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Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France, 4 Centre d’Immunologie de Marseille-Luminy, Université d’Aix-Marseille, Marseille, France, 5 INRA,
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Abstract

Cryptosporidium parvum is a zoonotic protozoan parasite found worldwide, that develops only in the gastrointestinal
epithelium and causes profuse diarrhea. Using a mouse model of C. parvum infection, we demonstrated by conditional
depletion of CD11c+ cells that these cells are essential for the control of the infection both in neonates and adults. Neonates
are highly susceptible to C. parvum but the infection is self-limited, whereas adults are resistant unless immunocompro-
mised. We investigated the contribution of DC to the age-dependent susceptibility to infection. We found that neonates
presented a marked deficit in intestinal CD103+ DC during the first weeks of life, before weaning, due to weak production of
chemokines by neonatal intestinal epithelial cells (IEC). Increasing the number of intestinal CD103+ DC in neonates by
administering FLT3-L significantly reduced susceptibility to the infection. During infections in neonates, the clearance of the
parasite was preceded by a rapid recruitment of CD103+ DC mediated by CXCR3-binding chemokines produced by IEC in
response to IFNc. In addition to this key role in CD103+ DC recruitment, IFNc is known to inhibit intracellular parasite
development. We demonstrated that during neonatal infection CD103+ DC produce IL-12 and IFNc in the lamina propria
and the draining lymph nodes. Thus, CD103+DC are key players in the innate immune control of C. parvum infection in the
intestinal epithelium. The relative paucity of CD103+ DC in the neonatal intestine contributes to the high susceptibility to
intestinal infection.
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Introduction

Cryptosporidium parvum is a waterborne protozoan parasite. It is

highly prevalent worldwide affecting primarily populations in

underdeveloped countries but also causes disease in industrialized

countries such as the US where there are approximately 748,000

cryptosporidiosis cases annually [1]. Infection of the intestinal

epithelium by this zoonotic agent results in sickness and severe

diarrhea that can be life threatening in very young children and

ruminants. Immunocompetent adults are relatively resistant to the

infection but immunosuppressed individuals, particularly those

with HIV infection, are particularly susceptible [2]. As for humans

and ruminants, age-related differences in susceptibility are

observed in the mouse model of infection used to study the

immune mechanism leading to protection. The severity of this

infection is related to the immune status of its host. Unlike other

intestinal parasites, such as Toxoplasma gondii, C. parvum is only

minimally invasive and its development throughout its life cycle is

restricted to the epithelial layer. Therefore, in addition to its

economic and clinical importance, it can serve as a model for

studies of the immune mechanisms protecting the neonatal

epithelium.

Neonates are generally more susceptible than adults to

infectious diseases [3]. Their intestinal immune system is in

development and subject to numerous changes after birth, facing

the colonization by the commensal flora, alimentary antigens,

and aggression by enteric pathogens [3]. Both qualitative and

quantitative differences between the neonatal and adult immune

systems have been documented [4]. Several factors in the

intestine can contribute to neonatal susceptibility to infections;

they include the thinner than adult mucous layer, low level of

epithelial proliferation, low alpha defensin production, and lower

level of expression or specific compartmentalization of various

TLRs [5]. In addition, the numbers of resident lamina propria

and intraepithelial T lymphocytes are low at birth although they

increase thereafter [6]. Neonatal mononuclear phagocytes have
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been characterized in human cord blood and in the spleen of

mice [7], but much less is known about the presence of the

subsets associated with the intestinal mucosa in neonates. After

a long debate, the situation concerning the nature and the

origin of the different intestinal CD11c+ cell subsets in adult

mice has been clarified based on the expression of the frac-

talkine receptor, CX3CR1, and the integrin alpha-E (CD103)

[8]. Conventional dendritic cells (cDC) originate from pre-cDC

precursor from the blood and express CD103+, whereas

CD11c+CX3CR1+ is a heterogeneous population, originating

from Ly6c+ precursors, and most are now referred to as

macrophages [9].

In addition to their well-described role in antigen presenta-

tion and lymphocyte activation, DC play an active role in

innate immunity against infection by protozoans via their

crosstalk with other innate cells such as NK cells [10] and as a

critical source of cytokines [11]. We previously observed a

rapid control of C. parvum development in neonates receiving

TLR-receptor ligand treatment, evidence of the importance of

innate immune responses to the control of this infection [12].

We and others have observed that following administration of

immunostimulants or during the natural course of C. parvum

infection, IFNc is an essential component in the mechanism of

protection [12–16] but the nature of the cells producing this

cytokine in the intestine of neonatal mice has yet to be

identified.

We investigated the reasons for the neonatal susceptibility to C.

parvum infection and the immune mechanism leading to protection

against the acute phase of this infection. We show that CD103+
DC are scarce in the small intestine of neonates, and this results in

high susceptibility to C. parvum infection. Accordingly, in vivo

amplification of CD103+ DC in neonates resulted in increased

resistance to the infection. These cells are actively recruited during

the natural infection by CXCR3-binding chemokines and

independently of conventional T cells and conventional NK cells

(cNK), participate in the control of parasite development. Thus,

CD103+ DC act as gatekeepers to control infections of the

neonatal intestinal epithelium by enteric pathogens.

Results

Intestinal CD11c+ cells are necessary to control C. parvum
infection whatever the age of the animal

We previously observed a rapid control of C. parvum develop-

ment in neonates receiving strong immunostimulant treatment,

evidence of the importance of innate immune responses to the

control of this infection [12]. In addition to their role in the

orchestration of adaptive immune responses, DC participate in

innate responses to pathogens by producing cytokines [17]. To

study the contribution of intestinal CD11c+ cells to protection

against C. parvum, we used the CD11c-DTR mouse model that

allows transient depletion of CD11c+ cells after diphtheria toxin

(DT) administration [18]. The DT dose (2 ng/g) was adapted to

neonates and was sufficient to deplete CD11c+ cells efficiently in

both systemic (.85%) (Figure 1, A) and intestinal (.86%)

compartments (Figure 1, A and B). When DT was injected once

4 days post inoculation, a clear increase in parasite load was

observed reaching a peak 48 h later (Figure 1, C). New CD11c+
cells emerged and colonized the mucosa such that their numbers

were similar to those in non DT treated animals 72 h post-

treatment (Figure S1, A), and the infection started to decrease

rapidly thereafter. Adult C57BL/6 mice are naturally resistant to

C. parvum infection, with oocysts barely detectable in the feces.

Adult CD11c-DTR mice were depleted of CD11c+ cells by

intraperitoneal injections with 4 ng/g of DT 12 h preceding the

infection and 2 dpi. In the intestine 4 dpi, the depletion of

CD11c+ cells was at least 85% (Figure S1, B) and this was

associated with numerous parasites found in the intestinal content

and throughout the ileal epithelium (Figure 1, D). Overall, these

experiments indicate a strong correlation between the presence of

CD11c+ in the intestinal mucosa and the ability to control C.

parvum infection. In addition to CD103+ DC that were efficiently

depleted by DT treatment in infected neonatal mice (5 dpi,

.91%), other mononuclear phagocytes express CD11c+ in the

intestine [9]; however, the relative contribution of these CD11c+
cell populations to the mechanism of protection at this stage could

not be assessed.

The neonatal mouse intestine is almost devoid of
CD11c+ CD103+ DC but these cells are recruited strongly
during the course of infection

Quantitative differences in immune cell composition in periph-

eral tissues between neonates and adults have been reported [4,6].

To test for the influence of age-dependent colonization by

mononuclear phagocytes on the susceptibility to infection, we

compared the presence in the small intestinal mucosa of various

subsets of mononuclear phagocytes in 7-day-old and 13-day-old

neonates and in adult mice. In the adult intestine, it is possible to

distinguish CX3CR12CD103+ DCs and an heterogeneous

population of CX3CR1intCD1032 mononuclear phagocytes,

which have characteristics intermediate between those of DCs

and macrophages, and a population of bona fide CX3CR1hi F4/

80+ macrophages [9,19].

The two main non overlapping subsets, CD11c+CD103+ and

CD11c+CX3CR1+, formed a well-developed network within the

lamina propria of the small intestine of adult mice. In one week-

old healthy neonates, mononuclear phagocytes were much less

abundant in the small intestine (Figure 2, A). At that age, CD11c+
cells were almost undetectable, and F4/80+ macrophages were

present in small numbers and mainly within the intestinal muscularis.

The few CX3CR1+ cells that were present in the lamina propria

of neonates (Figure 2, A) also expressed F4/80+ and were the first

resident macrophages (data not shown). Thirteen-day-old neonates

Authors Summary

Dendritic cells are central to the defense against mucosal
pathogens. They are numerous and form a uniform
network in the intestinal mucosa of adults, but are poorly
characterized in the intestine of neonates. Young animals
are more susceptible than adults to intestinal pathogens,
such as Cryptosporidium parvum, a zoonotic agent distrib-
uted worldwide that develops in the epithelium of the
small intestine causing profuse diarrhea. We show that
dendritic cells are scarce in the small intestine of neonates
until weaning and that increasing their numbers in vivo
results in increased resistance to infection. Using a
conditional depletion model we demonstrate that the
presence of dendritic cells is necessary for the control of
the infection in both neonates and adults. During infection
in neonates, dendritic cells are rapidly recruited into the
intestine by chemokines produced by the epithelium and
produce interferon gamma, a cytokine that inhibits
parasite development in epithelial cells. Thus, the low
number of dendritic cells in the intestinal mucosa of
neonates is responsible for their sensitivity to cryptospo-
ridiosis, and probably contributes to the general suscep-
tibility of neonates to intestinal diseases.
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were still almost devoid of intestinal CD11c+ CD103+ DC under

homeostatic conditions (8 times less than in adults). Daily analysis

during the course of infection revealed that CD11c+ CX3CR1+
macrophage-like cells continuously accumulated such that the

count increased 3 fold between the first and second week of age, to

reach a density close to that in 22-day-old and adult animals (Fig 2,

B). The infection had only a limited effect on the numbers of

CD11c+ CX3CR1+ cells per villus. Strikingly, the situation was

Figure 1. CD11c+ cells are necessary for the control of C. parvum infection. (A) Seven day-old heterozygous CD11c-DTR neonates were
infected with 5.105 C. parvum oocysts and some animals were treated with DT 4 dpi. Spleen cells and intestinal cells were collected separately
24 hours later and CD11c+ cell depletion was analyzed by flow cytometry. (B) Neonates were infected and treated as in (A), and sections of the small
intestine from CD11c-DTR neonates collected 5 dpi were processed for histology: C. parvum is stained in red, and CD11c is stained in green (Original
magnification 6200). (C) Neonates were infected and treated as in (A). The parasite load was assessed daily from 5 dpi to 8 dpi in CD11c-DTR
neonates treated or not treated with DT 4 dpi (n = 7–12 neonatal mice per group). (D) Adult CD11c-DTR were infected with 106 C. parvum oocysts
and treated twice (d21; d+2) or not treated with DT. Parasite load was evaluated 4 dpi in the whole intestine of adult mice (p,0.001, n = 8 mice per
group). In the same experiment, histological sections of small intestine were collected 4 dpi (C. parvum staining in red; original magnification 6200).
doi:10.1371/journal.ppat.1003801.g001
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completely different for CD11c+CD103+ DC: they were rare in

the intestinal mucosa until weaning (day 22) but were observed in

very large numbers after C. parvum infection (Figure 2, B and

Figure S2, A). These results were confirmed by flow cytometry

6 dpi, at the peak of the infection (Figure 2C). The location within

the lamina propria of CD11c+CD103+ DC and CD11c+
CX3CR1+ cells at 6 dpi was investigated by immunohistochem-

istry (Figure 2D). After infection, only very few CD11c+ cells were

detected in intraepithelial positions and the few that were present

were CD103+. These cells may correspond to the CD103+ DC

that have been recently shown to patrol among enterocytes of the

small intestine and which are able to extend dendrites toward the

lumen [20]. The vast majority of CD11c+ CD103+ and CD11c+
CX3CR1+ were in the lamina propria close to the epithelium.

The neonatal period is associated with massive colonization by

the intestinal flora, and this increases the number of CD11c+
CX3CR1+ cells in the adult intestine [21]. We investigated the

role of the intestinal flora in the recruitment of CD103+ DC

between 13 and 22 days of age. Germ-free neonatal mice

presented similar numbers of CD11c+CD103+ DC in their

intestine as conventional animals (Figure 2, E), indicating that

this recruitment was independent of the intestinal flora. Between 2

and 3 dpi, CD103+DC counts increased rapidly in the small

intestine. GM-CSF and especially FLT3-L are important hema-

topoietic factors for the differentiation of CD103+ DC [22]. We

analyzed their expression in the infected mucosa 2 dpi but found

no significant difference with age-matched controls (Figure S2, B).

Therefore, this result suggests that rather than a local expansion,

the large number of CD103+ DC in the infected intestine was due

to the migration of blood precursors (pre-DC) into the intestinal

tissue, as previously reported for CD103+ DC in adults [23].

In vivo amplification of CD103+ DC by repeated FLT3-L
administration increases resistance to the infection

We tested whether the low frequency of CD11c+ in the

neonatal intestinal mucosa was responsible for the susceptibility to

C. parvum infection. Bone marrow DC differentiated with GMCSF

or with FLT3-L were transferred into day-old neonates through

the superficial temporal vein. Despite a successful transfer to the

circulating blood, these cells were not found in the intestine and

the parasite load after challenge was unaffected (Figure S3). Due to

the small size of the animals, the small numbers of DC that could

be transferred (26105) may have been limiting.

We therefore increased the number of CD103+ DC present by

administering several injections of FLT3-L from birth to age 6

days, according to a previously published protocol [24]. On day 7,

the frequency of CD11c+CD103+ DC within the lamina propria

was very much higher than that in controls. This population was

more numerous than that of CD11c+CX3CR1+ cells, the

expression of which is independent of FLT3-L [25] and therefore

not affected by the treatment (Figure 3, A). FLT3-L treatment did

not significantly increase the number of NKp46+NK1.1+ cNK

and CD3+ lymphocytes (data not shown). FLT3-L-treated

neonates were infected with C. parvum, and the parasite develop-

ment 6 dpi was severely reduced (80% lower than in controls;

Figure 3, B). These data confirm that the presence of CD103+ DC

in the mucosa of neonates is essential for controlling the initial

infection and its subsequent development. FLT3-L increases IL-12

secretion by stimulated DC [24]; we therefore investigated the

contribution of IL-12 to the mechanism of protection. We

observed that IL-12p40 is necessary to control the acute phase

of the infection in neonates (Figure 3, C), as previously described

in adults [25]. The IL-12p402/2 neonatal mice that received

FLT3-L showed higher CD103+ DC counts (2164 fold

amplification), similar to those in wild-type mice, in the lamina

propria of the small intestine. However, despite this large number

of CD103+DC, these neonates were unable to control the

infection in the absence of IL-12p40 (Figure 3, D). The kinetics

of C. parvum infection is similar in IL12-p352/2 mice that cannot

produce IL-12 and IL-12p402/2 mice that cannot produce both

IL-12 and IL-23 [26]. Moreover, in our experimental conditions,

we never detected IL-23p19 chain upregulation during the

infection (data not shown). Thus, functional IL-12 is required for

the control of C. parvum infection.

Chemokine mRNAs are less abundant in the intestinal
epithelial cells of neonates than adults

IEC produce chemokines that attract DC [27,28]. We

investigated if differences in chemokine production between

neonatal and adult epithelium contribute to the differential

intestinal colonization by CD103+ DC. We found that in IEC

from healthy animals, the mRNAs for DC-attracting chemokines

were less abundant in 13 day-old neonates than adults. This was

particularly marked for CCL3, CCL4, CCL5, CCL22, CXCL9

and CXCL10 for which the differences were one or two logs

(Figure 4). IEC isolated from neonates at the peak of the infection

presented a clear up-regulation of XCL1, CCL3, CCL4, CCL5,

CXCL9, and CXCL10 expression, with levels close to those in

adults for CXCL9 and CXCL10.

CXCR3 controls by an IFNc-dependent mechanism the
strong recruitment of CD103+ dendritic cells in the
intestine of neonates infected by C. parvum

To identify the mechanism of recruitment of CD103+ DC in

the infected mucosa, we performed functional studies in vivo with

CXCL10: CXCL10 was one of the most strongly upregulated

chemokines in the IEC during neonatal mouse infection and the

mRNA for its receptor, CXCR3, was found to be expressed in

CD103+ DC isolated from neonates and adult mice (Figure 5, A).

Expression of CXCR3 on cell surfaces was confirmed by flow

cytometry with CD11c+MHCII+CD103+ DC isolated from the

intestine of neonatal mice at the peak of the infection (Figure 5, B).

The oral administration of CXCL10 for 3 consecutive days

starting from day 7 to neonates, that express this chemokine poorly

in their IEC, induced the recruitment of numerous CD103+ DC

in the mucosa (Figure 5, C). The specificity of the mechanism of

recruitment was confirmed with CXCR32/2 neonatal mice: oral

administration of CXCL10 to these mice did not induce CD103+
DC recruitment in the intestine (Figure 5, D). To further validate

CXCL10 as a candidate for the recruitment of CD103+ DC, we

analyzed their recruitment in the intestine of CXCR32/2

neonates at the early stage of the infection (3 dpi). CD103+ DC

were not significantly recruited in the intestine of these neonates

compared to their WT counterparts (Figure 5, E). Finally to

evaluate the importance of CXCR3 in the mechanism of

protection CXCR32/2 neonatal mice were infected with C.

parvum. These neonatal mice presented a significantly higher level

of infection than controls at the peak (6 dpi) of the infection

(Figure 5, F). Overall these data demonstrate that CXCR3 is an

important receptor for neonatal CD103+ DC colonization during

C. parvum infection.

CXCL9 and CXCL10 bind to CXCR3 and their expression is

dependent on IFNc. Under steady state conditions, there was

around 30 times less mRNA for IFNc in the intestinal mucosa of

neonates than adults (Figure 6, A) explaining the weaker

production of CXCL9 and CXCL10. Accordingly, IEC isolated

from IFNc2/2 neonatal mice did not significantly upregulate the

Neonatal Dendritic Cells in Epithelial Defense
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expression of CXCL9 and CXCL10 during the infection (Figure 6,

B) whereas other chemokines such as CCL3, CCL4 and CCL5

were still upregulated (Figure S4, A). In IFNc2/2 neonatal mice,

the recruitment of CD103+DC was dramatically altered (Figure 6,

C) despite a higher level of infection (Figure 6, D). Overall these

findings show that the initial low number of CD103+DC was

Figure 2. Rapid recruitment of CD11c+ CD103+ in the infected mucosa. (A) Sections of the small intestine of mice at different ages: 7 days
old, 13 days old, 13 days old inoculated with C. parvum at 7 days of age, and uninfected adult mice were stained with Hoechst dye and antibodies
against CD11c, CD103 and F4/80. CX3CR1GFP/WT mice were used for CX3CR1 detection. Original magnification 6200, scale bars indicate 100 mm.
Double staining for CD11c+ CD103+, CD11c+ CX3CR1+ and F4/80+ CX3CR1+ are provided in Figure S2. (B) Number of CD11c+CX3CR1+ and CD11c+
CD103+ double-positive cells in the intestine of infected animals and controls. (C) CD11c+ CX3CR1+ and CD11c+ CD103+ double-positive cells were
quantified by flow cytometry for infected animals 6 dpi and for age matched controls (n = 5 animals per group). Gating strategies are provided in
Figure S5, A. (D) As in (B) but the location in the mucosa of CD11c+ CX3CR1+ and CD11c+ CD103+ double-positive cells was evaluated in the
intestine of infected animals 6 dpi. IE: intraepithelial; LP: Lamina propria; MM: Muscularis mucosae. (E) As in (B), CD11c+ CD103+ double-positive cells
were enumerated in the intestine of axenic or conventional neonates at age 13 days and post weaning (22 days old). For (B, D, E) the values reported
were obtained by counting double-positive cells in sections of the small intestine of mice and for each point are the means 6 SEM of at least 30
optical fields from two animals from different litters.
doi:10.1371/journal.ppat.1003801.g002

Figure 3. In vivo amplification of CD11c+ CD103+ DC by FLT3-L enhances neonatal resistance to C. parvum infection. (A) WT and
CX3CR1GFP/WT neonates were injected daily for 6 consecutive days from birth with 1 mg FLT3-L. The first three injections were subcutaneous and the
next three intraperitoneal. Histological sections of the ilea were collected from FLT3-L-treated or untreated mice at 7 days of age. Sections were
stained with Hoechst dye and antibodies against CD11c and CD103. CX3CR1GFP/WT mice were used for CX3CR1 detection. Single staining is shown, to
provide a clearer overview of the distribution of the positive cells in the villi (scale bars indicate 100 mm). Double positive CD11c+CX3CR1+ cells and
CD11c+ CD103+ DC in ileal sections were counted. The graph reports means 6 SEM of at least 20 optical fields from two different animals giving
similar results; the values are fold amplification (treated/untreated animals). (B) Control neonates and neonates treated with FLT3-L for 6 days were
orally infected with 5.105 oocysts of C. parvum at 7 days of age and the parasite load was evaluated 6 dpi. Values are means 6 SEM (p,0.001, n = 8
neonatal mice per group). (C) Seven day-old WT and IL-12p402/2 neonates were orally infected with 5.105 oocysts of C. parvum and the parasite
load was evaluated at various times post infection. Values are means 6 SEM (n = 5–8 neonatal mice per group at each time point). (D) Same
experiment as in (B) but with IL12p402/2 neonates. Values are means 6 SEM (ns: not significant, n = 10–11 neonatal mice per group). The Mann-
Whitney non-parametric analyses were considered significant when p values were less than ,0.05. Figure 3D, p.0.05 is non-significant (ns).
doi:10.1371/journal.ppat.1003801.g003
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linked to the lower basal expression of IFNc in the neonatal

intestine and consequently to low CXCL10-related chemokine

production. Following infection by C. parvum sporozoites in vitro,

the mouse epithelial cell line CMT-93 upregulated CXCL9 and

CXCL10 24 h later (Figure 6, E) suggesting that independently of

IFNc, IEC can in some conditions upregulate these chemokines in

direct response to the parasite. However, our findings with

IFNc2/2 neonatal mice show that during the infection CXCL9

and CXCL10 upregulation was strongly IFNc-dependent. IFNc
therefore plays a key role in the mechanism of recruitment of

CD103+ DC in the infected mucosa.

Neonatal CD103+ dendritic cells produce IL-12 and IFNc
in response to the infection

To identify the mechanism by which CD103+ DC control

parasite multiplication, we investigated the expression of cytokines

in the mucosa of WT neonates in the presence, or soon after

depletion, of CD11c+ cells. DC can produce NO [29] and

previous finding with neonatal iNOS2/2mice suggested that NO

may help to control C. parvum infection [30]. iNOS expression was

therefore also analyzed. The expression of cytokines and iNOS in

the mucosa of WT neonates was studied 6 dpi. There was modest

upregulation of the mRNAs, with the exception of IFNc that was

upregulated by up to 100 fold and to a lesser extent IL-12p40 that

was upregulated 7 fold (Figure 7, A). When CD11c+ cells were

depleted, the upregulation of IL-12p40 and IFNc resulting from

the infection was severely impaired (Figure 7, B).

We next investigated the cytokines expressed by the two subsets

of CD103+ DC that were recently described in the intestine on the

basis of CD8a expression [31]. After mucosal activation, CD11c+
CD103+ DC from the intestinal tissues migrate to the mesenteric

lymph node (MLN) via the lymphatic system to serve classical

dendritic cell functions [8]. We observed that among

CD11c+MHCII+ cells at the peak of the infection, CD103+ DC

numbers had increased substantially in the MLN, with

CD103+CD8a2 DC being the predominant subset over the

CD103+CD8a+ DC subset (Figure 7C). We first analyzed the

cytokine expression by CD103+ CD8a+ and CD103+ CD8a2

Figure 4. Weak chemokine expression by epithelial cells of neonates is upregulated by the infection. RNA was extracted from intestinal
epithelial cells isolated from 13 day-old control neonates, infected (13 day-old, 6 dpi) neonates and control adult mice. Chemokine mRNAs were
assayed by qRT-PCR. Values were all normalized to IEC isolated from control neonates (*p,0.05, **p,0.01; n = 4–6 in each group).
doi:10.1371/journal.ppat.1003801.g004
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Figure 5. The chemokine receptor CXCR3 plays a major role in the recruitment of CD103+ DC during C. parvum infection. (A) CD11c+
MHCII+ CD103+ DC isolated from the intestines of uninfected adults and infected neonates were sorted by flow cytometry. CXCR3 expression in each
sample was evaluated by RT-PCR (amplicons on a 2% agarose gel). (B) Surface expression of CXCR3 on intestinal CD11c+CD103+ DC (previously
gated on MHCII+ cells) isolated from infected neonates (6 dpi) was analyzed by flow cytometry. Gating strategies are provided in Figure S5, B. The
grey line histogram represents the isotype control and the black filled histogram the staining with anti-CXCR3 monoclonal antibody. (C) Recombinant
CXCL10 was administered (1 mg/per os) to 7 day-old neonates for 3 consecutive days starting from day 7. At 9 days of age, CD11c+ CD103+ labeling
and counting were performed on intestinal sections. CD11c+ cells are stained in green, CD103+ cells in red and nuclei in blue with Hoechst dye (scale
bars indicate 20 mm). Data in the right-hand panel were obtained by counting double-positive cells per field in sections of the small intestine.
Reported values are means 6 SEM of at least 30 optical fields from two neonates from different litters. (D) CD11c+ MHCII+ CD103+ DC recruitment
after CXCL10 treatment in WT and CXCR32/2 neonates was also analyzed by flow cytometry. Numbers of CD11c+MHCII+CD103+ cells in the small
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DC isolated from the MLN at 6 dpi. Analysis of the mRNAs

showed clear upregulation of IFNc and IL-12p40 in both CD103+
subsets of DC isolated from infected animals (Figure 7, D). The

CD103+ CD8a2 subset presented the greatest IL-12p40

upregulation, and expression of IFNc by CD103+ CD8a+ DC

was increased by about 60 fold. Moreover, a decrease in IL-10

mRNA levels was observed in both subsets. The production of

both IFNc and IL-12p40 proteins by CD103+ DC of MLN from

infected animals was confirmed by ELISA (Figure 7 E). This IFNc
production was further amplified (6 fold) by the addition of

exogenous IL-12 to the culture media (Figure 7 E).

The small representation of CD103+ DC in the intestine of 13

day-old uninfected neonates precluded the isolation of these cells.

However, by using numerous infected neonates, we succeeded in

isolating a sufficient number of CD103+ DC for qRT-PCR

analysis. CD103+ DC isolated from the MLN of uninfected

neonates were used as a reference and therefore the gene

expression evaluations are only indicative. CD103+ DC isolated

from the intestine of infected neonates expressed IFNc, IL-12p40

and IL-12p35, but much a lower level of IL-10 than CD103+DC

isolated from the MLN of uninfected neonates (Figure 7, F).

CD11c+MHCII+CD103+ cells isolated from the small intestine of

infected (6 dpi) and uninfected age-matched controls were stained

for IFNc and this confirmed that a fraction of CD103+DC do

indeed produce IFNc during infection (Figure 7, G).

Neither conventional Natural Killer cells nor conventional
T lymphocytes are major players in the control of the
acute phase of the infection

Dendritic cells cross-talk with both innate and T lymphocytes to

control many intracellular pathogens. We first studied the role of

conventional T lymphocytes in the control of C. parvum infection in

CD3e-deficient mice (CD3e2/2). The parasite loads during the

acute phase of the infection in CD3e2/2 neonates were similar to

those in wild-type neonates (Figure 8, A). However, following

dexamethasone-induced immunosuppression 4 weeks after infec-

tion, only CD3e2/2 mice excreted C. parvum oocysts revealing

that the infection was not definitively cured in the absence of

functional conventional T cells (Figure 8, B).

Previous studies have suggested a role for NK cells in innate

immunity to C. parvum [32,33]. Conventional NK cells (cNK)

express the natural cytotoxicity triggering receptor NKp46 and

NK1.1 in C57BL/6 mice. We first tested for the presence of

NKp46+NK1.1+ cells in our cell preparation isolated from the

intestine of neonates at 6 dpi. Only a small double positive

NKp46+NK1.1+ population could be observed, whereas these

cells were clearly identified in the spleen of the same animals

(Figure 8, C). In NKp46-DTR animals [34] NKp46+NK1.1+ cells

were depleted by DT-treatment but these neonatal mice presented

no difference in susceptibility to infection (Figure 8, D). In the

same conditions, the level of IFNc expression observed in the

intestine of DT treated NKp46-DTR neonatal mice was only (2.7

fold) modestly decreased (Figure 8, E). IL-152/2 mice lack

conventional NK cells (cNK). In agreement with our NKp46

depletion data, IL-152/2 neonatal mice exhibited parasite loads

similar to those in controls at the various time points tested

(Figure 8, F). Overall these data suggest that cNK cells expressing

both NK1.1 and NKp46 are not a major contributor in the

mechanism of protection.

Discussion

Cryptosporidium infection is most prevalent among children below

5 years of age and in neonatal ruminants. The disease is of

substantial medical and economic importance. As the infection is

restricted to the intestinal epithelium and is strongly dependent on

the immune status of the host it is a useful model for deciphering

the immune mechanism protecting the intestinal epithelium.

Previously, only fragmented information was available regarding

the immune mechanisms leading to protection against this

zoonotic parasite.

Different patterns of expression of receptors involved in parasite

penetration may contribute to the difference between neonatal

and adult sensitivity to the parasite. However, C. parvum develops

successfully in immunodeficient adults suggesting that susceptibil-

ity depends on immune responses. Neonatal sensitivity to infection

has been attributed to both qualitative and quantitative differences

in immune cell components [4]. The numbers of intraepithelial

and lamina propria lymphocytes in the intestine of mice [6] and

calves [35] are low at birth and increase progressively over the first

three weeks. In our mouse model of infection, we demonstrated

that conventional CD3+ lymphocytes are not essential for the

control of the acute phase of the infection, but are important for

subsequent sterilizing immunity. Our results are in agreement with

Korbel et al. who did not observe any exacerbation of C. parvum

infection in neonatal WT mice depleted of CD4(+) T cells [36].

Other quantitative differences may explain neonatal sensitivity to

cryptosporidiosis. We have indeed observed a pronounced defect

of all mononuclear cells in the neonatal intestine. Although the

density of various subsets of macrophages expressing F4/80 and/

or CX3CR1 increases steadily in the intestinal mucosa during the

first weeks after birth, the profound deficit of CD103+ DC was

maintained until weaning. A recent study in which chlodronate

liposomes were administered to chronically infected adult mice

suggested that phagocytic cells may be involved in the mechanism

of protection, but the nature of the depleted cells was not

investigated [37]. We showed that following CD11c+ cell

depletion, neonates and adults become highly susceptible to the

infection, revealing the crucial role of these cells in controlling

parasite replication in enterocytes. Amplification of the number of

intestinal CD103+ DC resident in vivo by administration of FLT3-

L was associated with increased resistance to the infection.

Therefore, discovering the mechanism governing the recruitment

of these cells may allow the development of strategies to strengthen

intestinal immune defenses.

In uninfected animals, we found that the lower than adult basal

level of IFNc in the neonatal mucosa is associated with weaker

expression of CXCL9 and CXCL10, and this explains the poor

colonization by CD103+ cells that express CXCR3. In the

absence of functional CXCR3, CD103+DC recruitment during

neonatal C. parvum infection is severely impaired. Zeng et al.

recently showed that most pre-mDC that express gut homing

receptors and gave rise to intestinal cDC also express CXCR3

[38]. Indeed, the oral administration of CXCL10 to neonatal mice

that possess functional CXCR3 leads to rapid recruitment of

intestine in treated and untreated neonates (*p,0.05, n = 4 neonates for each group) are shown. (E) Seven day-old WT and CXCR32/2 neonates
(*p,0.05, n = 4 neonates for each group) were infected with C. parvum and CD103+ DC recruitment was analyzed by flow cytometry 3 dpi. Gating
strategies are provided in Figure S5, B. (F) Seven day-old WT and CXCR32/2 neonates were infected with C. parvum and the parasite load was
evaluated 6 dpi. (p,0.0001, n = 12–16 mice per group).
doi:10.1371/journal.ppat.1003801.g005
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Figure 6. IFNc plays a key role in the recruitment of CD103+DC during infection. (A) Basal mRNA level of IFNc in the intestine of neonate
and adult mice (p,0.001, n = 8 mice per group). (B) Seven day-old C57BL/6J WT and IFNc2/2 neonates were infected with C. parvum. mRNAs for
CXCL9 and CXCL10 in isolated IEC were assayed by qRT-PCR in infected (6 dpi) and in uninfected age-matched control neonates (n = 6 neonatal mice
for each group,** p,0.005). (C) The presence of CD11c+CD103+ DC was evaluated in the ileal villi of WT and IFNc2/2 mice 6 dpi. Sections of small
intestine were immunostained and CD11c+ CD103+ double-positive cells (white arrow) were counted. CD11c+ cells are stained in green, CD103+ cells
in red and nuclei in blue with Hoechst dye (scale bars indicate 20 mm). Data in the right-hand panel were obtained by counting double-positive cells

Neonatal Dendritic Cells in Epithelial Defense

PLOS Pathogens | www.plospathogens.org 10 December 2013 | Volume 9 | Issue 12 | e1003801



CD103+DC in the mucosa; this reveals that there is no major

defect in either the capacity of neonatal pre-DC to respond to

chemokine gradients or their binding to vascular addressins on the

endothelium and subsequent extravasation to gut mucosal tissues.

Following infection in vitro, C. parvum sporozoites induce the

production of CXCL9 and CXCL10 in IEC by a yet-unidentified

mechanism. NF-kB binding sites are present in the CXCL10 gene

promoter [39] so this chemokine production may be related to the

NF-kB activation observed after infection [40,41]. Previous work

in our laboratory showed that CCR52/2 neonatal mice

presented a higher parasite burden at the early stage of infection

but eliminated the parasite as efficiently as their wild-type

counterparts [42]. CCL3, CCL4 and CCL5 are produced by

IEC independently of IFNc and CCR5 is expressed by CD103+
DC (Figure S4, B), so these chemokines may provide the first

signals for CD103+ DC recruitment during C. parvum infection.

The substantial reduction of CD103+ DC recruitment in infected

IFNc2/2 neonatal mice demonstrates that CXCL9 and

CXCL10 are responsible for the high level of recruitment of

CD103+DC. With CXCR32/2 neonatal mice, we demonstrated

the importance of chemokine/CXCR3 interactions for controlling

parasite replication. In humans, high levels of CXCL10 are

produced by IEC in AIDS patients with active cryptosporidiosis

[43]; following effective antiparasite and antiretroviral therapy,

Cryptosporidium infections resolve, and the levels of CXCL10

decrease to normal. In addition, CXCR3 is expressed on CD141hi

DC that are functionally homologous to mouse CD103+ non

lymphoid DC [44]. These are important observations that suggest

that a similar mechanism of DC recruitment occurs in humans

during cryptosporidiosis. Our experiments involving FLT3-L

injection into IL-12p402/2 mice demonstrated that the presence

of numerous CD103+ DC in the mucosa is not sufficient to control

C. parvum infection; control was critically dependent on the host

capacity to produce IL-12. In IL-12p402/2 neonatal mice, the

strong expression of IFNc observed in WT neonates was

dramatically impaired (data not shown). Therefore, CD103+DC

—the major IL-12 producers in the infected mucosa— play a key

role in IFNc production. Adult mice in which IFNc expression or

its signalling are affected such as IFNc2/2 or STAT-12/2 mice

[26] display high sensitivity to the infection and long-term carriage

of the parasite. The presence of the IFNc receptor at the

basolateral surface of the enterocyte makes this cytokine a key final

mediator of the immune mechanism of protection. IFNc is

identified as being the most effective cytokine for controlling

parasite replication in enterocytes despite the immuno-evasive

strategy employed by the parasite based on depletion of the

STAT1a protein [45]. Despite intensive investigations, the cells

producing IFNc in the intestinal mucosa during neonatal

cryptosporidiosis have not been identified.

NK cells through direct cell-to-cell contact and IL-12 produc-

tion by DC can be major producers of IFNc and therefore may be

effector cells. Previous studies suggest that NK cells may

participate in the control of C. parvum infection. An in vitro study

showed that IL-15-activated human NK cells upregulate NKG2D

and lyse infected HCT-8 target epithelial cells expressing the

MHC I-related molecules MICA and MICB [33]. However,

neither IL-152/2 neonatal mice nor neonatal mice depleted of

NKp46+ cells displayed enhanced susceptibility. In mice, NK1.1 is

present on the surface of subsets of NKT and innate lymphoid

cells, such as cNK cells [46,47]. Korbel et al. showed that neonatal

mice treated with anti-NK1.1 antibody at the time of the infection

and at 3 dpi had significantly larger numbers of C. parvum oocysts,

as determined by counts obtained from fecal smears [36]. One

possible explanation for the discrepancy between these results is

that NKp46 and NK1.1 are expressed by both common and

different populations of innate lymphocytes. The depletion of

NKp46 or NK1.1 may therefore result in different outcomes of C.

parvum infection.

The dramatic downregulation of IFNc after CD11c+ depletion

but not NKp46+ depletion suggested that DC may themselves

produce this cytokine. Moreover, these cells are numerous in the

infected mucosa and can be found in close contact with epithelial

cells making DC a candidate for controlling infected enterocytes.

We discovered that CD103+ DC isolated from the intestine and

MLN of infected neonates produce IFNc. Therefore, by produc-

ing IL-12, CD103+ DC subsets may mediate their own IFNc
production via both paracrine and autocrine mechanisms. IFNc-

producing DC have been identified in few other adult mouse

models of infection or gastrointestinal inflammation. Moretto et al.

reported that IFN-gamma-producing DC are important for

priming the gut intraepithelial lymphocyte response against

intracellular parasitic infection with Encephalitozoon cuniculi [48].

Also, CD103+ DC were recently identified as a significant source

of IFNc in the MLN of mice fed a vitamin A-deficient diet [49]. In

addition, Sun et al. showed that CD11c+ DC from neonatal spleen

produce more IFNc than their adult counterparts, in particular

when stimulated with IL-12 [50]. This suggests that the capacity of

neonatal mouse DC to produce IFNc may be greater than that of

their adult counterparts.

However, our data do not exclude the possibility that there is

another source of IFNc such as unconventional T cells and/or

innate lymphoid cells that could be stimulated by the IL-12

produced by CD103+ DC. To assess this possibility, further

investigations would be required, including characterization of

these cell types in the intestinal mucosa of neonates and their

relative significance in the control of C. parvum infection.

Our work highlights the major role of the cytokine response of

CD103+DC in controlling the acute phase of the infection. It

would be now very informative to investigate how C. parvum

antigen is captured and presented to T cells in the MLN to trigger

the adaptive sterilizing immunity. In addition to antigen transfer

from intestinal CX3CR1+ cells to CD103+DC [51,52], a recent 2-

photon microscopy study demonstrates that CD103+DC can

efficiently phagocytize bacteria using intraepithelial dendrites [20].

This mechanism may also be relevant to enteric protozoans such

as C. parvum.

Overall, the investigations we report substantially improve the

characterization of the mechanisms involved in protection against

C. parvum, in particular by identifying the critical role of intestinal

CD103+ DC. The poor colonization of the neonatal intestine by

CD103+ DC explains the neonatal sensitivity to C. parvum

infection, a phenomenon that probably also contributes to

susceptibility to other intestinal pathogens. In addition, their role

in the induction of adaptive responses, CD103+ DC can thus be

per field in sections of the small intestine of C57BL/6J WT and IFNc2/2 mice at 6 dpi. Reported values are means 6 SEM of at least 30 optical fields
from two neonates from different litters. (D) Seven day-old WT and IFNc2/2 neonates were infected with C. parvum. The parasite loads 6 dpi in WT
and IFNc2/2 neonatal mice are reported. Values represent means 6 SEM (n = 6 neonatal mice per group). (E) CMT-93 cells were left unstimulated or
stimulated with IFNc (10 ng/ml) or infected with C. parvum at a ratio of three oocysts/cell. Expression of CXCL9 and CXCL10 mRNAs was analyzed by
qRT-PCR 24 h later (*p,0.01 relative to control CMT-93 cells).
doi:10.1371/journal.ppat.1003801.g006
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Figure 7. CD103+ dendritic cell subsets contribute to IL-12p40 and IFNc production. (A) Seven day-old neonates were infected with C.
parvum and ilea were collected 6 dpi for mRNA extraction and subsequent qRT-PCR. For each gene, mRNA expression is represented as a fold
increase with respect to uninfected neonates. The values are means 6 SEM (n = 6 neonatal mice per group). (B) Gene expression after CD11c+ cell
depletion was analyzed by injecting DT into CD11c-DTR neonates at 4 dpi. RNA was extracted from the ileum 6 dpi. For each gene, mRNA abundance
is represented as fold decrease relative to untreated neonates. The values reported are means 6 SEM (n = 6 neonatal mice per group). (C) Total
numbers of CD11c+MHCII+CD103+ in the MLN of infected (6 dpi) and age matched control neonates (13-day-old) in the left panel. Data from the
same experiment, in the right panel, show the total numbers of CD8a+ and CD8a2 CD103+ DC subsets (n = 4 pools, 2–3 neonates/pool). (D) isolation
of CD103+ cell subsets from the MLN of neonates was first based on selection of CD11chi MHC IIhi. Double-positive cells were further separated into
two subsets based on CD8a expression. Gating strategies are provided in Figure S5, C. CD103+ cells, CD103+ CD8a2 and CD103+ CD8a+ subsets
were isolated from pooled MLN obtained 6 dpi from numerous neonates (2–4 pools, 6–44 neonates per pool). CD103+ DC were also isolated from
their age-matched controls (2 pools, 72 neonates per pool) for normalization. Isolated cells were used for qRT-PCR analysis. Gene expression in pools
of samples was assessed by qRT-PCR. For each gene, mRNA expression in the different subsets isolated from infected animals is represented as fold
differences to that in CD103+ DC from control neonates. The reported values are means 6 SEM. (E) MLN were isolated from infected neonates 6 dpi,
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considered to be a sentinel population that contributes to the

protection of the epithelium via innate mechanisms. By describing

the precise mechanism by which these CD103+DC can be

recruited in the neonatal intestine, we also provide a basis for

further development of immunomodulatory DC-based strategies

to protect neonates against enteric infections.

Materials and Methods

Ethics statement
All experimental protocols were conducted in compliance with

French legislation (Décret: 2001-464 29/05/01) and EEC

regulations (86/609/CEE) governing the care and use of

laboratory animals, after validation by the local ethics committee

for animal experimentation (CEEA VdL): 2011-12-6; 2011-04-06;

2011-09-11.

Mice
IFNc2/2, IL12p402/2, CD3e2/2, IL152/2,CXCR32/2,

CX3CR1GFP, CD11c-DTR and NK-DTR mice, all in a

C57BL/6 background, were maintained in the animal facilities

of the PFIE (INRA-Tours) in accordance with European

guidelines. Mice were maintained under specific pathogen-free

conditions at constant temperature and humidity, with food and

water given ad libitum. NK-DTR and CD3e2/2 mice were

provided by Eric Vivier (CIML, France) and Armelle Phalipon

(Institut Pasteur, France), respectively. CXCR32/2 mice were

provided by Christophe Combadière (UPMC, France). CD11c-

DTR (EM 00044) and CX3CR1-GFP (EM 00055) mice were

provided by the European Mouse Mutant Archive (EMMA).

Parasite and mouse infection
C. parvum oocysts were initially isolated from the feces of an

infected child and were maintained by repeated passage in

neonatal calves. Oocysts were purified as previously described

[53]. Neonatal mice were infected with 56105 oocysts by the oral

route at 7 days of age. Adult CD11c-DTR mice were infected with

106 oocysts by the oral route. The level of infection in individual

animals was assessed by counting oocysts in the intestinal content.

Whole intestines were individually homogenized in 1 ml of water

with an Ultra-Turrax. Oocysts were then counted in Sheather’s

solution using a Thoma cell chamber. After dexamethasone

treatment of adult mice, oocyst numbers in Ziehl-Neelsen stained

fecal smears were counted under the microscope.

Experimental protocols with mice
For CD11c and NKp46 depletion, CD11c-DTR and NKp46-

DTR transgenic neonatal mice were injected intraperitoneally

with 2 ng/g and 4 ng/g, respectively, body weight of DT

(Servibio) on the days indicated in the figure legends. Adult

CD11c-DTR mice were injected with 4 ng/g body weight of DT.

Reagents
Recombinant FLT3-L and recombinant CXCL10 were from

eBioscience. For histological studies, cells were labeled with the

following antibodies: anti-CD11c (HL3), anti-CD103 (M290), anti-

F4/80 (CI:A3-1), anti-hamster-IgG alexa488 and anti-rat

alexa594 (Invitrogen). For FACS analyses, the following antibodies

were used at 1 mg/106 cells: anti-CD11c APC (N418), anti

CD11cPE (N418), anti-CD103 PE (2E7), anti-CD8a APC-H7 (53-

6.7), anti-IA/IE FITC (2G9), anti CXCR3 FITC (CXCR3-173),

anti NKp46 APC (9E2), anti NK1.1 PE(PK136), anti IFNcPECy7

(4S.B3), anti-CD16/CD32 (2.4G2). For C. parvum staining, we

generated a rat polyclonal antiserum against oocyst antigens.

Immunofluorescent staining
Immunofluorescence histology was performed as previously

published [54]. Eight mm-thick sections were stained with

antibodies and secondary antibodies in 1% BSA, 0.1% Triton.

Slides were Hoechst stained and mounted in Fluoromount

medium (Interchim). Separate images were collected at 2006
magnification for each fluorochrome and overlaid to obtain

multicolor images with Axiovision software (Zeiss) and final

processing of the images was performed with Photoshop software

(Adobe).

Cell preparation, flow cytometry and cell sorting, and
ELISA

MLN cells and IEC from adults or neonates were prepared as

previously described [53]. For intestinal DC isolation, entire

intestines were cut longitudinally and into 0.5 cm pieces, pooled

and washed with 1% penicillin/streptomycin in PBS. Tissues were

then incubated three times in HBSS without calcium and

magnesium, with 5% FCS and 5 mM EDTA at 37uC for

15 minutes with gentle shaking to remove epithelial cells. Pieces

of intestine were then incubated with shaking in HBSS with

calcium and magnesium containing 5% FCS, collagenase (100 U/

ml) and DNase-I (100 mg/ml) for 1 h at 37uC. Supernatants were

passed through 60 mm-pore size filters and the collected cells

washed with 10% FCS in PBS. These isolated cells were first

stained with anti-CD16/CD32 antibody in FACS medium (PBS,

1% FCS, 2 mM EDTA) and with the various antibodies. Cells

were analyzed on a FACSCalibur flow cytometer (Beckton

Dickinson) with the CellQuest-Pro software and further analyzed

with FSC Express3 software. CD11c+ subsets were sorted with a

High Speed Fluorescence Activated Cell Sorter (Beckman Coulter)

and cell subsets were immediately used for RNA extraction. For

intracellular staining of IFNc, intestinal cells were incubated with

Brefeldin A for 4 hours (3 mg/ml) immediately after isolation, and

before surface and intracellular staining. The Fixation/Permeabi-

lization Kit (BD Biosciences) was used prior to intracellular

staining of IFNc. ELISA (mouse IFN-gamma or IL-12p40 DuoSet

(R&D)) were performed with aliquots of 105 sorted cells cultured

for 24 h in p96 wells. For IFNc production, IL-12 (10 ng/ml) was

added to some wells.

RNA extraction and reverse transcription (RT)-PCR
analysis

RNA extraction from the ileum of neonates and reverse

transcription were performed as previously described [12]. RNA

and CD11c+ MHCII+ CD103+ DC were sorted by FACS and cultured in vitro. After 24 h of culture, supernatants were assayed by ELISA for IFNc and IL-
12p40 (n = 5 pools, 2 neonates/pool). Some cells were cultured in the presence of 10 ng/ml of IL-12 and IFNc production assayed. (F) CD103+ CD11c+
MHC II+ DC were isolated from the intestine of infected neonates. Due to the low frequency of CD11c+CD103+ DC in the intestine of uninfected
neonates at 13 days of age, CD11c+CD103+ DC were isolated from their MLN for normalization. RNA extraction and qRT-PCR were performed
immediately after cell sorting. Gating strategies are provided in Figure S5, B. The reported values are means 6 SEM (6 pools of neonatal mice per
group; between 8–21 neonates per pool). (G) Intracellular staining of IFNc in samples from infected (6 dpi) and uninfected animals (13 day-old).
Panels show intracellular staining of IFNc in CD11c+MHCII+CD103+ DC (panels are representative of two independent experiments).
doi:10.1371/journal.ppat.1003801.g007
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Figure 8. NKp46+NK1.1+ Natural killer cells and conventional T cells are not essential for the control of the acute phase of C. parvum
infection. Seven day-old neonates were orally infected with 5.105 C. parvum oocysts and the parasite load in the whole intestine was evaluated at
various times post infection. (A) Parasite load was evaluated in CD3e2/2 and WT neonates. Data are means 6 SEM (n = 6 neonatal mice per group).
(B) Four weeks after infection of CD3e2/2 and WT neonates, and apparent recovery from the infection, mice were injected with 1 mg of
dexamethasone, by the IP route, daily for 3 days. Fecal smears were used to quantify oocyst excretion every day. Data are means 6 SEM (n = 5 mice
per group). (C) Flow cytometry analysis of NKp46+NK1.1+ cells in the intestine and spleen of infected heterozygous NKp46-DTR neonates and
infected wild-type littermates, all treated with DT on d21; d+1 and d+3 post infection. The results shown are for representative animals from the
same litter. (D) Same experiment as in (C). The parasite load was evaluated at 4, 6 and 8 dpi. Data are means 6 SEM (n = 6–15 neonatal mice per
group). (E) Similar experiment as described in (C) and cytokine mRNAs in the ilea of neonates 6 dpi were analyzed by qRT-PCR. The bars represent the
mean values 6 SEM of the ratios of the relative expression value for mRNA in the intestine of NKp46-depleted neonatal mice to that in non-depleted
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from isolated DC was extracted with PicoPure kits (ARCTURUS).

Real-time RT-PCRs were run on a Bio-Rad Chromo4 (Bio-Rad).

Results were normalized to the three most suitable reference genes

(HPRT, TBP, PPia) selected from five using geNorm [55]. Gene

expression values are expressed as relative values after Genex

macro analysis (Bio-Rad).

Statistics
The Mann-Whitney test was used for non-parametric analyses.

P values of less than ,0.05 were considered significant.

Supporting Information

Figure S1 Restoration of CD11c+ cell counts in the
infected mucosa of CD11c-DTR neonatal mice after
transient depletion with DT. The presence of CD11c+ cells in

the intestinal tissue was analyzed by flow cytometry. (A) Seven day-

old heterozygous CD11c-DTR neonates were infected with 5.105

C. parvum oocysts and some animals were treated with DT 4 dpi.

Intestinal cells were purified at 48 h, 72 h and 96 h post DT-

treatment. (B) Adult CD11c-DTR animals were treated with DT

and intestinal CD11c+ cells analyzed 24 h later.

(TIF)

Figure S2 Mononuclear phagocyte populations in the
intestinal mucosa of neonates at the peak of C. parvum
infection. (A) Sections of the small intestine of infected neonates

(6 dpi) were stained with Hoechst stain and antibodies against

CD11c, CD103 and F4/80. CX3CR1GFP/+mice were used for

CX3CR1 detection. The white arrows in the merge panel indicate

double-positive cells. Intestinal CD103+ cells are distinct from F4/

80+ cells such as CD11c+ cells and F4/80+ cells (Original

magnification 6200; scale bars indicate 20 mm). (B) M-CSF,

FLT3-L and GMCSF mRNAs were assayed in the ilea of 9 day-

old neonates infected or not infected at 7 days of age. Data are

means 6 SEM of at least eight neonates in each group. Differences

were not significant (ns) as assessed by Mann-Whitney non-

parametric analyses (p values.0.05).

(TIF)

Figure S3 Dendritic cell transfer to neonates. (A) BMDC

and FLDC were generated in vitro with GM-CSF and FLT3-L,

respectively. Cells were injected by the intravenous route through

the superficial temporal vein (see white arrow) according to Sands

and Barker (Sands and Barker, 1999). Aliquots of 26104 stained

BMDC were injected into day-old neonates; at that age, the skin is

transparent, and the needle is visible through the skin. (B) For in

vivo tracking of transferred cells, BMDC were stained with PKH67

and the presence of positive cells in the total spleen cell population

of recipient neonates was analyzed 24 h (same results at 48 h) after

the IV injection. The boxed region in the graph represents

CD11c+ DC stained with PKH67 that have been transferred to

recipient neonates. The image on the right-hand side shows a

PKH67-stained cell adjacent to two unstained cells from a

recipient neonate 24 h after transfer (scale bar indicates 10 mm).

(C) Day-old littermate neonates were inoculated iv with 26105

BMDC or FLDC or mock inoculated. At seven days of age, the

animals were all infected with 56105 oocysts of C. parvum and the

parasite load in the intestine was evaluated 6 dpi. There was no

significant difference between the groups. (D) To verify that

BMDC efficiently migrated to the intestine, we tested for PKH67-

BMDC in the intestine at the peak of infection by performing

fluorescent microscopic analyses on sections. Despite extensive

searching, no PKH67-BMDC were found in the infected intestine.

Hoechst staining of the nucleus in blue (scale bar indicates 50 mm).

Sands, M.S., and Barker, J.E. (1999). Percutaneous intravenous

injection in neonatal mice. Lab Anim Sci 49, 328–330.

(TIF)

Figure S4 Expression of the chemokines CCL3, CCL4,
CCL5 in IEC of infected IFNc2/2 neonatal mice, and
expression of CCR5 by intestinal CD1O3+ DC. (A) Seven

day-old C57BL/6J WT and IFNc2/2 neonates were infected

with C. parvum. The mRNAs for CCL3, CCL4 and CCL5 in

isolated IEC were assayed by qRT-PCR in infected (6 dpi) and in

uninfected age-matched control neonates (n = 6 neonatal mice for

each group,*** p,0.001, ** p,0.01, *p,0.05). (B) CD11c+
MHCII+ CD103+ DC isolated from the intestines of uninfected

adults and infected neonates were sorted by flow cytometry.

CCR5 expression in each sample was evaluated by RT-PCR.

(TIF)

Figure S5 Gating strategies. (A) Gating strategies for

cytometry analysis of intestinal CD11c+ CD103+ cells and

CD11c+CX3CR1+ of Figure 2 (B) gating strategies used for flow

cytometry analysis of intestinal CD103+ DC provided in figure 5D,

5E, 7F and 7G. CD103+ DC analysis was first based on selection

of CD11chi MHC IIhi cells, which were then separated according

to CD103 expression as indicated. (C) Gating strategies used for

analysis of MLN CD103+DC subsets (relative to Figure 7C, 7D).

Cells were first selected based on CD11chi MHC IIhi gating, then

separated according to CD103 and CD8a expression as indicated.

(TIF)
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