability going to 1,

max
i/∈GNγ1

Si ≤ NE

[

1

1 + U

]

−N1/2+νϑU + o
(

N1/2+ν
)

,

where ν = γ1−(1−α/2)
2α > 0. Hence, the second item of (10) holds for N large

enough with

zN1 = NE

[

1

1 + U

]

,

which is clearly smaller than zN− .

Appendix

To evaluate the various expectations of suprema of random variables, the follow-
ing result is used repeatedly. Its proof is straightforward and therefore omitted.
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Lemma 12 Let X be a Bernoulli distribution with parameter p ∈ [0, 1] and
a ∈ [0, 1], then

1 +
a2

2
p(1− p) ≤ E

[

ea(X−E[X ])
]

≤ e
p(1−p)a2

(

1
2+

4e2

3 a
)

.

We also recall for reading convenience two well-known results. The first one is
the bounded difference inequality (see Theorem 5.1 in [16]):

Theorem 13 Let Xn = X1 × · · · × Xn be some product measurable space and
Ψ : Xn → R be some measurable functional satisfying the bounded difference
condition:

|Ψ(x1, . . . , xi, . . . , xn)−Ψ(x1, . . . , yi, . . . , xn)| ≤ 1

for all x ∈ Xn, y ∈ Xn, i ∈ {1, . . . , n}. Then the random variable Z =
Ψ(X1, . . . , Xn) satisfies for any u > 0,

P

(

Z ≥ E [Z ] +

√

n

2
u

)

≤ e−u and P

(

Z ≤ E [Z ]−
√

n

2
u

)

≤ e−u .

The second result is a simple consequence of Gärtner-Ellis theorem (see Theo-
rem 2.3.6 [10]) and of the Fenchel-Legendre transform of a centered Gaussian
distribution.

Theorem 14 Consider a sequence of r.v. (ζn)n∈N
and a deterministic sequence

(an)n∈N → ∞ such that for any u ∈ R,

lim
n→∞

1

an
logE

[

euanζn
]

=
u2σ2

2
.

Then, for any x > 0,

lim inf
n→∞

1

an
log P (ζn > x) ≥ − x2

2σ2
.
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