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Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is

considered to be one of the most important bacterial species involved in meat fermentation

and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguard-

ing and organoleptic properties of fermented-meat were studied. However, the specific autolytic

mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autoly-

tic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was

evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon

sources. A higher autolytic rate was observed when cells were grown in the presence of glucose

and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a

minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a sub-

strate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was

characterized by two lytic bands of �80 (B1) and �70 kDa (B2), except for strain BMG.167

which harbored two activity signals at a lower MW. Lytic activity was retained in high salt

and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes,

Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei

23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-

acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this

hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five

LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of

this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge

of their role in fermentation processes where they represent the dominant species.

ª 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Lactobacillus sakei is a psychotrophic lactic acid bacterium
naturally found on fresh meat and fish, and is considered to
be one of the most important bacterial species involved in meat

fermentation and bio-preservation [1–3]. Lb. sakei influences
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color, flavor and texture of products during meat processing
[4–6]. Although autolysis of lactic acid bacteria such as
Lactococcus lactis, Streptococcus thermophilus, Lactobacillus

delbrueckii subsp. bulgaricus and Lactobacillus helveticus by
peptidoglycan hydrolases (PGHs) has been shown to play an
important role in the organoleptic properties of fermented

dairy products [7,8], the specific autolytic mechanisms and
associated enzymes involved in Lb. sakei are not well under-
stood. Improved understanding may help to expand our

knowledge of their role in fermentation processes and their
survival during the processing of meat products.

Peptidoglycan is the major component of bacterial cell wall
which determines cell shape and provides resistance to internal

osmotic pressure [8]. The peptidoglycan network consists of
glycan strands composed of alternating N-acetylglucosaminyl
and N-acetylmuramyl residues cross-linked by short peptides

of various compositions [9]. Peptidoglycan hydrolases are
defined as endogenous enzymes capable of cleaving covalent
bonds in polymeric peptidoglycan and/or in its soluble

fragments [10,11]. Four types of PGHs are known to alter
the three-dimensional network of the cell wall and most often
several with various specificities coexist in the cell [9]:

(i) b-N-acetylglucosaminidases (hydrolyze the b1–4 bonds
between the alternating N-acetylmuramic acid and the
N-acetylglucosamine residues of the glycan chain, (ii)
b-N-acetylmuramidases (hydrolyze the N-acetylmuramyl,

1,4-b-N-acetylglucosamine bonds, (iii) N-acetylmuramoyl-L-
alanine amidase or amidase (hydrolyze the bond between the
glycan chain and the peptide side chain and (iv) peptidases

(cleave peptide bonds in either the peptide side chain or in
the cross-bridge peptides). Many bacteria possess multiple
hydrolases that appear to have redundant roles including reg-

ulation of cell wall synthesis, turnover of peptidoglycan during
growth, separation of daughter cells during cell division, and
autolysis [9,12,13]. Prophage-encoded lysins in the genome

can also exert a weakening effect on the cell wall, leading to
enhanced autolysis [14]. Most of Lb. sakei autolytic enzymes
predicted from the genome sequence predicted to possess
an N-acetylmuramoyl alanine amidase activity [3].

Peptidoglycan amidases are in particular responsible for the
geometry of cell division. Mutant lacking N-acetylmuramoyl-
L-alanine amidase has multiple, misplaced, and sometimes

curved septa that do not bisect daughter cells equally [15].
A wide variety of enzymes with peptidoglycan hydrolytic

activities have been identified based on digestion of the intact

peptidoglycan macromolecule. Zymography is the most
commonly used detection method, involving the separation
of proteins from cell extracts by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE) using gels

containing peptidoglycan, followed by in situ enzyme renatura-
tion [16].

Autolytic systems of several Gram-positive low G + C bac-

teria have been studied such as those found in Staphylococcus
aureus [17,18], Bacillus subtilis [19], Bacillus thuringiensis [20]
Pediococcus spp. [21], L. lactis [22], Enterococcus faecalis [23]

and Lactobacillus pentosus [24]. Several studies relate to autoly-
sin genes in lactic acid bacteria particularly E. faecalis [25],
Enterococcus hirae [26] and Lc. lactis [27]. Typically, PGH con-

tains the tandem repeated sequences at or near the N- or C-
terminal end of the amino acid sequence, known as the lysin
motif (LysM domains), which are thought to direct the binding
of the enzyme to the cell wall in Gram-positive bacteria [28–30].
Please cite this article in press as: Najjari A et al., Phenotypic and genotypic charac
http://dx.doi.org/10.1016/j.jare.2015.04.004
The aim of the present study was to investigate the autolytic
phenotype, the PGH activities and the putative PGH candi-
date genes of a nonredundant collection of 22 Lb. sakei strains,

isolated from fresh meat, traditional salted meat and seafood
products [31]. The results of this work should provide further
information, needed to select the most suitable strains for use

as starters in the production of fermented meat products where
these species occur as primary or secondary bacterial
population.
Material and methods

Bacterial strains and growth conditions

Lb. sakei strains used in the present study were isolated from

traditionally prepared Tunisian meat and fish products [31].
The reference strains Lb. sakei 23 K (INRA Jouy-en-Josa,
Paris) [32,3], and Lc. lactis IL1403 (INRA, Jouy-en-Josas,
Paris) [33], were used as controls for autolytic experiments.

Lb. sakei and Lc. lactis strains were grown at 30 �C in MRS
broth (Scharlau Chemie, Barcelona, Spain) [34]. Stock cultures
for long term maintenance were stored at �80 �C, in 20% (v/v)

glycerol (Scharlau).

Autolysis of whole cells in buffer solution

Autolysis rates of Lb. sakei strains were evaluated as described
by Ostlie et al. [35] with some modifications. In order to inves-
tigate the effect of carbon sources on autolysis rate, bacterial

strains were grown until late exponential growth phase
(OD600 = 0.8–1.0) in reconstituted MRS culture medium con-
taining (liter�1) 10 g polypeptone (Difco Laboratories Inc.,
Detroit, MI), 8.0 g beef extract (Difco), 5 g yeast extract

(Difco), 2 g K2HPO4, 2 g diammonium citrate, 0.1 g MnSO4

(Merck Darmstadt, Germany), 0.05 g MgSO4 (Merck), 0.1%
(vol/vol) Tween 80 (Merck), and 1% (w/v) of glucose, ribose

or fructose (Merck). Harvested cells were washed twice in
deionized water and suspended in potassium phosphate buffer
(50 mM, pH 6.5) or in Tris–HCl (Sigma) buffer (50 mM, pH

8.5) at an initial OD600 of 0.6–0.8. Samples were incubated
at 30 �C and autolysis was monitored by measuring the
decrease in OD600 after 72 h. The extent of autolysis was
expressed as the percentage decrease of the optical density [14].

Mutanolysin sensitivity

Mutanolysin sensitivity was evaluated on Lb. sakei cells as

described by Ouzari et al. [22]. Cells were harvested in late
exponential phase (OD600 = 0.8–1.0) and suspended to an
OD600 of approximately 0.5, using MES (2-N-Morpholino-

ethansulfonic acid) (Sigma) buffer (50 mM, pH 6.0) supple-
mented with 1 mM MgCl2 (Scharlau). A volume of 3 ml
aliquot of cell suspension was then equilibrated at 37 �C after

which the OD600 was measured. Subsequently, 5 ll of mutano-
lysin solution (Sigma) (150 U ml�1) prepared in TES buffer
(N-Tris-hydroxymethyl-2-aminoethansulfonic acid) (Sigma)
(50 mM, pH 7.0), 1 mM MgCl2 (Scharlau), was added to the

cell suspension. The mixture was incubated at 37 �C for
20 min and the OD600 was then measured. The mutanolysin
activity was expressed as the percentage decrease of the OD600.
terization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),
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Detection of PGH activity

Whole cell extracts were prepared based on the approach of
Cibik et al. [24]. Briefly, 5 ml of Lb. sakei cultures (grown 8,
24, 48, or 72 h) was used. After centrifugation at 5000 g for

5 min, the pellet was resuspended in SDS-extraction solution
[10 mM Tris–HCl pH 8.0, 10 mM ethylenediaminetetraacetic
acid (EDTA), 10 mM NaCl, SDS 2% (w/v) (Scharlau)]. The
obtained suspension was vigorously mixed, boiled for 5 min

and centrifuged at 12,000g for 20 min. The supernatant (con-
taining cell-protein extract) was stored at �20 �C until used.
Electrophoresis, renaturing and staining were performed as

described by Cibik et al. [24]. Sample preparation was carried
out by mixing 40 ll of whole-cell SDS extract with 30 ll of
Laemmli loading buffer (Laemmli 1970) [0.5 M Tris–HCl,

pH 6.8; 10% (w/v) SDS; 25% (v/v) glycerol; 5% (v/v)
ß-mercaptoethanol (Sigma); and 0.5% (w/v) bromophenol
blue (Scharlau)]. Mixtures were boiled for 3 min before loading

onto 12% (w/v) polyacrylamide gels containing 0.2% (w/v)
autoclaved cells of Micrococcus lysodeikticus ATCC 4698
(Sigma), used as a reference target cells for PGHs enzymes.
Activity spectrum of PGHs of 22 Lb. sakei was determined

as described by Mora et al. [21] against vegetative cells of
the most common food-borne pathogens bacteria, including
Listeria monocytogenes MACa1 (DSMZ), Staphylococcus aur-

eus (ATCC 25923), Listeria ivanovii BUG 469 (INRA, Jouy-
en-Josas, Paris) and Listeria innocua (INRA, Jouy-en-Josas,
Paris). The two last strains were investigated as a possible use-

ful as nonpathogenic model. Furthermore, Lb. sakei 23 K
strain was also used as a target in order to determine the
intra-specificity of PGH activities.

The effect of different chemicals on PGH activity was eval-

uated according to the method of Raddadi et al. [36]. Gel slices
were incubated in renaturation buffer containing the following
compounds: NaCl (Scharlau) (1%, 2%, 4%, 6% and 8%),

MgCl2 (Scharlau) (10 mM), MnCl2 (Scharlau) (10 mM),
CaCl2 (Scharlau) (10 mM), and EDTA (Scharlau) (10 mM).
The effect of pH was also evaluated using gel renaturation solu-

tion buffered with 10 mM sodium acetate (pH 5.0) or Tris–HCl
(pH 6.0, 7.0, 8.0 and 9.0). To estimate the molecular mass of
PGH bands, duplicate samples containing parietal extracts of

two selected strains BMG.136 and BMG.167, representing
the two PGH profiles of Lb. sakei collection, and Lc. Lactis
IL1403, a reference strain used as a control characterized by
a major activity band of 45 kDa [22], were loaded simultane-

ously in two gels within the same electrophoresis system. The
first gel, containing M. lysodeikticus cells was revealed by the
renaturing method described above. The second gel, containing

the protein molecular weight marker (Fermentas GmbH, St.
Leon-Rot, Germany): b-galactosidase (116 kDa), bovine serum
albumin (66.2 kDa), ovalbumin (45.05 kDa), lactate dehydro-

genase (35 kDa), restriction endonuclease Bsp98I (25 kDa),
b-lactoglobulin (18.4 kDa) and lysozyme (14.4 kDa), was stained
with Coomassie blue (Scharlau) according to the standard
method of Laemmli [37].

DNA manipulation and sequencing

Chromosomal DNA was extracted from 22 Lb. sakei strains

[31] and Lb. sakei 23 K [32,3],used as a positive control,
Please cite this article in press as: Najjari A et al., Phenotypic and genotypic charact
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according to the method described by Anderson and Mac
Kay [38]. The quantification and the degree of DNA purity
were determined spectrophotometrically using Nanodrop

2000 spectrophotometer (Thermo Scientific, Wilmington,
NC). Primers (BioFaster, Germany) (Table 1), corresponding
to the five putative PGH candidate genes lsa0862, lsa1437,

lsa1558, lsa1581, and lsa1788, were designed using the free
online software ‘‘Primer3’’ (http://simgene.com/Primer3) after
in silico analysis of Lb. sakei 23 k genome [3]. Polymerase

chain reactions (PCRs) were performed on a MJ Research
PTC-200 thermocycler. The 50 ll PCR reaction mixture con-
tained PCR buffer 1· (Fermentas), MgCl2 1.5 mM, 0.2 mM
of each dNTP, 0.5 lM of each primer, 1 lg of chromosomal

DNA, and 1 U of Taq DNA polymerase (Fermentas).
Amplification conditions were 94 �C for 4 min, followed by
30 cycles of 94 �C for 1 min, 55 �C for 1 min, and 72 �C for

3 min [39]. PCR products (aliquots of 5–10 lL) were first
checked electrophoretically in 0.8–1% (w/v) agarose gel
(Agarose, DNA grade, Electran) in Tris–borate-EDTA

(TBE) 0.5· buffer at 100 V for 30 min. Gel was stained with
ethidium bromide (5 mg/mL) and the DNA bands were visual-
ized under ultraviolet illumination at 254 nm. A 100 bp DNA

Ladder was used as a molecular mass marker (GeneRuler
100 bp, 0.5 mL/mL, Fermentas). PCR products were then
cleaned from residual primers using a QIAquick PCR purifica-
tion kit (Qiagen, Courtaboeuf, France). DNA concentrations

were quantified using the Nanodrop 2000 spectrophotometer
(Thermo Scientific, Wilmington, NC). For DNA sequencing,
10 ll of PCR products was first treated with 0.1 U of

Shrimp alkaline phosphatase (New England Biolabs Inc,
Ipswich, UK) and 1 U of exonuclease I (Biolabs) in alkaline
buffer solution (20 mM Tris–HCl pH 8.0, 10 mM MgCl2) for

1 h at 37 �C, followed by 10 min inactivation at 94 �C, and
then sequenced in both strands using forward and reverse pri-
mers (Table 1). Sequencing was conducted by Sanger sequenc-

ing service (Eurofins MWG operon, Ebersberg, Germany)
using big-dye terminator chemistry. Unidirectional DNA
sequences were checked with CHROMAS-LITE software
(Technelysium Pty. Ltd., South Brisbane, Australia). The gene

sequences were assembled using DNAstar software
(DNASTAR Inc., WI). Sequence similarity searches were per-
formed using the online sequence analysis resources ‘‘BLAST’’

(http://www.ncbi.nlm.nih.gov/BLAST/).

Results

Autolytic phenotype of Lb. sakei and mutanolysin sensitivity

The autolysis rates of Lb. sakei strains were evaluated with dif-
ferent carbon sources (glucose, fructose and ribose) after three
days of incubation, and at pH 6.5 and 8.5. The incubation time

of 72 h was chosen because no significant variation in lyses rate
was observed upon further incubation (data not shown). Under
starvation conditions, autolysis levels appeared as strain depen-
dent characteristics influenced by the carbon source and the

buffered solution composition (Fig. 1A and B). Ten out of
twenty-three strains had the highest autolysis rate when cells
were grown in glucose and incubated at pH 6.5 (Fig. 1A).

Other ten strains showed the highest autolytic rate in fructose
and only three strains showed the autolytic phenotype when
erization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),

http://simgene.com/Primer3
http://www.ncbi.nlm.nih.gov/BLAST/
http://dx.doi.org/10.1016/j.jare.2015.04.004


T
a
b
le

1
L
is
t
o
f
o
li
g
o
n
u
cl
eo
ti
d
es

u
se
d
in

g
en
e
P
C
R

d
et
ec
ti
o
n
.
T
a
rg
et

g
en
es

a
n
d
th
ei
r
a
ss
ig
n
ed

fu
n
ct
io
n
s
a
re

in
d
ic
a
te
d
.

G
en
e
n
a
m
e

L
o
cu
s_
ta
g

P
ri
m
er

n
a
m
e

S
eq
u
en
ce

5
0
to

3
0

A
ss
ig
n
ed

fu
n
ct
io
n

T
h
eo
re
ti
ca
l
p
ro
te
in

si
ze

(k
D
a
)/
C
D
S
le
n
g
th

(b
p
)

P
re
d
ic
te
d
si
ze

o
f
th
e

m
a
tu
re

p
ro
te
in
s
(k
D
a
)

E
x
p
ec
te
d
si
ze

o
f

P
C
R

p
ro
d
u
ct

(b
p
)

ls
a
1
5
5
8

L
S
A
1
5
5
8
-F

G
T
C
C
T
G
C
T
G
G
G
C
G
T
T
T
T
A
T
T

P
u
ta
ti
v
e
ex
tr
a
ce
ll
u
la
r
N
-a
ce
ty
lm

u
ra
m
o
y
l-
L
-

a
la
n
in
e
a
m
id
a
se

p
re
cu
rs
o
r

2
5
.4
/6
6
0

1
8
.3

5
3
0

L
S
A
1
5
5
8
-R

C
C
G
G
A
T
A
A
T
T
A
G
G
A
T
C
C
G
T
T
G

ls
a
1
4
3
7

L
S
A
1
4
3
7
-F

C
C
A
G
G
A
T
A
G
A
T
G
A
A
G
T
T
A
T
T
A
C
G
G

N
-a
ce
ty
lm

u
ra
m
o
y
l-
L
-a
la
n
in
e
a
m
id
a
se

p
re
cu
rs
o
r

7
1
.7
/2
0
0
7

6
6

6
6
8

L
S
A
1
4
3
7
-R

T
T
A
A
A
T
C
G
C
C
T
T
A
T
C
C
A
A
C
A

ls
a
0
8
6
2

L
S
A
0
8
6
2
-F

G
C
G
T
T
C
G
T
T
A
T
C
A
C
G
A
A
G
T
A

N
-a
ce
ty
lm

u
ra
m
o
y
l-
L
-a
la
n
in
e
a
m
id
a
se

p
re
cu
rs
o
r

4
8
/1
3
2
3

4
3
.8

1
6
0
0

L
S
A
0
8
6
2
-R

A
A
G
C
A
A
A
C
G
T
C
G
T
T
A
A
T
G
T
G

ls
a
1
5
8
1

O
L
S
1
8
0
6
-F

T
G
T
T
T
T
A
T
T
A
G
T
T
A
A
T
A
G
T
T

T
ei
ch
o
ic

a
ci
d
-b
in
d
in
g
N
-a
ce
ty
lm

u
ra
m
o
y
l
L
-

a
la
n
in
e
a
m
id
a
se

7
6
.5
/2
0
8
5

7
6
.5

1
6
8
9

O
L
S
1
8
0
7
-R

G
G
A
T
A
G
T
T
A
T
T
T
T
T
T
T
G
G
T
G

ls
a
1
7
8
8

L
S
A
1
7
8
8
-F

G
C
C
G
T
A
A
C
G
C
A
C
A
C
T
A
T
T
A
T

P
h
a
g
e-
re
la
te
d
1
,4
-b
et
a
-N

-a
ce
ty
l
m
u
ra
m
id
a
se

2
7
.6
/7
5
9

2
2
.8

6
6
0

L
S
A
1
7
8
8
-R

C
G
A
G
T
A
C
G
A
C
C
T
A
A
T
T
C
G
G

4 A. Najjari et al.

Please cite this article in press as: Najjari A et al., Phenotypic and genotypic c
http://dx.doi.org/10.1016/j.jare.2015.04.004
harac
they were grown on ribose at pH 6.5 (Fig. 1A). At pH 8.5,
Lb. sakei strains were clustered in three groups composed of 6, 9
and 8 strains showing respectively the highest autolytic pheno-

type when cultured on glucose, fructose and ribose (Fig. 1B).
These results led to hypothesize that for some strains, the car-
bon source might have a significant effect on the autolytic phe-

notype. More generally, all the tested strains showed autolytic
rate variation according to carbon source ranging between
0.7% and 15% for the majority of strains and reaching approx-

imately 25% for strains BMG.167 and BMG.115 at pH 6.5,
and over 50% for Lb. sakei BMG.148 and 23 K at pH 8.5.
Integrity of the cell wall structure and osmotic sensitivity of
Lb. sakei strains were examined by evaluating the mutanolysin

sensitivity of cells harvested in exponential growth phase. The
results indicated a high resistance to mutanolysin for most
strains, with activity values ranging from 0.6% to 13.9%, and

no correlation between enzyme sensitivity and autolytic rate
of cultures grown in glucose at pH 6.5 (Fig. 1A). However,
strain BMG.167 was observed to have the highest autolytic rate

(64%) and showed a high level of sensitivity (31.3%) to the
enzyme (Fig. 1A).
Zymogram analysis of PGH patterns

The peptidoglycan hydrolase activity of whole cell protein
extracts was examined by renaturing SDS–PAGE containing
M. lysodeikticus cells as substrate. The PGH content was first

evaluated according to the growth phase with strain Lb. sakei
23 K. The most intense and clearest lytic bands were detected
using cultures incubated for 24 and 48 h (data not shown). The

PGH profile was thus determined for all strains after 48 h incu-
bation. Except from BMG.167, all the Lb. sakei strains showed
a similar pattern profile (P1) of two large proteins of approx-

imately 70 and 80 kDa. The 70 kDa PGH (B2) was character-
ized by an intense band detectable after 2–3 h of renaturation,
whereas the 80 kDa PGH (B1) protein was less intense and

appeared in gels after only after 16 h of renaturation. This lat-
ter band showed also some variations in intensity among tested
strains and between extracts. Two representative strains
(BMG.136 and BMG.120) showing the PGH profile P1 are

illustrated in the Fig. 2A. The second profile P2, solely
detected with the strain BMG.167, was characterized by two
PGH bands with lower molecular weights of 60 and 70 kDa

for thick and thin bands respectively (Fig. 2A). A few very
weak secondary bands of molecular weight ranging between
45 and 80 kDa were occasionally observed and were not con-

sidered further.
The effect of pH (5.0, 6.0, 7.0, 8.0 and 9.0), sodium chloride

(1%, 2%, 4%, 6% and 8%) and three chemical compounds
(MgCl2 10 mM, MnCl2 10 mM, CaCl2 10 mM) on lytic activ-

ity were studied in strain 23 K by incubating gel slices under
different conditions during the renaturation procedure.
Under the modified conditions, the lytic bands appeared after

48 h incubation in different renaturing buffers, rather than 2 or
16 h in the standard conditions. A slight decrease in band
intensity was observed in the presence of MgCl2, MnCl2,

CaCl2 and EDTA, while no significant effect of NaCl was
noticed. Finally, the optimum pH for lytic activity was found
between 6 and 8 (data not shown).
terization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),
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Fig. 1 Extent of autolysis of Lb. sakei strains after 72 h of incubation at 30 �C. Bacteria were grown in MRS broth containing 1% (w/v)

glucose (black bars), fructose (white bars) or ribose (gray bars), and resuspended in: (A): Potassium phosphate buffer (50 mM, pH 6.5) and

(B): Tris–HCl buffer (50 mM, pH 8.5). Mutanolysin activities were evaluated on the same bacterial cells grown in MRS broth containing

1% (w/v) glucose (black bars) and resuspended in phosphate buffer (50 mM, pH 6.5) of the (A). The extent of mutanolysin sensitivity is

represented by degraded bars (A). The 24th strain in the figures corresponds to the reference strain Lc. lactis IL403, used as a control. The

average of three replicates is indicated for all strains.
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Spectrum of PGH specificity

The activity spectrum of PGH of all Lb. sakei strains was
evaluated against cells of lactic acid bacteria and other species.

No notable lytic bands were visualized when S. aureus was
used as a substrate. The same profile, initially detected with
M. lysodeikticus and showing the common B1 and the B2

bands, was also observed toward cells of Lb. sakei, L. innocua,
L. ivannovii and L. monocytogenes.
Characterization of PGH candidate genes

In silico analysis of the genome of Lb. sakei 23 K (GenBank
accession number CR936503) for putative PGH encoding
genes revealed the presence of five candidates, encoded by

lsa0862, lsa1437, lsa1558, lsa1581, and lsa1788. For two candi-
dates, the theoretical size of the encoded proteins (LSA1437,
71 kDa and LSA1581, 76 kDA) was compatible with the

experimentally observed size of the major PGH band B2
(70 kDa). The presence of these two genes, corresponding to
an N-acetylmuramoyl-L-alanine amidase and a teichoic acid-

binding N-acetylmuramoyl L-alanine amidase, was examined
by PCR in the 22 Lb. sakei strains of the collection. In
Please cite this article in press as: Najjari A et al., Phenotypic and genotypic charact
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addition, since it is known that Lb. sakei exhibits high genomic

diversity, as within strains, as evidenced by PCR analysis of
several genes [39], the presence of the three other PGHs
encoding candidate genes was also investigated. PCR results
are presented in Table 2. The results indicated that lsa0862

and lsa1558 were present in all strains. The amplification of
an internal fragment of lsa1581 could be detected from only
four out of the twenty-two strains, indicating the absence of

correlation with the rate of measured autolysis. Moreover,
the gene lsa1788 was detected in ten out of twenty-two strains
and no correlation with the PGH band patterns could be

established. In contrast, for lsa1437 we observed that all
strains, except BMG.167, showed a band of the expected size
(with regard to the difference between theoretical molecular
weight and that observed in the denaturant conditions).

Interestingly, a PCR fragment was present in BMG.167 that
was smaller than observed in other isolates. The lsa1437 gene
fragment of BMG.167 was sequenced (GenBank accession

number GQ847621) and we deduced a short internal deletion
of part of the gene corresponding to the first out of five C-
terminal LysM domains. This deletion was correlated with a

reduction of 132 bp in the coding sequence, as it was revealed
by the size difference of the PCR fragment related to the strain
BMG.167.
erization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),
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PAGE fingerprinting gel of whole cell-SDS extracts proteins patterns after Coomassie blue staining of Lb. sakei strains (BMG.136

BMG.167), Lc. lactis IL403 and the molecular weight marker (Fermentas).

Table 2 PCR detection of five putative PGH encoding genes.

Strain PGH genes amplificationa

lsa1558 (25.4 kDa) lsa1581 (76.5 kDa) lsa1437 (71.7 kDa) lsa1788 (27.6 kDa) lsa0862 (48 kDa)

BMG.106 + + + + +

BMG.37 + � + + +

BMG.73 + � + + +

BMG.170 + � + + +

BMG.51 + � + + +

BMG.148 + � + + +

BMG.168 + � + + +

BMG.167 + � +(R) + +

BMG.164 + + + + +

BMG.126 + � + � +

BMG.127 + � + � +

BMG.101 + � + � +

BMG.105 + � + � +

BMG.95 + � + � +

BMG.115 + � + � +

BMG.107 + + + � +

BMG.40 + � + � +

BMG.45 + � + � +

BMG.136 + � + � +

BMG.138 + � + � +

BMG.120 + � + � +

23 K + + + + +

a PGH putative genes and the predicted molecular weight of the corresponding proteins, based on the 23 K genome sequence. + indicates

when putative candidate genes were detected by PCR amplification. � indicates no PCR amplification. (R): a reduced molecular weight of about

132 bp in the PCR fragment.
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Discussion

The present study evaluated the autolytic phenotype of a col-
lection of Lb. sakei strains, isolated from meat and sea prod-

ucts. The highest level of autolysis was observed for most
strains, when cells were grown on glucose and incubated in
potassium buffer (50 mM, pH 6.5). These results correlated

with those reported for other lactic acid bacteria such as Lc.
lactis [40,41], Leuconostoc [42], and S. thermophilus [43], and
supporting the hypothesis of a weaker cell wall structure in cul-
tures grown in the presence of glucose. The difference in lysis

after growth on different carbon sources could be explained
by reduced binding of PGH, containing LysM domains (that
specifically bind N-acetylglucosaminidase) due to modification

of the cell wall as reported by Buist et al. [30] and Steen et al.
[29,44]. The mutanolysin test carried out in MES buffer indi-
cated that most strains possessed high resistance to the

muramidase. This indicates that no correlation exists between
autolysis and mutanolysin sensitivity. These results were in
accordance with data described for Bacillus species [20,36]

but differ from those reported for lactic acid bacteria such as
Lc. lactis [22] and Pediococcus pentosaceus [21]; and this can
be explained by differences in the cell wall sensitivity to lytic
enzymes that could be related to different modifications of

the peptidoglycan, such as deacetylation [45,46,14]. In addi-
tion, according to the predicted putative PGH types that are
mostly N-acetyl muramoyl L-alanine amidase [3],

muramidase-like enzymes could have a minor role in autolysis
functions compared to the case of Lc. lactis [28,47].

The obtained lytic profile of Lb. sakei strains, using M.

lysodeikticus as substrate, was previously reported by Lortal
et al. [48], showing the B1 and B2 lytic bands of approximately
80 kDa and 70 kDa respectively. The exception was strain

BMG.167, in which both bands had slightly smaller molecular
weights (of approximately 70 and 60 kDa for thin and thick
bands, respectively). With regard to PCR analysis of the five
putative PGH genes of Lb. sakei, this strain also showed a

smaller PCR product corresponding to the lsa1437 gene.
This variation reflected a deletion in the first LysM domain
of the C-terminal part of the translated peptide. The LysM

domain was originally identified in enzymes that degrade bac-
terial cell wall components, but it is also found in many other
bacterial proteins [49,31]. It is composed of a lysine motif of

approximately 44 residues and may have a general peptidogly-
can binding function. As previously described for Lc. lactis
and E. faecalis [50,51], the deletion of one lysM domain does
not lead to the loss of PGH activity, however does affect its

intensity. Interestingly, analysis of Lb. sakei autolytic activities
demonstrated that, for strain BMG.167 which contained the
lysM deletion, a relatively high level of autolysis is obtained

after growth on different carbon sources and incubation at dif-
ferent levels of pH. In this case, the loss of the lysM domain for
the amidase LSA1437 is proposed as beneficial for PGH activ-

ity, cell wall binding and/or autolysis. Based on the predicted
molecular weight of the putative PGH calculated from the
23 K genome, comparison with the experimentally derived

PGH profiles was performed. Although, the masses of proteins
LSA1437 and LSA1581 are comparable, LSA1581 does not
contain a signal peptide according to signal IP prediction
(Table 1). This suggests that the protein is not secreted.

Moreover, the results of PCR demonstrated that the gene
Please cite this article in press as: Najjari A et al., Phenotypic and genotypic charact
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lsa1581 is present only in four strains however lsa1437 gene
and the corresponding PGH are present in all strains. It can
therefore be postulated that lsa1437 encodes the protein B2,

as characterized by strong lytic activity associated with a pro-
tein of 70 kDa. However, it could also encode the B1 band, as
both have a diminished size in strain BMG.167. In addition,

the protein B1 showed variability in both presence and inten-
sity, and this could be attributed to the precursor molecule
of B2, as demonstrated for the thin band accompanying the

AcmA of Lc. lactis [28].
When varying the cell wall substrate by including cells of

different bacteria in the gel, the main PGH bands, initially
revealed with M. lysodeikticus were also visualized using cells

of L. ivanovii, L. innocua, L. monocytogenes and Lb. sakei.
With the exception of the lsa1437 gene, which was attributed
to be the main autolytic band, no other correlations were

found between the presence of other putative PGH encoding
genes and the lytic bands detected in the zymogram analysis.
As previously observed for Lc. lactis [52], these results could

be attributed to renaturing SDS–PAGE method used to reveal
PHG profiles and they do not necessarily reflect the actual
number of enzymes produced by bacteria because of possible

irreversible denaturation, and to the stringent substrate speci-
ficity of some enzymes. Moreover, as previously reported for
many Gram-positive bacteria [53–57,21], partial proteolytic
degradation may produce fragments that retain enzymatic

activity.
The effect of different renaturing conditions on autolytic

activity bands was evaluated using renaturing buffers of differ-

ent compositions and at different levels of pH. Peptidoglycan
hydrolase activity was observed, although at a slightly reduced
level in high salt concentrations and in acid/basic conditions.

This observation has also been reported for other species of
lactic acid bacteria, such as P. pentosaceus [21], Lc. lactis
[22], as well as for some propionibacteria [35], indicating that

the detected PGH is active in stressful conditions, low temper-
ature and/or high salt concentration, such as those encoun-
tered in meat environments [58,59,3,52].

Lb. sakei, commonly presents as a part of the adventitious

microbiota or as a starter culture, plays a crucial role during
meat fermentation, due to the proteolytic enzymes contribut-
ing to the increase of small peptides and free amino acids

known to be precursors of volatile compounds [4–6]. In this
context, PGHs can play an important role in the releasing of
the bacterial cytoplasmic content which is rich in proteolytic

enzymes involved in the development of organoleptic proper-
ties. In the present work, BMG.167 showing a high autolytic
rate constitutes therefore a promising candidate for further
application as starter culture for meat fermentation.

Furthermore, the ability of Lb. sakei PGHs to hydrolyze the
cell wall of food-borne pathogenic bacterial species and the
stability of Lb. sakei PGH activity in different environmental

conditions could play an important role in bacterial biocon-
trol, for example, after the fermentation and during the drying
step of fermented sausage production, when pH is low and

NaCl concentration is increasing.

Conclusions

Evaluation of autolytic properties of Lb. sakei strains showed
a high degree of diversity among isolates. The higher autolytic
erization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),
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rate was observed when cells were grown in the presence of
glucose, at pH 6.5. The PGH band pattern was determined
by renaturing SDS–PAGE on whole cell samples. In the

majority of strains two PGH bands with a MW of about
70 kDa and 80 kDa respectively were detected, with some
strain-dependent variations in the band intensity. One strain

showed a different pattern with 2 PGH bands of 60 and
70 kDa. Lytic activity was retained in high salt and in acid/ba-
sic conditions and was active toward cells of Lb. sakei, L.

monocytogenes, L. ivanovii and L. innocua. The presence and
size of putative PGH genes was verified by PCR in the
Lb. sakei collection and we found that the gene lsa1437 showed
a clear correlation between PGH profiles and PCR results.

The ability of Lb. sakei PGHs to hydrolyze the cell wall of
food-associated spoilage and pathogenic bacterial species,
could be used in combination with the selection of Lb. sakei

bacteriocin producing strains in order to select starter cultures
effective in the biopreservation of fermented meat quality.
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Vergès MC. Evidence for the involvement of at least six proteins

in Lactobacillus sakei adaptation to cold temperature and

addition of NaCl. Appl Environ Microbiol 2004;70:7260–8.
erization of peptidoglycan hydrolases of Lactobacillus sakei, J Adv Res (2015),

http://refhub.elsevier.com/S2090-1232(15)00052-1/h0135
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0135
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0140
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0140
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0140
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0140
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0145
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0145
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0145
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0145
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0150
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0150
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0150
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0155
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0155
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0155
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0155
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0160
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0160
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0160
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0160
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0165
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0165
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0165
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0170
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0170
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0175
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0175
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0175
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0175
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0180
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0180
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0180
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0185
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0185
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0185
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0190
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0190
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0190
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0195
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0195
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0195
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0195
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0200
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0200
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0200
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0205
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0205
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0205
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0210
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0210
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0210
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0215
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0215
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0220
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0220
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0220
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0220
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0225
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0225
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0225
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0230
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0230
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0230
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0235
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0235
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0235
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0235
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0240
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0240
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0240
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0240
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0245
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0245
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0245
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0250
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0250
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0250
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0250
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0255
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0255
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0255
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0260
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0260
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0260
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0260
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0265
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0265
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0265
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0265
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0270
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0270
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0270
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0275
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0275
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0275
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0280
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0280
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0280
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0280
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0285
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0285
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0285
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0285
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0285
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0290
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0290
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0290
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0295
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0295
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0295
http://refhub.elsevier.com/S2090-1232(15)00052-1/h0295
http://dx.doi.org/10.1016/j.jare.2015.04.004

	Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakeiLactobacillus sakei --
	Introduction
	Material and methods
	Bacterial strains and growth conditions
	Autolysis of whole cells in buffer solution
	Mutanolysin sensitivity
	Detection of PGH activity
	DNA manipulation and sequencing

	Results
	Autolytic phenotype of Lb. sakei and mutanolysin sensitivity
	Zymogram analysis of PGH patterns
	Spectrum of PGH specificity
	Characterization of PGH candidate genes

	Discussion
	Conclusions
	Compliance with Ethics Requirements
	Conflict of interest
	Acknowledgments
	References


