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One of the key ways in which microbes are thought to regulate their metabolism is by modulating
the availability of enzymes through transcriptional regulation. However, the limited success of
efforts to manipulate metabolic fluxes by rewiring the transcriptional network has cast doubt on the
idea that transcript abundance controls metabolic fluxes. In this study, we investigate control of
metabolic flux in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts, and
metabolites in eight metabolic states enforced by different environmental conditions. We find that
most enzymes whose flux switches between on and off states, such as those involved in substrate
uptake, exhibit large corresponding transcriptional changes. However, for the majority of enzymes
in central metabolism, enzyme concentrations were insufficient to explain the observed fluxes—
only for a number of reactions in the tricarboxylic acid cycle were enzyme changes approximately
proportional to flux changes. Surprisingly, substrate changes revealed by metabolomics were also
insufficient to explain observed fluxes, leaving a large role for allosteric regulation and enzyme
modification in the control of metabolic fluxes.
Molecular Systems Biology 9: 709; published online 26 November 2013; doi:10.1038/msb.2013.66
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Introduction

A key feature of a microorganism’s environment is the
presence or absence of metabolizable substrates. Hetero-
trophic bacteria are able to consume a variety of carbon
sources for growth, but to do this, they must rearrange their
metabolic programs to allow for the variety of metabolic flux
patterns (Kleijn et al, 2010; Beste et al, 2011). This can be
accomplished by various means, including thermodynamic
effects through changes in metabolite concentrations or
modulation of enzyme activity through protein modifications
or allosteric regulation by small molecules (Fonseca et al, 2011;
Gerosa and Sauer, 2011). However, the most well-studied case
is the alteration of enzyme concentration through transcrip-
tional regulation. This attention is driven by many canonical
examples of enzyme induction in response to a rising demand
for flux, such as the induction of the lac operon in response to
lactose availability (Jacob and Monod, 1961), or the induction
of an amino-acid biosynthesis pathway in response to
depletion of the amino acid in the medium (Zaslaver et al,
2004; Chubukov et al, 2012). Such examples have created an
appealing intuitive picture: flux is primarily controlled by the
availability of enzymes. However, when the changes in flux are
small compared with the hundred-fold or thousand-fold

changes in the examples above, this intuitive picture breaks
down. This is seen in a number of findings, for instance, the
lack of glycolytic flux changes upon overexpression of many
yeast glycolysis enzymes (Hauf et al, 2000), or the lack of
changes in the flux distribution upon deletion of any of a
number of seemingly important transcription factors in
Saccharomyces cerevisiae (Fendt et al, 2010) or E. coli
(Haverkorn van Rijsewijk et al, 2011). Those results suggest
a contrary picture, where enzyme expression through tran-
scriptional regulation is not crucial for control of flux.

A further motivation for understanding the relationship
between transcriptional regulation and metabolic phenotype is
the interpretation of gene expression data. With the increased
standardization of high-throughput transcriptomics methods
(Slonim and Yanai, 2009; Wang et al, 2009), quantifying gene
expression changes in response to environmental changes has
become commonplace. Because expression of many metabolic
enzymes (e.g., the aforementioned sugar utilization and
amino acid biosynthesis enzymes) is under the control of
transcriptional regulators that can sense relevant environ-
mental signals (Wall et al, 2004; Seshasayee et al, 2009), it is
tempting to interpret most enzyme expression changes as
changes in the metabolic phenotype, that is, changes in flux.
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However, if transcript levels are not in fact controlling fluxes,
such an interpretation will be misleading. In that case,
transcript changes may simply be due to crosstalk or
suboptimal gene regulation (Price et al, 2013), while flux
would be controlled at other levels, such as substrate
availability, allosteric regulation, enzyme modifications, or
translational control of enzyme expression.

In this study, we take a systems-level view of the
mechanisms behind changes in metabolism in the model
Gram-positive bacterium Bacillus subtilis by quantifying
fluxes, transcripts, and metabolites in eight metabolic states
enforced by different environmental conditions. While pre-
vious studies have attempted to quantify the contribution of
transcriptional regulation to flux changes in many model
organisms (Ter Kuile and Westerhoff, 2001; Even et al, 2003;
Rossell et al, 2005, 2006, 2008; Brink et al, 2008; Postmus et al,
2008), they have typically relied on flux values derived solely
from uptake and secretion rates, and have often considered
only pairwise comparisons among conditions. Here, we base
our analysis on higher confidence flux measurements from
isotopic labeling experiments and we extend the computa-
tional framework to consider a large range of environmental
conditions concurrently. Finally, using quantitative data on
metabolite concentrations, we are able to assess the contribu-
tion of substrate changes to metabolic flux and thus form more
detailed hypotheses regarding the control of flux at each
reaction.

Results

Inference of metabolic fluxes from isotopic
labeling and enzyme concentration from
transcriptomics

To analyze the contribution of transcriptional regulation to
metabolic flux adjustments, we quantified both fluxes and
transcripts under conditions that led to differences in meta-
bolic fluxes. We chose environments composed of eight
different combinations of carbon sources that enter metabo-
lism at different points and allow for a range of growth rates
between 0.22 and 0.75 h� 1 (Figure 1). We inferred metabolic

fluxes from 13C-labeling experiments using a comprehensive
isotopomer balancing model (Van Winden et al, 2005;
Zamboni et al, 2009) (Supplementary Table S4). The fluxes
were indeed highly variable: of the 28 non-collinear fluxes that
were non-zero in more than one condition, 25 showed at least
a two-fold change between the minimum and maximum
values, and 17 showed at least a five-fold change. For the three
conditions where fluxes had been previously analyzed (Kleijn
et al, 2010), we found excellent quantitative agreement
between our data and previously published results. An
unexpected finding was that with the exception of the
gluconate condition, we consistently observed back fluxes
from the tricarboxylic acid (TCA) cycle into lower glycolysis
via PEP carboxykinase and/or malic enzyme. A large portion
of these backfluxes were channeled back into the TCA cycle, an
effect most pronounced on substrates that feed directly into
the TCA cycle, such as malate and succinateþ glutamate
(Figure 1).

Transcript abundances in the same eight conditions were
quantified using whole genome tiling arrays. While the major
differences between conditions correlated with growth rate
changes (Supplementary Figure S1), we also observed several
surprising gene expression patterns, such as the upregulation
of a number of stress response genes and a large but
incomplete set of sporulation genes during growth on pyruvate
or succinateþ glutamate, the two slowest growth conditions in
our study. This suggests that slow growth may induce some
responses that mimic starvation, perhaps through crosstalk of
the corresponding regulatory programs (Supplementary
Figure S2; Supplementary Tables S1 and S2).

Extension of regulatory analysis to quantify
contribution of transcriptional changes to flux

To determine the contribution of the observed transcript
changes to the observed flux changes, we develop a
mathematical framework based on regulatory analysis (Van
Eunen et al, 2011). The first step is to estimate enzyme
concentrations based on the transcript abundance. While
absolute quantification requires knowledge of individual
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Figure 1 Fluxes through B. subtilis central metabolism under eight conditions defined by different carbon sources. Numbers and sizes of arrows are normalized to the
substrate uptake rate in each condition. For further analysis, absolute fluxes (mmol h� 1 gcdw� 1) were used. Substrate uptake rates (q) are given in mmol h� 1 gcdw� 1

and growth rates (m) are in h� 1.
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mRNA translation and decay rates, calculation of relative
enzyme concentrations between conditions can be done
simply based on the assumption that translation rates are
not affected by the environmental perturbations. The enzyme
concentrations can be written as a simple function of the
measured transcript levels and growth rates:

Eij ¼ amij

½total mRNA�j
mj

where the index i refers to one of the enzymes in the metabolic
network and the index j to one of the eight conditions. mij is the
measured tiling array signal for the corresponding mRNA,
[total mRNA] is the amount of mRNA per unit of biomass, m is
the growth rate, and a is an arbitrary constant. The amount of
mRNA per biomass was assumed to be a constant fraction of
total RNA, while total RNAwas assumed to be a function of the
growth rate; an affine fit was calculated based on the previous
data (Dauner et al, 2001).

Relating enzyme concentration to flux requires some
assumptions about enzyme kinetics. However, virtually all
models of enzyme kinetics allow the decomposition of flux
into the contribution of enzyme concentration, which is linear,
and the possibly non-linear contribution of metabolite (sub-
strate, product, and effector) concentrations. For instance in
the case of irreversible Michaelis–Menten kinetics

Jij ¼ Eijvi
Sij

Sijþ ki

� �

where J represents the flux, E and S the enzyme and substrate
concentrations, and k and v the binding constant and turnover
rate, respectively. More generally, for almost any model of
enzyme kinetics, we can write

Jij ¼ EijvifiðMjÞ

where M represents the metabolic state of the cell (i.e., the
concentrations of all metabolites including substrates, cofac-
tors, activators, and inhibitors). To analyze the relative flux
and enzyme levels between two conditions as a linear
problem, we move to log space

D logðJiÞ ¼ D logðEiÞþDlogðfiðMÞÞ

and define the relative contributions of enzyme concentration,
rh, and that of the metabolic state rm following the notation of
Ter Kuile and Westerhoff (2001).

rhi
¼ D logðEiÞ

D logðJiÞ

rmi
¼ 1� rhi

¼ D logðfiðMÞÞ
D logðJiÞ

While estimating rm directly is impossible without knowing
the function f(M), we can directly estimate rh by quantifying
flux and enzyme levels. Such analysis has been performed
previously using flux and enzyme measurements in two
different conditions (Rossell et al, 2006; Daran-Lapujade et al,
2007; Postmus et al, 2008; Van Eunen et al, 2009). However,
pairwise comparisons lead to a number of issues, such as the
direct propagation of measurement errors into the estimate of
the regulatory coefficient. Here, we develop a more robust
approach, which considers the flux and enzyme levels across a

spectrum of conditions at once, thus leveraging more data to
estimate the regulatory coefficient. If across all the condition
changes, the contribution of enzyme changes to flux is the
same, then one can estimate rh by simply fitting a linear
function

logðEiÞ ¼ rhi
logðJiÞþ b

where the constant b depends on the units of E and J and can
be eliminated by normalization to the mean. While such linear
fitting has been used to estimate rh previously from slight
environmental perturbations (Ter Kuile and Westerhoff, 2001;
Even et al, 2003), here we apply it to the large flux changes
across our eight conditions to ask if enzyme and flux changes
consistently correlated across the spectrum of growth envir-
onments. For this analysis, we consider the basic hypotheses
summarized in Figure 2.

When rh¼ 1 is a good fit for a particular reaction
(Figure 2B), enzyme concentration changes are faithfully
reflected in flux changes. Because large deviations in central
metabolic fluxes are likely to lead to fitness defects (Fischer
and Sauer, 2003; Haverkorn van Rijsewijk et al, 2011), one
parsimonious inference is that such enzymes are likely subject
to particularly precise control at the gene expression level.
However, rh¼ 1 does not guarantee that perturbations in
enzyme level will lead to changes in flux nor does it guarantee
that these enzymes are not present in excess. Flux could still be
controlled by unmeasured metabolic changes, while transcrip-
tional changes match flux changes either purely by chance or
as a means of keeping metabolite concentrations constant
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Figure 2 Basic hypotheses of regulatory analysis. (A) Flux (J) changes can be
decomposed into the contribution of enzyme concentration (E) changes and
changes in the metabolic state (M). If the relative contributions of the two are
constant, then the contribution of enzyme levels, rh, can be estimated by the
linear fit of a log-log plot. If rh is near 1 (B), then it is consistent with changes in
enzyme levels being entirely responsible for observed changes in flux. Otherwise,
despite good correlation between flux and enzyme (C), other mechanisms such
as substrate concentration changes, allosteric regulation, or enzyme modification
are necessary to explain flux changes. Other possible outcomes could be
incoherent flux and enzyme changes (D) or generally good agreement between
enzyme concentration and flux but with several conditions where a distinct
metabolic state is reached, which would show up as outliers from an otherwise
good fit (E).
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across conditions (Kacser and Acerenza, 1993; Fell and
Thomas, 1995).

Nevertheless, when changes in metabolite abundances are
responsible for the majority of changes in flux, enzyme
concentration will generally be a poor predictor of flux, showing
either a poor fit or a rh close to zero (Figure 2C and D). In such
cases, transcriptional control of flux across the spectrum of
conditions can be excluded, with the data instead pointing to
consistent excess of enzyme, and flux regulation through
metabolite concentrations or enzyme modification. It also need
not be the case that rh is constant across all conditions. If
enzyme concentration is generally the driver of flux through a
reaction, but a particularly different metabolic state that
strongly affects the flux is reached under one growth condition,
then that point will be an outlier from the linear fit (Figure 2E).

Regulatory analysis reveals a significant
contribution of transcriptional regulation only
for a small set of reactions

To determine the extent of transcriptional regulation in B.
subtilis central metabolism according to the analysis outlined
above, we paired each of the inferred central metabolic fluxes
with every enzyme that can catalyze the corresponding
reaction. Limiting the analysis to fluxes that were non-zero
(greater than an absolute cutoff of 0.1 mmol gcdw� 1 h� 1) in at
least three conditions led to 46 pairwise comparisons where
we could examine the relationship between flux changes and
enzyme concentration changes. In order to restrict the
influence of outliers on the linear fitting, we use the weighted
Theil-Sen estimator (Jaeckel, 1972; Birkes and Dodge, 1993),
which considers the median of the slopes through all pairs of
points, instead of the traditional least-squares method. A
confidence interval for rh was obtained by resampling random
subsets of the data and concurrently perturbing both the flux
and the enzyme data according to their measurement error.

We obtained a wide range of patterns for the various
enzymes in central carbon metabolism. Illustrations of four
key patterns are depicted in Figure 3A–D. For instance,
succinyl-CoA synthetase (SucC) showed a clear correlation
between enzyme and flux as well as a rh near 1 (Figure 3A).
This is consistent with the hypothesis that the cell adjusts this
flux in response to different environments solely by manip-
ulating the enzyme level. Other enzymes, such as phospho-
glycerate mutase (Pgm), despite a high correlation between
enzyme and flux, showed rh far below 1 (Figure 3B), meaning
that while enzyme changes likely contribute to control of flux,
they alone cannot explain the changes in flux across
conditions. In other cases, there was no correlation between
enzyme and flux levels, either when enzyme concentrations
were essentially constant despite large changes in flux, as was
the case for glucose-6-phosphate dehydrogenase (Zwf)
(Figure 3C), or when flux and enzyme changes were
incoherent across conditions, such as for the secondary
isoform of citrate synthase (CitA) (Figure 3D). In those cases,
unless other enzymes can catalyze the same reaction,
metabolic effects such as substrate availability, allosteric
regulation, or enzyme modification must explain the vast
majority of flux changes.

Neighboring metabolic reactions showed similar rh esti-
mates (Figure 3F). Most instances of reactions consistent with
strong control of flux by enzyme concentration were in the
TCA cycle—in fact all four enzymes for which the data showed
a good linear fit and the estimate of rh was not statistically
distinguishable from 1 (at a¼ 0.05) were in this pathway:
SucC, SucD, Icd, and CitB (Figure 3E). Since one of the key
features of transcriptionally controlled reactions is that
enzymes are not expressed at higher than necessary levels,
this could potentially indicate that these enzymes have a high
cost of expression that the cell tries to minimize. Meanwhile,
some of the weakest correlations between enzyme and flux
were found among pentose phosphate pathway enzymes. This
indication of significant metabolic regulation could be
explained by the necessity to quickly change flux through this
pathway in response to conditions such as oxidative stress, as
has already been demonstrated in yeast (Ralser et al, 2009).

The most striking result is that very few reactions are
consistent with full control of flux by enzyme levels, that is,
that in general, enzymes are available in excess and other
mechanisms are responsible for controlling exact flux magni-
tudes in vivo. This opens the question of which alternative
mechanisms are responsible for modifying flux in response to
environmental changes. To further quantify the other possible
contributions to flux control, we examined indirect control by
other enzymes, and metabolite-level control by changing
substrate concentrations.

Direct analysis of metabolic split ratios

One possible explanation of how transcriptional regulation
could still have a major influence on fluxes despite the
apparent lack of proportional changes between fluxes and
enzyme concentrations is through the control of upstream
steps in a linear pathway. Flux changes through one or
more enzymes might then propagate down the pathway by
intermediate substrate accumulation without quantitative
agreement between fluxes and enzyme concentrations in
subsequent steps of the pathway, as long there was sufficient
enzyme expression. However, whenever a branch point in
metabolism is reached, there is no such indirect control
by other enzymes, and the fraction of flux diverted to
each branch depends only on the local enzyme kinetics
(assuming irreversible reactions and no product inhibition).
As such, a more direct test of control of flux by transcriptional
regulation comes from analyzing the split ratio at a particular
branch point and relating it to the concentrations of the
enzymes catalyzing the reaction on each branch. To consider
this quantitatively, we constructed a simple mathematical
model to calculate this split ratio as a function of enzyme
concentrations for the case when one substrate can be
converted by one of two irreversible enzymes, and scanned a
large range of values for the enzyme kinetic parameters to
determine the relationship between the enzyme concentration
ratio and the flux split ratio, again assuming Michaelis–
Menten kinetics and ignoring product inhibition. We find that
for a wide range of parameters, the change in flux ratio
between two conditions will be exactly equal to the change in
the enzyme concentration ratio. This relationship only
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breaks down for extreme cases, such as when one enzyme has
orders of magnitude lower affinity (high km) and compensates
with higher vmax (concentration times catalytic rate)
(Supplementary Figure S3).

Because of the mostly linear relationship between flux ratio
and enzyme ratio, we can apply the analysis developed in the
previous section to determine whether flux splits in B. subtilis
central carbon metabolism are likely to be transcriptionally
controlled. We considered branch points where we could
correlate at least five data points and we eliminated the split
involving malic enzyme because of the high uncertainty in

the estimation of this flux (Figure 4). We find a clearly non-
monotonic relationship for the split at oxaloacetate between
citrate synthase leading to the TCA cycle and gluconeogenic
PEP carboxykinase, meaning that this split ratio cannot be
controlled at the transcriptional level between our conditions.
For the two other branch points, at pyruvate between
pyruvate decarboxylase and pyruvate dehydrogenase, and
at acetyl-CoA between the TCA cycle and acetate production,
the relationship between the flux and enzyme ratio was
generally monotonic (one significant outlier in each case),
and we found a reasonable fit to a linear relationship.
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However, the slope of the inferred fit, which we call rhr, was
significantly below 1, meaning that changes in the flux ratio
between conditions were larger than changes in the enzyme
ratio. Under the assumptions above, this implies that
mechanisms other than the control of enzyme concentration
through transcriptional regulation are responsible for control
of flux, even in cases where indirect control by other enzymes
(e.g., relief of a rate-limiting step) is ruled out.

We note that our simple model assumes only one
enzyme for each branch of the split, whereas, for instance,
citrate synthase occurs as two isozymes. While CitZ is
thought to be responsible for the majority of the
activity (Jin and Sonenshein, 1994), we nevertheless
sought to account for the possibility that the combination of
the two isozymes CitA and CitZ drives flux changes.
We performed the same analysis using various linear
combinations of CitA and CitZ to calculate the enzyme ratio,
corresponding to their unknown relative contributions to
the flux. None of the linear combinations led to a better
fit between enzyme ratios and flux ratios, confirming that

other mechanisms must regulate the flux ratio at the
acetyl-CoA node.

Changes in substrate concentration are
responsible for a minority of metabolic regulation

The central result from the regulatory analysis above is that
most reactions in central carbon metabolism are consistent
with a minority contribution of transcriptional regulation to
control of flux. To further elucidate the remaining contribu-
tion, which may come from allosteric regulation, post-
transcriptional modifications, or substrate concentration
changes, we quantified metabolite concentrations in all eight
conditions using mass spectrometry. If changes in flux are
driven by increased substrate concentration, then flux changes
should correlate with changes in substrate levels. Further-
more, metabolites may regulate flux in distant reactions
through allosteric interactions, and we can also investigate
these distant correlations.

We quantified 35 metabolites largely consisting of inter-
mediates of central carbon metabolism, 19 of which were
substrates of the previously analyzed reactions
(Supplementary Table S3). For most metabolites and condi-
tions, accurate quantification with o10% standard deviation
was possible. Some of the largest differences between
conditions were seen in the TCA cycle, with for instance,
fumarate and succinate exhibiting over 20-fold higher con-
centrations during growth on malate compared with growth
on glycolytic carbon sources. In contrast, concentrations of
cofactors such as ATP and intermediates of glycolysis and the
pentose phosphate pathway showed lower variation. One
striking phenomenon we observed was the high correlation
between fructose-bis-phosphate (FBP) concentration and the
magnitude of the glycolytic flux. This correlation, which was
stronger for FBP than any other metabolite, suggests that FBP
may have a role in sensing glycolytic flux magnitude in
B. subtilis, similarly to its recently proposed role in E. coli
(Kochanowski et al, 2013b). The fact that in B. subtilis, FBP
negatively modulates the activity of CggR, the transcriptional
repressor of lower glycolytic genes (Doan and Aymerich, 2003;
Zorrilla et al, 2007), parallels the FBP-Cra interaction in E. coli
and further points to conservation of this regulatory motif.

To determine whether the observed metabolite changes
could explain flux changes through modulation of substrate
concentrations, we derived a simplified model for the
quantitative relationship between the two. In contrast to the
relationship between flux and enzyme concentration, which is
linear under virtually any model of enzyme kinetics, the
relationship between substrate concentration and flux is
generally non-linear. As such, we allowed for a free parameter
to represent the contribution of substrate concentration to flux,
hypothesizing a relationship of the form DJ¼DEDSl where the
parameter l would represent, for example, saturation (lo1)
or cooperativity (l41). This formulation is identical to the
commonly used S-system approach for modeling metabolic
networks (Savageau and Voit, 1987). The optimal value for l
was found by least squares fitting of the line log(J)� log(E)¼ l
log(S). The remaining analysis paralleled the earlier analysis
of the flux–enzyme relationship and we introduce the
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corresponding coefficient res to represent the combined
contribution of enzyme and substrate concentrations to flux.

A few reactions showed improved fit when changes in
substrate concentration were taken into account. Two such
cases are shown in Figure 5A and B. While enolase (Eno) was
expressed at almost constant levels between the three
gluconeogenic conditions, the concentration of its substrate
PEP changed B4-fold and was likely the driver of flux changes

through this reaction (Figure 5A). In another example,
aconitase (CitB) enzyme levels were somewhat consistent
with fluxes (rh¼ 0.70, R2¼ 0.41), but with mild outliers
corresponding to the glucose and fructose conditions
(Figure 5B). The inclusion of the substrate (citrate) concentra-
tion was able to reduce the error in the fitting (res¼ 0.67,
R2¼ 0.55) as growth on glucose or fructose led to relatively
high citrate concentrations. However, very surprisingly, for
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most reactions the effect of including substrate concentrations
was virtually negligible, as demonstrated by res values far
below one (Figure 5C), leading to the conclusion that further
regulatory mechanisms must be invoked to explain the
observed changes in flux. These mechanisms could include
regulation by metabolites other than the substrate or enzyme
modifications such as phosphorylation.

No evidence for growth-limiting biosynthetic
pathway expression

Metabolic pathways that synthesize components used directly
for biomass, for example, amino acids, nucleotides, and lipids,
are a special class of reactions. They are essential under all the
conditions in our study and the flux through these pathways is
directly proportional to the growth rate, assuming no synth-
esis/degradation cycles as well as similar biomass composi-
tion (Varma and Palsson, 1993). Therefore, if enzyme
concentration is limiting for flux through one of these
pathways, then it is in turn limiting for growth. We examined
the expression of 193 enzymes involved in biosynthesis of
amino acids, nucleotides, or cell-wall components as a
function of the growth rate. The mRNA signal, which
corresponds to the specific mRNA abundance as a fraction of
total mRNA, showed good correlation and proportionality
with the growth rate for many genes (79 genes with R240.65
and 21 of these with rh between 0.8 and 1.2), likely due to
highly growth rate-dependent sA-based transcriptional regula-
tion (Nicolas et al, 2012). However, the protein concentration,
calculated as before from RNA concentration and dilution by
cell division, did not change proportionally to the growth rate
(4 genes with R40.8 and none with rh between 0.8 and 1.2).
This is consistent with the results of a detailed analysis of a
constitutively expressed protein in E. coli (Klumpp et al, 2009).
The major reason is that while total mRNA increases with the
growth rate, it does not keep up with protein dilution by
growth. In sum, we find no evidence that expression of any
enzymes involved in biomass component biosynthesis is
limiting for growth under unrestricted batch growth conditions
in B. subtilis. Despite the fact that expression of many of these
enzymes is regulated by transcription factors that sense
demand for the end product, it appears that the enzymes are
present in excess during conditions when they are required.

On/off reactions are characterized by large
transcriptional changes

So far we have examined flux through central metabolic
enzymes, which are essential under most growth conditions,
and found that enzyme concentration changes were generally
much smaller than flux changes. However, for reactions that
are completely unnecessary in a subset of conditions, one may
expect a clearer correspondence between enzyme concentra-
tion and flux. The clearest examples of these are reactions
involved in substrate uptake, which are active under only one
or two of our conditions. When the expression of proteins
involved in uptake systems was examined across conditions,
virtually all of them were expressed at much higher levels
when the substrate was present compared with other

conditions when they were not required (Figure 6). The
magnitude of these changes in expression, which was up to
100-fold in several cases, was far higher than the expression
changes seen for most central metabolic enzymes.

Two central metabolic enzymes that did show such large
fold changes in expression were the gluconeogenic enzymes
GapB and PckA, which are also necessary only under a subset
of conditions. These two genes are the only protein-encoding
targets of the transcription factor CcpN (Servant et al, 2005),
which represses their expression during growth on glycolytic
substrates. It was previously shown that deletion of ccpN leads
to a significant growth defect on glucose, due to a futile cycle
involving PckA that drains TCA cycle intermediates and a
block in upper glycolysis from gluconeogenic GapB activity
(Tännler et al, 2008b). These effects could be suppressed by
deletion of pckA or gapB, respectively, while constitutive
expression of GapB led to blockage in upper glycolysis even in
the wild-type background. Those findings, combined with the
expression data in this work make it clear that the existence of
gluconeogenic flux through GapB is controlled by its tran-
scription, mediated by CcpN. However a more nuanced
interpretation, based on the fact that GapB levels did not
change significantly between the three gluconeogenic condi-
tions despite significant flux changes, is that once GapB is
present at induced levels, the enzyme is available in excess and
its precise concentration does not control flux.

Other than GapB and PckA, central metabolic enzymes that
were not required in a subset of conditions did not show large
expression changes (Figure 6). These included, for instance,
PfkA and Fbp, which catalyze the forward and reverse
reactions from fructose-6-phosphate to FBP, respectively.
Since both enzymes are present at roughly constant levels
across all conditions and a futile cycle through these two
enzymes would be a major source of ATP dissipation, the
activity of these enzymes is likely tightly controlled by other
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mechanisms. In fact, many metabolites, such as AMP, ATP,
PEP, and FBP, have been reported to regulate the flux through
this reaction (Fujita and Freese, 1979; Fujita et al, 1998).

Discussion

In this study, we provide evidence that most central metabolic
enzymes are available in excess, meaning that changes in
central metabolic fluxes are not primarily realized through
transcriptional regulation by modification of enzyme concen-
tration. This evidence comes from the fact that fluxes and
enzyme concentrations (inferred from transcripts) in central
carbon metabolism do not change proportionally across
conditions. While previous analysis commonly showed a
mismatch between flux and enzyme changes when consider-
ing two conditions at once (Daran-Lapujade et al, 2007;
Schilling et al, 2007), by considering as many as eight diverse
environmental conditions simultaneously, we are able to
assess more generally whether a particular reaction is likely to
be limited by enzyme concentration or regulated by other
means throughout the diverse environments a microbe may
encounter. In all cases, we found that enzyme concentration
changed less than flux, that is, we did not find a single reaction
where we estimated rh41. This corresponds to a situation in
which enzymes are generally available in excess. The most
striking examples of this phenomenon were in the pentose
phosphate pathway, where most enzyme concentrations were
essentially constant (o50% variation across conditions)
despite 20-fold or more variation in fluxes.

This finding is somewhat surprising in light of the fact that
cells clearly face constraints on the amount of protein they can
produce (Scott et al, 2010), and also in light of analysis
showing that protein cost seems to be a major factor even in
the choice of the major metabolic pathways available to the
cell (Flamholz et al, 2013). Nevertheless, several suggestions
have been proposed for why cells might choose to keep
enzymes available at these overabundant levels (Kochanowski
et al, 2013a). One appealing motivation is the opportunity to
change fluxes quickly, as allosteric regulation or enzyme
modifications may act on time scales much faster than gene
expression (Xu et al, 2012). A second explanation may be the
fact that cells constantly have to deal with stochastic
fluctuations in gene expression (Raj and van Oudenaarden,
2008). If a key metabolic flux is lowered by a fluctuation in
enzyme level, then it is likely to be highly deleterious to the
cell, making it more appealing to keep a buffer of enzyme
expression. A related point is that it may simply be very
difficult to engineer extremely precise regulation of enzyme
expression in response to the various conditions that require
changes in flux (Price et al, 2013), and thus the cell may
generally overshoot for expression of key enzymes. Finally,
high enzyme concentrations may help the cell control
metabolite levels and avoid accumulation of toxic intermedi-
ates (Fell and Thomas, 1995; Bar-Even et al, 2012).

One pathway in which flux and enzyme concentration
changes were approximately proportional across conditions
was the TCA cycle. If TCA cycle fluxes are in fact regulated by
enzyme levels, then this suggests that the cell tries strongly to
minimize excess production of these enzymes, perhaps

because producing them entails high metabolic resource or
energy costs. This would essentially mirror the hypothesis that
many bacteria choose overflow metabolism at high growth
rates in place of the more efficient respiratory metabolism
precisely to avoid the high cost of expression of TCA cycle and
respiratory chain enzymes (Molenaar et al, 2009). Transcrip-
tional control of TCA cycle fluxes would also be consistent
with earlier findings that only partitioning of fluxes into the
TCA cycle, but not other pathways, is affected by transcription
factor deletions in E. coli and S. cerevisiae (Fendt et al, 2010;
Haverkorn van Rijsewijk et al, 2011).

An alternative interpretation of the observed high rh values
in the TCA cycle is that even though enzyme levels may not be
limiting, the cell increases them precisely in order to maintain
metabolite homeostasis. Such a strategy could be accom-
plished via feedback from substrate or product levels and
would parallel one strategy of engineering increased flux
though a pathway without perturbing other parts of metabo-
lism (Kacser and Acerenza, 1993). However, the relatively high
changes in metabolite concentrations among TCA cycle
intermediates argue somewhat against this interpretation.

Our findings should not be misconstrued as suggesting that
transcriptional regulation has no role in regulation of
metabolism. In fact, we suggest quite the opposite for reactions
that undergo very large fold changes in flux (essentially from
zero to non-zero) between our conditions. The most obvious
reactions falling into this category are those involved in
substrate uptake. Almost all of these genes exhibited large
(over 10-fold) changes in inferred protein concentration
between conditions where they were required and others
where they were not. Similar effects were seen for two
enzymes, GapB and PckA, that were required under gluconeo-
genic but not under glycolytic conditions. However, among the
three gluconeogenic conditions, there was virtually no change
in enzyme expression despite significant changes in flux,
suggesting that when these enzymes are necessary they are
present in excess.

With the exception of the two examples discussed above,
even large changes in flux through enzymes in central
metabolism were not caused by the corresponding changes
in enzyme concentration. If central metabolic enzymes are
generally in excess as we suggest, then the next most intuitive
picture is that flux is regulated far upstream, such as at the
level of uptake, and propagates through mass action through
the available enzymatic reactions. In this scenario, substrate
concentration changes would be the primary drivers of flux
changes. Surprisingly, we find that including the effects of
substrate concentration changes (based on a simplified kinetic
model) is still, in general, insufficient to explain the changes in
metabolic fluxes across conditions. The combination of
substrate and enzyme changes was able to perfectly explain
only a handful of fluxes in central metabolism, most notably
the fluxes through the reversible glycolytic enzymes under
gluconeogenic conditions, while the remainder of the reac-
tions mostly showed flux changes that were much larger than
the combination of enzyme and substrate changes.

This result demonstrates that the central fluxes are also not
driven by substrate concentration, but instead must be
controlled by another mechanism. The two most likely
such mechanisms are protein modifications such as
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phosphorylation or acetylation, and allosteric regulation of
enzymatic activity by non-substrate metabolites. In fact, a
study of the B. subtilis phosphoproteome showed that
glycolytic enzymes are significantly enriched for in vivo
phosphorylation (Macek et al, 2007). However, the known
instances of phosphorylation still only account for a fraction of
the reactions we analyzed. Acetylation, which was recently
shown to have a major role in regulation of S. enterica
metabolism (Wang et al, 2010), represents another intriguing
possibility, particularly since it could be dependent on
the concentration of the key central metabolic intermediate
acetyl-CoA.

Nevertheless, it is likely that allosteric regulation of enzyme
activity by small metabolites is also ubiquitous and important
for regulation of fluxes. High-throughput studies aimed
at mapping enzyme–metabolite interactions have suggested
that only a tiny fraction (o10%) of these interactions
have been characterized (Gallego et al, 2010; Li et al, 2010).
It is likely that the true interaction network of enzymes
and metabolites is dense and filled with possibly weak
interactions that nevertheless exert a degree of control over
metabolic fluxes (Rabinowitz et al, 2008; Goyal et al, 2010).
This category would also include product inhibition, which
is thought to affect a large number of reactions (Fell and
Thomas, 1995).

We have introduced a framework for the analysis of
transcriptomic, metabolomic, and fluxomic data sets to deduce
the regulation likely to be responsible for the modification of
cellular metabolism. Such data sets are becoming more
commonly available due to advances in experimental techni-
ques, but methods to integrate different types of data are
lacking. By using an extended version of regulatory analysis,
we are able to state with high confidence that most reactions in
central metabolism are not controlled by transcriptional
regulation in response to significant environmental perturba-
tions. Future advances in understanding the regulation of
metabolic fluxes are likely to come from more careful
examination of the relationship between fluxes and metabolite
levels, aided by metabolomics methods that can concurrently
quantify large numbers of different compounds (Fuhrer et al,
2011; Baran et al, 2013), as well as from high-throughput
methods to detect post-transcriptional modifications
(Bodenmiller et al, 2010).

Materials and methods

Strains and growth conditions

All experiments were performed with B. subtilis BSB168, a proto-
trophic derivative of B. subtilis 168 trpC2 (Büscher et al, 2012). For
each growth experiment, frozen glycerol stocks were inoculated into
LB medium and after 5 h of growth, diluted into 5 ml of M9 medium
with appropriate carbon source. After overnight growth to OD600
between 0.5 and 1.0, the cultures were again diluted into 30 ml of fresh
M9 medium in 500 ml non-baffled shake flasks. All cultivation was
done at 300 r.p.m. and 371C.

The M9 minimal medium consisted of the following components
(per liter): 8.5 g Na2HPO4 � 2H2O, 3 g KH2PO4, 1 g NH4Cl, 0.5 g NaCl.
The following components were sterilized separately and then added
(per liter of final medium): 1 ml 0.1 M CaCl2, 1 ml 1 M MgSO4, 1 ml
50 mM FeCl3 and 10 ml trace salts solution. The trace salts solution
contained (per liter): 170 mg ZnCl2, 100 mg MnCl2 � 4H2O, 60.0 mg

CoCl2 � 6H2O, 60.0 mg Na2MoO4 � 2H2O and 43.0 mg CuCl2 � 2H2O.
Filter-sterilized carbon sources were added separately to the medium,
pH neutralized with 4 M NaOH where necessary. For 13C-labeling
experiments, the same final concentrations were used, but the carbon
source was added directly to the shake flask as a mixture of 20% (w/w)
uniformly labeled carbon source (498% isotopic purity) and 80%
(w/w) naturally labeled carbon source.

Physiological parameters

Extracellular substrate and byproduct concentrations were measured
by HPLC analysis using an Agilent 1100 series HPLC stack (Agilent
Technologies, Waldbronn, Germany) in combination with an Aminex
HPX-87H polymer column (Bio-Rad, Hercules, CA, USA). Sugars were
detected with a refractive index detector and organic acids with an UV/
Vis detector. Substrate or product yields were calculated by linear
regression of external concentration against biomass, and specific
rates were calculated as yield multiplied by the growth rate. At least
five time points during the exponential growth phase were used for the
regression analysis. Cell growth was monitored photometrically at
600 nm and cell dry weight was inferred from a predetermined
conversion factor of 0.48 g cells/OD600 (Tännler et al, 2008a). All
measurement errors for physiological parameters are reported as the
standard deviation of 2–3 biological replicates.

Metabolic flux analysis

Biomass sample processing and GC-MS analysis to determine
isotopomer fractions of proteinogenic amino acids was performed as
previously described (Zamboni et al, 2009). Stoichiometric network
models were based on a core model containing the reactions of central
carbon metabolism (Oh et al, 2007). When unconstrained by labeling
information, futile cycle fluxes were set to zero. The growth rate-
dependent biomass requirements of B. subtilis were previously
established (Dauner et al, 2001) and added to the network as
unidirectional biomass precursor withdrawing reactions. Metabolic
fluxes were derived using the whole isotopomer modeling approach
(Van Winden et al, 2005). The procedure uses the cumomer balances
and cumomer to isotopomer mapping matrices (Wiechert et al, 1999)
to calculate the isotopomer distributions of metabolites in a predefined
stoichiometric network model for a given flux set. The flux set that
gives the best correspondence between the measured and simulated
13C-label distribution is determined by non-linear optimization and
denoted as the optimal flux fit. All calculations were performed in
Matlab 7.6.0 (The Mathworks Inc, Natick, MA, USA).

Transcriptome profiling

Sample collection and RNA purification were performed as previously
described (Eymann et al, 2002). Three replicates from independent
cultures were done for each condition. Synthesis of labeled cDNA,
array hybridization, and signal acquisition was carried out by
Nimblegen using tiling arrays consisting of 383149 isothermal probes
covering the entire genome of B. subtilis (GenBank: AL009126)
(Nicolas et al, 2012). Signals from the 24 chips were scaled by
quantile-quantile normalization (similar results were also obtained
without q-q normalization; Supplementary Figure S4). For each
condition, one of the three data sets was eliminated based on its
Euclidean distance from the other two data sets corresponding to the
same condition. The remaining data were used to calculate a mean and
standard deviation for each condition.

Sampling and extracting for metabolite
quantification

Two samples for intracellular metabolite quantification were taken
within 5 min of each other from the shake flask cultures during
exponential growth at an OD600 between 0.8 and 1.2. In all, 2 ml of
culture was vacuum filtered on a 0.45-mm pore size nitrocellulose filter
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(Millipore) and immediately washed with two volumes of fresh M9
medium containing the respective carbon source and adjusted to the
pH of the culture at the time of sampling. Sampling was performed in a
room kept at 371C. After washing, the filter was directly transferred for
extraction into 4 ml of 60% (v/v) ethanol/water and kept at 781C for
2 min. The metabolite extract was separated from cell debris and
nitrocellulose by centrifugation at 14 000 g at 41C for 10 min. The
supernatants were dried at 0.12 mbar to complete dryness in a speed
vac set-up (Christ, Osterode am Harz, Germany). Dry metabolite
extracts were stored at � 801C until analysis.

Metabolite concentrations were determined by using an ion-pairing
ultrahigh performance liquid chromatography-tandem mass spectro-
metry method (Büscher et al, 2010). Dry metabolite extracts were
resuspended in 100ml, 10ml of which was injected on a Waters Acquity
UPLC with a Waters Acquity T3 end-capped reverse phase column
(150�2.1 mm� 1.8mm; Waters Corporation, Milford, MA, USA).
Metabolites were detected on a tandem mass spectrometer (Thermo
TSQ Quantum Triple Quadropole with Electron-Spray Ionization;
Thermo Scientific, Waltham, MA, USA).

Estimation of qh and calculation of P-values

To calculate the best linear fit while allowing for outliers, we use the
weighted Theil-Sen estimator (Jaeckel, 1972; Birkes and Dodge, 1993).
We calculate the slope for each pair of points {(xi,xj),(yi,yj)} and the
estimated slope is the weighted median of the pairwise slopes, using
weights proportional to the distance (xi� xj)

2. To estimate rh while
obtaining a confidence interval and P-value, we obtain a distribution of
slopes by performing the fitting multiple times (N¼ 2000), each time
sampling a random subset of the data and concurrently perturbing the
data by adding Gaussian noise with standard deviation given by the
estimated measurement errors. The reported rh is the median of this
distribution, and the 95% confidence interval and the P-value for
rh41 are obtained directly from the distribution. Additional analysis
of rh values under random permutation of conditions is shown in
Supplementary Figure S5.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N,
Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D,
Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL,
Fogg MJ, Fromion V, Goelzer A, Hansen A et al (2012) Condition-
dependent transcriptome reveals high-level regulatory architecture
in Bacillus subtilis. Science 335: 1103–1106

Oh Y-K, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007)
Genome-scale reconstruction of metabolic network in Bacillus

subtilis based on high-throughput phenotyping and gene
essentiality data. J Biol Chem 282: 28791–28799

Postmus J, Canelas AB, Bouwman J, Bakker BM, Van Gulik W, de
Mattos MJT, Brul S, Smits GJ (2008) Quantitative analysis of the
high temperature-induced glycolytic flux increase in
Saccharomyces cerevisiae reveals dominant metabolic regulation.
J Biol Chem 283: 23524–23532

Price MN, Deutschbauer AM, Skerker JM, Wetmore KM, Ruths T,
Mar JS, Kuehl JV, Shao W, Arkin AP (2013) Indirect and
suboptimal control of gene expression is widespread in bacteria.
Mol Syst Biol 9: 660

Rabinowitz JD, Hsiao JJ, Gryncel KR, Kantrowitz ER, Feng X-J, Li G,
Rabitz H (2008) Dissecting enzyme regulation by multiple allosteric
effectors: nucleotide regulation of aspartate transcarbamoylase.
Biochemistry 47: 5881–5888

Raj A, van Oudenaarden A (2008) Stochastic gene expression and its
consequences. Cell 135: 216–226

Ralser M, Wamelink MMC, Latkolik S, Jansen EEW, Lehrach H,
Jakobs C (2009) Metabolic reconfiguration precedes transcriptional
regulation in the antioxidant response. Nat Biotechnol 27: 604–605

Rossell S, Lindenbergh A, van der Weijden CC, Kruckeberg AL, van
Eunen K, Westerhoff HV, Bakker BM (2008) Mixed and diverse
metabolic and gene-expression regulation of the glycolytic and
fermentative pathways in response to a HXK2 deletion in
Saccharomyces cerevisiae. FEMS Yeast Res 8: 155–164

Rossell S, van der Weijden CC, Kruckeberg AL, Bakker BM, Westerhoff
HV (2005) Hierarchical and metabolic regulation of glucose influx
in starved Saccharomyces cerevisiae. FEMS Yeast Res 5: 611–619

Rossell S, Weijden CC, van der, Lindenbergh A, Tuijl A, van, Francke C,
Bakker BM, Westerhoff HV (2006) Unraveling the complexity
of flux regulation: a new method demonstrated for nutrient
starvation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA
103: 2166–2171

Savageau MA, Voit EO (1987) Recasting nonlinear differential
equations as S-systems: a canonical nonlinear form. Math Biosci
87: 83–115

Schilling O, Frick O, Herzberg C, Ehrenreich A, Heinzle E, Wittmann C,
Stülke J (2007) Transcriptional and metabolic responses of Bacillus
subtilis to the availability of organic acids: Transcription regulation
is important but not sufficient to account for metabolic adaptation.
Appl Environ Microbiol 73: 499–507

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)
Interdependence of cell growth and gene expression: origins and
consequences. Science 330: 1099–1102

Servant P, Le Coq D, Aymerich S (2005) CcpN (YqzB), a novel regulator
for CcpA-independent catabolite repression of Bacillus subtilis
gluconeogenic genes. Mol Microbiol 55: 1435–1451

Seshasayee ASN, Fraser GM, Babu MM, Luscombe NM (2009)
Principles of transcriptional regulation and evolution of the
metabolic system in E. coli. Genome Res 19: 79–91

Slonim DK, Yanai I (2009) Getting started in gene expression
microarray analysis. PLoS Comput Biol 5: e1000543

Ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome:
hierarchical and metabolic regulation of the glycolytic pathway.
FEBS Lett 500: 169–171

Tännler S, Decasper S, Sauer U (2008a) Maintenance metabolism and
carbon fluxes in Bacillus species. Microb Cell Fact 7: 19

Tännler S, Fischer E, Coq DL, Doan T, Jamet E, Sauer U, Aymerich S
(2008b) CcpN controls central carbon fluxes in Bacillus subtilis.
J Bacteriol 190: 6178–6187

Van Eunen K, Bouwman J, Lindenbergh A, Westerhoff HV, Bakker BM
(2009) Time-dependent regulation analysis dissects shifts between
metabolic and gene-expression regulation during nitrogen
starvation in baker’s yeast. FEBS J 276: 5521–5536

Van Eunen K, Rossell S, Bouwman J, Westerhoff HV, Bakker BM (2011)
Chapter twenty-seven—quantitative analysis of flux regulation
through hierarchical regulation analysis. In Methods in
Enzymology, Daniel Jameson, Malkhey Verma, Hans V.
Westerhoff (eds) pp 571–595. Academic Press: San Diego, CA,

Transcription regulation of central carbon metabolism
V Chubukov et al

12 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



USA; Waltham, MA, USA, Available at http://www.sciencedirect.
com/science/article/pii/B978012385118500027X

Van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM,
Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces
cerevisiae CEN.PK113-7D based on mass isotopomer measurements
of 13C-labeled primary metabolites. FEMS Yeast Res 5: 559–568

Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia
coli: I. synthesis of biosynthetic precursors and cofactors. J Theor
Biol 165: 477–502

Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits:
lessons from bacteria. Nat Rev Genet 5: 34–42

Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W,
Yao Y, Ning Z-B, Zeng R, Xiong Y, Guan K-L, Zhao S, Zhao G-P
(2010) Acetylation of metabolic enzymes coordinates carbon source
utilization and metabolic flux. Science 327: 1004–1007

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool
for transcriptomics. Nat Rev Genet 10: 57–63
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