

Identification of Bacillus cereus genes specifically expressed during growth at low temperatures

Julien Brillard, Isabelle Jehanno, Claire Dargaignaratz, Isabelle Barbosa, Christian Ginies, Frederic Carlin, Sinda Fedhila, Christophe Nguyen The, Veronique Broussolle, Vincent Sanchis Borja

▶ To cite this version:

Julien Brillard, Isabelle Jehanno, Claire Dargaignaratz, Isabelle Barbosa, Christian Ginies, et al.. Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 2010, 76 (8), pp.2562-2573. 10.1128/AEM.02348-09 . hal-01204237

HAL Id: hal-01204237 https://hal.science/hal-01204237v1

Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 1 -Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

Identification of genes specifically expressed during Bacillus cereus growth at

low temperature 2

Julien Brillard^{1,2}*, Isabelle Jéhanno³, Claire Dargaignaratz^{1,2}, Isabelle Barbosa³, Christian Ginies^{1,2}, Frédéric Carlin^{1,2}, Sinda Fedhila^{3†}, Christophe Nguyen-the^{1,2}, Véronique Broussolle^{1,2‡}, Vincent Sanchis^{3‡}

¹ INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France

² Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-

84000 Avignon, France.

³ INRA, Unité de Génétique Microbienne et Environnement, La Minière, F-78285, Guyancourt, France

* Corresponding author. Mailing address: INRA, UMR408, site Agroparc, 84914 Avignon cedex 9, France

Phone: +33 432 72 25 18 / Fax: +33 432 72 24 92 / e-mail: julien.brillard@avignon.inra.fr

[†] Present address: Unité Protéomie Fonctionnelle et Biopréservation Alimentaire, Institut Supérieur des Sciences

Biologiques Appliquées de Tunis. 9, avenue Zouhaier Essafi, 1006 Tunis, Tunisia.

[‡] These authors contributed equally to this work

Running title: Cold-specific B. cereus genes

20

1

3

4

5

6

7

8

9

13

14

15

16

17

18

19

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures.

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

The mechanisms involved in the ability of *B. cereus* to multiply at low temperature were investigated. It was assumed that many genes involved in cold acclimation would be upregulated at low temperature. Recombinase-based in vivo expression technology (IVET) was adapted to the detection of the transient activation of *B. cereus* promoters during growth at 10 °C. Four independent screenings of a promoter library from type strain ATCC 14579 were performed and 17 clones were isolated. They corresponded to 17 promoter regions that displayed a reproducible elevated expression at 10 °C relative to 30 °C. This analysis revealed several genes that may be important for B. cereus to grow successfully in the restrictive conditions of cold habitats. Among them, a locus corresponding to open reading frames BC5402 to BC5398 harbouring a lipase encoding gene and a putative transcriptional regulator was identified three times. While a mutation in the putative regulator encoding gene did not cause any particular phenotype, a mutant deficient for the lipase encoding gene showed reduced growth abilities at low temperature compared with the parental strain. The mutant did not change its fatty acid profiles in the same way as the wild-type when grown at 12 °C instead of 37 °C. This study demonstrates the feasibility of a promoter trap strategy for identifying cold induced genes. It outlines a first picture of the different processes involved in B. cereus cold acclimation.

1 Introduction

2

3

4

5

6

7

8

9

10

11

12

13

14

The food-borne disease agent *Bacillus cereus* is an endospore-forming bacterium belonging to the *Bacillus cereus* group (or *B. cereus sensu lato*). *B. cereus sensu lato* has recently been divided into seven major phylogenetic groups (I-VII) with clearcut differences in temperature growth ranges, suggesting that the genetic structure corresponds to "thermotypes" and showing a multi-emergence of psychrotrophic groups within *B. cereus sensu lato* (26). Temperature adaptation has thus presumably played a major role in *B. cereus* evolution. *B. cereus* is also a human pathogen, causing local and systemic infections. Most cases of outbreaks of foodborne poisoning have been caused by mesophilic strains (26) that can grow at temperatures as low as 10 °C. These characteristics enable initially relatively low levels of *B. cereus* in foods to increase greatly under commonly reported suboptimal refrigeration conditions (20). Understanding the ability of *B. cereus* to grow at low temperature will help to control multiplication in refrigerated food and prevent outbreaks of foodborne poisoning events.

At low temperatures, bacteria undergo various modifications in cellular physiology, such as 15 16 decreased membrane fluidity or inefficient folding of proteins and secondary structures of 17 RNA and DNA (43). Bacterial responses can be divided into low temperature response (or 18 acclimation, also called low-temperature adaptation) and cold-shock response (43). Both 19 responses include a vast array of structural and physiological adjustments to cope with the 20 reduction in biochemical reaction rates induced by low temperatures. Previous studies of cold 21 response in bacteria mainly focused on cold shock response after a temperature drop (43, 51), 22 rather than on long-term adaptive response. Cold shock responses occur in many bacteria as a 23 change in the fatty acid profile of the bacterial cell membrane, to maintain optimal fluidity, or 24 in the expression of small RNA binding cold shock proteins (Csps) that mediate transcription 25 elongation and message stability, as investigated for instance in *Listeria monocytogenes* (12).

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental _ 4 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

Studies on *B. subtilis*, reviewed by Weber *et al.* (51), account for most of the work on cold adaptation in the *Bacillus* genus. Because of the psychrotrophy of many strains, *B. cereus sensu lato* is a good model for research on the molecular mechanisms of low temperature adaptation in *Bacillus* sp. and still offers wide scope for investigation. Previous work is scant and piecemeal, dealing for instance with the analysis of cold-shock proteins (CSPs) (23) or with changes in membrane fatty acid profile at suboptimal temperatures (21 °C or 15 °C) (29, 33). In fact, the establishment of the *B. cereus* in the food environment under refrigeration probably requires the coordinated activity of many genes, whose identity and mode of action are still largely unknown.

10 Assuming that many, if not most, of the genes involved in cold acclimation are induced or up-11 regulated at low temperature, we hypothesised that ecologically significant genes allowing 12 B. cereus to survive or adapt to low temperature could be identified using a promoter trap 13 strategy to capture promoters specifically activated during growth at low temperature. We 14 therefore adapted a recombinase-based *in vivo* expression technology (IVET) to study the 15 genes activated in B. cereus ATCC 14579 during its growth at low temperature. The 16 advantages of the IVET approach over other genetic methods (screening of a mutant library 17 for instance) reside in its sensitivity, since it enables the detection of genes that are only 18 slightly or transiently induced, and in that it allows the selection of genes independently of 19 whether the loss of these sequences would be lethal. Thus IVET helps to recover both 20 essential and non-essential genes that contribute to the ecological success of *B. cereus* in the 21 conditions tested. Another advantage is that this approach allows the detection of promoters 22 expressed, even transiently, at any growth stage. Therefore it is well adapted to investigate 23 acclimation which may involve phenomena occurring from lag phase to the end of growth. 24 An IVET library constructed in the B. cereus type strain ATCC 14579 has already permitted 25 the identification of genes specifically expressed during virulence in insect larvae (22). In this

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI: 10.1128/AEM.02348-09

1

2

3

4

5

6

7

11

12

13

14

15

16

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental _ 5 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

paper, we used this library and describe the application of IVET to detect promoters
specifically expressed, even transiently, during *B. cereus* growth at 10°C with the aim to gain
a better understanding of the mechanisms involved in its adaptive response to low
temperature.

Materials & Methods

Strains and growth conditions

All bacterial strains and plasmids used in this study are listed in Table 1. *B. cereus* cells were
grown aerobically in Luria broth (LB) or brain heart infusion (BHI) with vigorous shaking

10 (200 rpm) at 30 °C or 10 °C. E. coli cells were routinely grown in LB medium with shaking at

37 °C. When required, the antibiotic concentrations used for bacterial selection were:

erythromycin (Em) at 10 µg ml⁻¹, kanamycin (Km) at 100 µg ml⁻¹ or spectinomycin (Sp) at

275 μ g ml⁻¹ for *B. cereus* and ampicillin at 100 μ g ml⁻¹ for *E. coli*.

E. coli ET12567 *dam⁻ dcm⁻* was used to generate unmethylated plasmid DNA for the electrotransformation of *B. cereus*. *B. cereus* and *E. coli* strains were transformed by electroporation as previously described (19, 36).

Growth experiments were performed with an automated turbidometer, the Microbiology 17 18 Bioscreen C Reader (Labsystems, Uxbridge, UK), in 100-well sterile microplates. A volume 19 of 0.1 ml of overnight cultures at 30 °C was inoculated in 10 ml fresh LB, and incubated at 30 °C with shaking until an $OD_{600 \text{ nm}}$ of 0.8 was obtained. These cultures were used to 20 inoculate 1 ml of fresh LB to reach a concentration of 6×10^6 to 1×10^7 colony-forming units 21 22 (CFU) per ml (depending on the experiments). Three replicate wells of the microplate were 23 filled with these dilutions of inoculated medium to a final volume of 300 μ l per well. A 24 negative control was made of uninoculated LB broth. The cultures were incubated with 25 vigorous constant shaking and the OD₆₀₀ was measured at 15-min intervals at 30 °C and

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

45 °C or 1-h intervals at 12 °C over an incubation period of 48 h, or 10 days, respectively. The 12°C temperature was used here instead of 10°C to avoid the flocculation of the cells which sometimes occur in these culture conditions. At least three independent experiments were performed for each growth condition.

DNA manipulation

Plasmid DNA was extracted from B. cereus and E. coli by a standard alkaline lysis procedure using the Wizard SV miniprep purification system (Promega, Charbonnières, France), with an additional incubation with lyzosyme for the lysis of *B. cereus* cells as previously described (9). Chromosomal DNA was extracted from B. cereus cells harvested in mid-log phase as described previously (7). Restriction enzymes and T4 DNA ligase were used as recommended by the manufacturer (Promega). Oligonucleotide primers (Table 2) were synthesised by Eurogentec (Seraing, Belgium). PCR was performed in a GeneAmp PCR system 2400 thermal cycler (Perkin-Elmer, Coutaboeuf, France), using the Expand high-fidelity DNA polymerase (Roche Applied Science, Meylan, France). Amplified DNA fragments were purified using the PCR purification Kit (Roche) and separated on 0.7% agarose gels after digestion. Digested DNA fragments were extracted from agarose gels with a centrifugal filter device (Montage DNA gel extraction kit, Millipore, Molsheim, France). All constructions were confirmed by DNA sequencing (GenomeExpress, Grenoble, France).

19 **Screening of the IVET library**

20 We have adapted a recombinase-based in vivo Expression Technology (IVET) to study the 21 genes activated in *B. cereus* ATCC 14579 during its growth at low temperature. In this IVET 22 system, constructed as previously described (22), B. cereus Sau3A chromosomal fragments 23 were fused to a promoterless resolvase *tnpI* gene from Tn 4430 harboured by a the promoter 24 trap-IVET vector pHT304-I. The reporter strain, named B. cereus::R2SK, carries a Km^R-res-25 Spec^R-res-pKm cassette integrated in its chromosome at the *tetB* locus (R2SK construct).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental _ 7 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

This cassette carries two selectable resistance genes: a non-functional aphA3 kanamycin resistance gene (Km^R) and a spectinomycin resistance gene (Spec^R) flanked by two internal resolvase recognition sequences (res). The coding sequence of the aphA3 gene, is thus separated from its promoter (pKm) by the res-Spc^R-res DNA fragment at which TnpI can catalyses recombination (39). After introduction of the genomic library of chromosomal fragments of *B. cereus* fused to *tnpI* in the promoter trap vector pHT304-I into *B.* cereus::R2SK, the activation of a promoter cloned upstream of the *tnpI* gene would result in TnpI production, and excision of the spectinomycin antibiotic marker from the chromosome. This event also results in the restoration of a functional *aphA3* gene and marks the bacterium by endowing it with an inheritable Spec-sensitive and Km-resistant phenotype. The IVET library was screened as described below. Most of the promoters expressed at the reference incubation temperature of 30 °C were removed using the following procedure: 1 ml of the frozen library stock (22) was grown in 50 ml of BHI supplemented with spectinomycin (Sp) in 250 ml flasks at 30 °C until an $OD_{600} = 1.0$ was obtained. One percent of this culture was used for inoculation of fresh BHI-Sp medium to increase the number of generations during the exponential growth phase. This step was repeated four times to maximise the elimination of the majority of cells for which a resolution event occurred at 30 °C (i.e. for which the phenotype switched from Km-sensitive/Sp-resistant to Km-resistant /Sp-sensitive). Even after these removal steps, 10 to 50 CFU/ml for which a resolution event had occurred ("resolutionpositive") for a total population of 7×10^7 CFU/ml were usually found, corresponding to the background level of this technique. The resulting depleted IVET library was frozen at -80°C as 1 ml aliquots in glycerol to be used as frozen inoculum.

Four independent screenings at 10 °C were performed as follows: 1 ml of frozen inoculum
was used to inoculate 50 ml of BHI in 250 ml flasks and incubated at 10 °C with shaking. As
a control, an identically inoculated flask was grown at 30 °C. This step allowed the estimation

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

of the number of residual promoters activated under usual culture conditions that escaped the pre-screening depletion step. During these controls, the background level of resolutionpositive CFU at 30 °C remained at 10-50 cfu/ml. Cultures were then diluted and spread either on LB agar Em to quantify the total harvested bacterial population, or on LB agar Km to isolate Km-resistant clones. Depending on the experiments, between 5×10^2 and 1×10^4 CFU/ml for which a resolution event had occurred were isolated from a total population ranging from 5×10^7 to 9×10^7 CFU/ml. To confirm that the Km-resistant clones arose from the resolution of the R2SK chromosomal cassette, selected Km-resistant clones were checked for their spectinomycin sensitivity. At this stage, less than 10% of the clones were discarded. To remove potential replicates of the same clone, the following procedure was used: amplification of the DNA fragments cloned in pHT304-I was performed by a PCR on Kmresistant /Sp-sensitive selected colonies, using the IVET-I1 and IVET-I2 primers (Table 2). After electrophoresis, the clones displaying exactly the same migration profile on both 0.7% and 1% agarose gels were considered to have exactly the same size and thus to be potential copies of the same clone. Only one copy was kept and the others were discarded. In addition, the clones for which no PCR amplification was obtained were removed. Altogether, about 25% of the clones were selected for further analysis during this step. The selected PCR products were then purified and sequenced.

After DNA sequencing, two out of the remaining clones were removed: one contained multiple DNA fragments originating from different chromosomal regions, and the other contained an intragenic region (892 bp in the middle of a 4.3 kb open reading frame (ORF)) located more than 2.5 kb from the start codon of the next ORF. None of the remaining clones contained an intergenic region in the wrong orientation. Three fragments identified from clones isolated in three independent screenings had exactly the same sequence: only one clone was kept for further analysis. Twenty clones containing an intergenic region in the correct

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI : 10.1128/AEM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental _9 _ Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1 orientation, and thus likely to contain a promoter region, were finally selected and named cip 2 clones for "cold-induced promoters". For those 20 cip clones (Km-resistant /Sp-sensitive 3 phenotype), the pHT304-I derivative (*i.e.* containing a DNA fragment harbouring a promoter) was extracted and reintroduced in the original B. cereus::R2SK strain (Km-sensitive/Sp-4 5 resistant phenotype). Transformants were then grown at 30 °C and 10 °C in parallel to 6 determine the resolution frequencies at these two temperatures. Resolution frequencies were 7 determined as the ratio of numbers of Km-resistant cells to total cells (*i.e.* Em-resistant). 8 Populations of Km-resistant cells at 30 °C below the detection threshold (10 CFU/ml) were 9 arbitrarily fixed at 9 CFU/ml to have an excess estimate of the resolution frequency value. 10 Experiments were repeated twice and the mean values are presented. Clones (n = 3) for which 11 the resolution frequencies displayed less than 1 log difference between 30 °C and 10 °C in at 12 least one of the two experiments were discarded.

13 In silico analysis

Sequences were analysed using the BLAST server (NCBI, NIH) (3). Protein domains were identified using SMART software (37, 42). MEME programme was used to align promoters of all the cip-regions identified (6).

17 **RT-PCR experiments**

18 Total RNA was extracted from B. cereus ATCC 14579 (WT) cells grown at 10 °C in LB 19 broth at mid exponential phase ($OD_{600} = 0.7$), using the Tri-reagent RNA extraction solution 20 as recommended by the manufacturer (Ambion, Huntingdon, United Kingdom). cDNA 21 synthesis from 0.5 µg of total RNA was performed using AMV-RT polymerase (Titan-one-22 tube RT-PCR kit, Roche). Specific amplifications were performed with primer couples listed 23 in Table 2 and the position of amplified regions is shown in Figure 1A. The "RT" prefix 24 designates these primers. For instance, RT-5402 -F and RT-5402 -R were used to detect the 25 mRNA transcript of the BC5402 gene; RT-5402-01-F and RT-5402-01-R were used to detect

14

15

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 10 -Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

the mRNA corresponding to a region overlapping BC5402 and BC5401. The reverse-1 transcription step was followed by 30 cycles of PCR amplification with Expand-HighFidelity polymerase following the manufacturer's instructions (Roche Diagnostics).

Relative quantification of gene expression by real-time PCR

Real-time RT-PCR was performed on a Light-Cycler instrument (Roche) as previously described (9). Briefly, the QuantiFast SYBR Green RT-PCR kit (Qiagen) was used according to the manufacturer's instructions, using 10 ng of total RNA as a template. RNAs were extracted from cells grown at 10°C or 37°C and harvested during the middle of exponential phase, at the end of exponential phase, or at the beginning of stationary phase ($OD_{600} = 0.4$, 1.0 and 2.0, respectively). Two independent cultures for each growth condition were performed. For each RNA sample, at least two independent measurements were performed. Altogether, presented results correspond to at least four measurements. The mRNA level changes for each gene were normalized to the RNA level of the ssu gene encoding 16S RNA and quantified by the $2^{-\Delta\Delta}C_T$ method as previously described (38). The coefficient of variation of the ΔC_T values (where ΔC_T represents the differences in threshold cycle between the target and control genes) was < 10 %. Oligonucleotides listed in Table 2 with the "LC" prefix were used for Real-time PCR.

18 Null mutant construction

19 The BC5401 gene encoding a putative lipase, and the BC5402 gene encoding a putative 20 transcriptional regulator were interrupted in B. cereus ATCC 14579 by allelic exchange with 21 a cassette conferring kanamycin resistance (Km^r), as previously described (5). Briefly, DNA 22 fragments of BC5401 upstream and downstream regions were PCR-amplified using the 23 primer couples 5Up-01_Bam/3Up-01_Pst and 5Dn-01_Xba/3Dn-01_Eag, respectively (Table 24 2). Similarly, the upstream and downstream regions of BC5402 were PCR amplified with the 25 primer couples 5Up-02_Bam/3Up-02_Pst and 5Dn-02_Xba / 3Dn-02_Eag, respectively 26 (Table 2). PCR products were digested with *BamHI/Pstl*I and *XbaI/EagI* using the primer-

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 11 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1 incorporated restriction sites (Table 2). In parallel, the Km^r cassette (1.5 kb fragment 2 corresponding to the *aphA3* kanamycin resistance gene with its own promoter) was digested 3 from pHT304-Km (Table 1) with *PstI/Xba*I. pHT304-Km was obtained by cloning a 1.5 kb fragment carrying the *aphA3* gene (Km^r) from the pDG783-*aphA3* plasmid (25). The three 4 digested DNA fragments were purified, and ligated in Eagl/BamHI digested pRN5101 and 5 6 introduced by electroporation in E. coli ET 12567. Unmethylated plasmids were then prepared from E. coli ET 12567 and the resulting recombinants plasmids pRN5101\DeltaBC5401 7 8 and pRN5101\Delta BC5402 were transformed into B. cereus ATCC 14579. Transformants were 9 then subjected to allelic exchange as previously described (5). Colonies that were resistant to 10 Km and sensitive to Em arose through a double-crossover event in which the chromosomal 11 wild-type copies of BC5401 or BC5402 genes were deleted and replaced by the Km^r cassette. 12 The chromosomal allele exchange in the mutants was checked by PCR using the appropriate 13 primer couples (Km5out /5Up-01_Bam and Km3out /3Dn-01_Eag or Km5out /5Up-02_Bam 14 and Km3out /3Dn-02_Eag). PCR products were sequenced for confirmation.

Extraction and quantification of fatty acid compounds by GC-MS

16 The fatty acid (FA) profiles were determined from approximately 40 mg fresh weight of WT 17 or ΔBC5401 cells grown at 37 °C (overnight) or at 12 °C (for 21 days) on LB agar. Fatty acid 18 methyl esters (FAMEs) were produced from total lipids by saponification (NaOH/methanol, 19 100 °C, 30 min.) coupled with esterification (HCl/methanol, 80 °C, 10 min, as previously 20 described (39, 40). Extraction of the FAMEs by CH₂Cl₂ was followed by a washing step in a 21 0.1 M sodium hydrogencarbonate solution. Samples were then injected in a GC/MS 22 instrument (Shimadzu QP2010) equipped with an UBWAX column (length 30 m, diameter 23 0.25 mm, film thickness 0.5 µm). Injection port temperature (splitless mode) was set at 24 250 °C. The carrier gas was helium with a linear velocity of 37 cm/s. The oven temperature was held at 50 °C for 1 min, increased to 190 °C at a rate of 20°C/min, and further increased 25

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 12 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

to a final temperature of 230 °C at a rate of 2°C/min. For the MS, the ionisation source temperature was 200 °C. The mass spectra were recorded in electron impact (70 eV) and the acquisition of total ion current was between 50 and 350 u.m.a (2 scans/s). Identification of the fatty acid compounds was determined by the equivalent chain length (ECL) method, and/or by derivatisation methods (picolinyl derivates to determine the position of the ramifications, and DMOX derivates to determine the position of unsaturations) (18, 21). The ECL of the identified compounds are listed in Table 3. The area of the detected peaks (each peak corresponds to distinct FA) was measured. The relative amount of one FA compound was expressed as the area of each peak divided by the area sum of all FA detected (mean value +/- SEM of triplicate biological samples measured twice). Significant differences in mean FA peak area were determined by one-way ANOVA and Tukey's honest significance difference test at the 1% level (SYSTAT version 9, SPSS, Chicago, USA). Only the most abundant FA (peak area higher than 2% of the total peak area for at least one of the two strains grown at either 37 °C or 12 °C) are presented.

16 **Results**

17 Screening of transcriptional libraries for *cip* (cold induced promoters) genes

Recombinase-based *in vivo* expression technology (IVET) was adapted to the investigation of gene activation during low temperature growth of *B. cereus* ATCC 14579. From four independent screenings performed at 10 °C, about 150 cold-induced promoter (cip) clones for which a resolution event occurred and that switched from a Km-sensitive/Sp-resistant to a Km-resistant/Sp-sensitive phenotype were isolated. After removal of potential replicates of the same clone based on their insert size, or removal of a clone containing an intragenic region, 20 distinct cip clones were finally selected.

25 Determination of the induction profiles of the *cip* genes at 10 °C and 30 °C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 13 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1 In the IVET system, the activity of a promoter is expressed by the frequency of resolution of 2 the R2SK cassette in the *B. cereus*::R2SK strain, leading to cells that switch from a Km-3 sensitive/Sp-resistant to a Km-resistant/Sp-sensitive phenotype. To confirm the promoter activity at low temperature of the inserts present in the 20 cip clones, their ability to induce 4 5 resolution in the *B. cereus::*R2SK strain was measured at 10 °C and 30 °C. For this purpose, 6 the originally isolated pHT304-I plasmids containing the *cip-tnpI* transcriptional fusions from 7 the 20 cip clones (Km-resistant/Sp-sensitive) were extracted, and reintroduced into the 8 unresolved B. cereus::R2SK strain (Km-sensitive/Sp-resistant). These transformants, 9 representing new clones of the 20 cip, were selected on media containing spectinomycin and 10 erythromycin. They were analysed again for resolution of their R2SK cassette, after growth in 11 LB medium at both 10 °C and 30 °C. The resolution frequencies induced by the 20 selected 12 cip were calculated and are presented in Fig. 2. The greater the relative differences in the 13 resolution frequencies obtained from clones grown at 10 °C and at 30 °C, the greater were the 14 differences in *cip* expression between the two growth temperatures. 15 Seventeen promoter regions were able to induce, reproducibly (i.e. in each of the two 16 independent experiments), the transcription of the *tnpI* gene at higher frequencies (at least 10-17 fold) at 10 °C than at 30 °C. Three cip (cip43, cip61 and cip82) induced resolution 18 frequencies with less than 1-log difference between the two growth temperatures and were 19 therefore excluded from further studies. For most of the cip-control clones (n = 11), no 20 expression of the promoter was detected at 30 °C as no Km-resistant colony arose from two 21 independent experiments performed with cells grown at 30 °C (cip marked with an asterisk in 22 Fig. 2). Consequently, resolution frequency was estimated by excess. For those 11 clones, this 23 high (and underestimated) difference in resolution frequencies strongly suggests that the *cip* 24 are specifically expressed during growth at 10 °C. For the remaining 6 cip, the higher (at least 25 10-fold) resolution frequencies they induced at 10 °C than at 30 °C suggest that these

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573., DOI : 10.1128/AEM.02348-09 Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 14 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

promoters were expressed at a higher level at 10 °C than at 30 °C. Thus 17 selected promoters in *B. cereus* ATCC 14579 seemed to be true cold-induced fusions.

Analysis of DNA sequences fused to *tnpI* in the highly up-regulated cip clones

Determination of the plasmid insert sizes of the remaining 17 chromosomal DNA fragments (cip fragments) revealed a size range of 498 to 1, 931 bp, with an average size of 1, 070 bp (Table 4). By comparing the nucleotide sequence with that of the genome of *B. cereus* ATCC 14579 and by considering the promoter orientation relative to the *tnpI* reporter gene, sequence analysis of these 17 cip fragments inserted in the pHT304-I plasmids characterised 17 different putative promoter sequences, all in the 5'-3' orientation, able to allow the initiation of the *tnpI* transcription. In all 17 cases, at least one putative promoter region and its corresponding ORF was identified (Table 4). The corresponding genes of the 17 cip are randomly located within the genome. According to their proposed COG (clusters of orthologous groups) categories (44, 45), most of the identified genes (cip60, cip81, cip30, cip13, cip47, cip7, cip18, cip54, cip22) encoded proteins involved in metabolism. Interestingly, all metabolism COG categories were represented (energy production and conversion, transport and metabolism of carbohydrate, amino acid, nucleotide, coenzyme, lipid, and inorganic ion, and secondary metabolite biosynthesis, transport and catabolism). Genes whose translation products are involved in information storage and processing (cip26, cip39) and cellular processes and signalling (cip16, cip50, cip39) were also found. In addition, three genes of unknown function (cip49, cip25, cip85) were identified. No highly conserved motif was identified over the 17 promoter regions (data not shown). This strongly suggests that not one but several transcriptional regulators may be implicated in the expression of those promoters at low temperature.

24 Analysis of three cip clones mapping at the same locus

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI : 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 15 -Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

Among the 17 validated fusions, cip5, cip22 and cip26 sequences mapped at the same chromosomal region (Table 4). Further study focused on this chromosomal region. All three belonged to the 11 cip selected clones for which no resolution event occurred at 30 °C (Fig. 2). The downstream genes of cip26, cip22 and cip5 sequences are BC5402 and BC5401 and BC5400, respectively. BC5402 encodes a putative transcriptional regulator, as revealed by the HTH (helix-turn-helix) domain found in its N-terminal region (data not shown). BC5401 7 encodes a member of the GDSL-lipase family, as suggested by sequence homology with other GDSL-lipases and by the "GDSL" (Gly-Asp-Ser-Leu) amino acid signature motif found at position 63-66. Additional conserved amino acids (some of which were shown to play key 10 roles in the catalytic function of the enzyme) are present in the GDSL-lipase family proteins. They were also found in the BC5401 predicted product (N at position 98, G at position 103 and 134, ND at position 136-137, D at position 242 and HP at position 245-246) (2). BC5400 13 was predicted to encode a Bacitracin transport ATP-binding protein BcrA. BlastN alignment indicated that these BC5401 and BC5400 are found in strains of all *B. cereus* genetic groups, while BC5402 in all but in the more thermotolerant strain NVH391-98 (data not shown).

RT-PCR and characterisation of the *BC5402-BC5398* transcriptional unit

17 The chromosomal locus of BC5402, BC5401 and BC5400 displays a putative operon 18 structure, including in the same orientation the two additional genes BC5399 and BC5398 19 (Fig. 1A). The five genes are also present with a conserved synteny in strains of all *B. cereus* 20 genetic groups, except for BC5402, which was absent in strain NVH391-98, as stated above. 21 Using RNA extracted from cells grown at 10 °C in exponential phase ($OD_{600} = 0.7$), RT-PCR 22 experiments revealed the presence of mRNA molecules overlapping the adjacent genes 23 BC5402/BC5401, BC5401/BC5400, BC5400/BC5399 and BC5399/BC5398 (amplicons b, d, 24 f and g on Fig. 1A and Fig. 1B), suggesting that the five genes of the locus were co-25 transcribed. An invert-repeat with an energy level of -18.9 kcal/mol was found downstream

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures

1

2

3

4

5

6

8

9

11

12

14

15

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 16 -Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

of BC5398 and may account for termination of transcription (Fig. 1A). Interestingly, transcription of the BC5401 gene can be initiated both by the promoter upstream from BC5402 when the two genes BC5402 and BC5401 are co-transcribed (as revealed by the detected mRNA overlapping BC5402 and BC5401 using RT-PCR), and by its own promoter, as revealed by the cip22 identified fragment. Similarly, transcription of the BC5400 gene can be initiated either by the promoter upstream from BC5402, or by the promoter upstream from BC5401 (as revealed by the detected mRNA overlapping (i) BC5402 and BC5401 and (ii) BC5401 and BC5400), and also by its own promoter, as revealed by the cip5 identified fragment. Thus the identified promoters located in this five-gene operon (BC5402 to BC5398) 10 may also be responsible for the transcription of a four-gene operon (BC5401 to BC5398) or a three-gene operon (BC5400 to BC5398). The selection of three promoters in the same operon after the random screening with the IVET system at 10 °C suggests that an important role is played by this locus during *B. cereus* growth at low temperature.

Quantification of the expression of the BC5401 and BC5402 genes

15 The transcription level of the first two genes of this operon was analysed by quantitative RT-16 PCR at various time during the kinetics of growth. Results presented in Table 5 confirmed 17 that the level of expression of the studied genes was significantly higher (>2-fold change) 18 when cells were grown at 10°C relative to 37°C. This was true at the three tested times of the 19 kinetics of growth for BC5402, while it was only observed during exponential phase of 20 growth for BC5401.

21 Construction and characterisation of the BC5401 and BC5402 knockout mutants

22 The first two genes of this operon specifically expressed at low temperature were selected for 23 mutagenesis to further investigate their contribution to *B. cereus* growth at low temperature. 24 Isogenic mutants of the BC5402 and BC5401 genes of B. cereus ATCC 14579 were 25 constructed using pRN5101 for insertional inactivation via double-crossover integration. The

1

2

3

4

5

6

7

8

9

11

12

13

1 two knockout strains ($\Delta BC5402$ and $\Delta BC5401$) and the WT strain were analysed for their ability to grow at low temperature in comparison with 30 °C and 45 °C. The growth of 2 Δ BC5402 at 12 °C was similar to that of WT (data not shown). By contrast, the Δ BC5401 3 displayed an impaired growth ability at the three tested temperatures, only slightly at 30 °C 4 5 and 45 °C, but particularly clearly at 12 °C (Fig. 3). At this low temperature, a growth delay was observed from the beginning of the exponential phase. A final OD_{600} lower than that of 6 7 WT was also observed. By contrast, at 30 °C and 45 °C, growth of Δ BC5401 was only 8 slightly impaired at the end of the exponential phase, reaching the stationary phase with a 9 final OD₆₀₀ slightly lower (at 30 °C) or similar (at 45 °C) to that of the WT. 10 Quantitative analysis of fatty acids in the BC5401 mutant and wild type strains Disruption of one of the identified cold-expressed genes (BC5401) encoding a putative lipase 11 12 led to a cold-impaired growth phenotype. We therefore determined the fatty acid (FA) profile 13 of both the WT and $\Delta BC5401$ cells grown at either optimal or low temperature (37 °C and 12 °C, respectively) (Fig. 4). At 37 °C only slight differences were observed between the WT 14 15 and the \triangle BC5401 strains. The only significant differences (*P* < 0.01, Tukey's HSD test), were 16 slightly lower amounts of two compounds (i16:1(2) and a17) in the mutant. Several changes in the FA profiles of WT grown at 12 °C instead of 37 °C were observed. FA 17 18 of cells grown 12 °C changed particularly by a decreased amount of i15 and i17:1(2), and an 19 increased amount of i13, n16, i17, i17:1(1) and n18, (differences between the two 20 temperatures significant at P < 0.01). Three compounds (C16:1 n-11, C18:1 and C18:2) were 21 specifically found in cells grown at 12 °C. The proportion of unsaturated/saturated FA 22 increased for cells grown at low temperature: the ratio was 0.24 for cells grown at 37 °C and 23 0.32 for cells grown at 12 °C. Similar changes to that in WT were observed for the $\Delta BC5401$ strain grown at 12 °C instead 24

25 of 37 °C, with one major exception. The amount of i13 was not significantly different

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 18 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

between the two growth temperatures (P > 0.01) for the Δ BC5401 strain. In addition, this mutant displayed some differences (P < 0.01) between the two growth temperatures for i14 and C16:1 n-6 compounds that were not observed for WT. The ratio of unsaturated to saturated FA also increased when this strain was grown at low temperature (0.21 and 0.47 for cells grown at 37 °C and 12 °C, respectively). Thus during growth at low temperature, a major increase of i13 was found for the WT which was not observed for the BC5401 mutant.

Discussion

9 Molecular microbial ecology is often hampered by the difficulty of unravelling how the 10 environment shapes bacterial physiology and enables microorganisms to respond to 11 environmental stresses. In the aim to identify genes specifically expressed at 10°C and thus 12 putatively involved in *B. cereus* low-temperature adaptation, we used an IVET approach in *B.* 13 cereus and identified 17 clones with elevated expression at 10°C relative to 30°C, which 14 demonstrated induced expression during growth at low temperature. To our knowledge, this is 15 the first study that demonstrates the feasibility of this approach for identifying cold-induced 16 promoters (cip) or genes in a foodborne pathogen. The screening was performed on cells 17 undergoing cold acclimation, using an approach allowing the identification of genes 18 specifically expressed (even transiently) during cold growth, at any time during the lag phase 19 or the exponential growth phase. In comparison, a conventional microarray analysis might 20 have the limitation that not all stages of the kinetics of growth would be sampled, thus 21 possibly leading to fail to isolate transiently expressed genes. The 17 cip clones could be 22 functionally divided into four categories based on the COG identity of the annotated 23 downstream gene of the captured DNA in each clone. Although most of the promoters 24 identified here (11 out of 17) were specifically expressed at low temperature, six of the 25 identified promoters were still expressed at 30 °C. In this case, the promoters were expressed

1

2

3

4

5

6

7

8

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AFM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 19 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

at a much lower level (CFU for which a resolution event had occurred were isolated at least 10 times less frequently at 30 °C than at 10 °C). This suggests that our growth steps at 30 °C did not remove all promoters expressed at a low level. The list of genes identified here is of course not exhaustive, as illustrated by a low overlap of identified clones between the four independent screenings. This may be due to the relatively high stringency conditions we used during the screening steps. In addition, the probable multifactorial nature of the entire cold adaptation process implies that it is not governed by a few essential activated genes, but rather by a large number of genes. Thus many additional genes specifically expressed at 10 °C probably remain to be discovered. However, the genes identified in this screening enable us to outline a first picture of the different strategies *B. cereus* uses to grow at low temperature.

12 One strategy may be to activate alternative metabolic pathways. Preferential metabolic 13 pathways are modified during growth at low temperature, in *B. subtilis* (32) or in *B. cereus* 14 (13, 14). Most of the genes identified in this study seem to be involved in various metabolic 15 reactions. Among them, BC0749 is predicted to code for ThiG, a protein required for the 16 biosynthesis of the thiazole moiety of thiamine (vitamin B1). Derived from thiamine, the 17 thiamin-pyrophosphate is an essential cofactor involved in central metabolism and amino acid 18 biosynthesis (35). In B. cereus ATCC 14579, the expression of this gene is under the control (though probably indirect) of the Sigma B (σ^{B}) general stress response adaptation regulator 19 (48). However, no other members of the σ^{B} -regulon have been identified during this study, in 20 contrast to the observed induction of several σ^{B} -regulated genes during cold growth in B. 21 22 subtilis (8, 10) and in the foodborne pathogen Listeria monocytogenes (11). This indicates that distinct roles may be played by σ^{B} between *B*. *cereus* and these other two bacterial 23 24 species during growth at low temperature. This hypothesis is in agreement with a recent study

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

10

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 20 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

showing that the σ^{B} activation pathway is highly different in the *B*. *cereus* group compared to what is known in other low-GC Gram-positive bacteria (17).

Low-temperature adaptation often requires genes under the control of regulators able to sense and coordinate metabolic functions during cold stress. For example, in *B. subtilis* the expression of cold inducible genes responsible for membrane unsaturation is controlled by DesKR, a specific two-component systems (1). Among the genes identified, one gene (BC5440) was found to encode a protein of a two-component regulatory system that may function to sense and perceive the environment more precisely and respond to it. The BC5440 gene product does not belong to the same response-regulator family as the *B. subtilis* DesR (16). BC5440 encodes a response regulator probably involved in the regulation of enzymes with murein hydrolase activity (LytR/AlgR family) (24). The expression of such enzymes may have to be tightly controlled to allow optimal peptidoglycan turnover when bacteria are grown at low temperature.

14 Modifications in the cell wall and/or membrane composition are also important for bacteria to 15 adapt to cold (e.g., changes in the ratio of saturated to unsaturated fatty acids) (29). Induced 16 expression of the products of some of the identified genes (BC1235, BC2489, BC4851), 17 presumably targets precursors for fatty acid metabolism. Their role in the fatty acid 18 metabolism might account for the modifications to the fatty acid profiles observed when cells 19 are grown at low temperature. This hypothesis is supported by the identification in B. subtilis 20 of an ortholog of BC4851, encoding an o-succinylbenzoic acid-CoA ligase, which was also 21 induced during cold growth (10).

One of the identified genes (BC3197) encodes a putative permease of the major facilitator superfamily (MFS domain). This family includes transporters of small solutes (15, 34), and some also act as osmoprotectors. In *L. monocytogenes* osmoprotectants permit better growth at low temperatures (52). In addition, several of the identified genes were predicted to encode

1

2

3

4

5

6

7

8

9

10

11

12

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 21 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

hypothetical proteins (BC4246, BC4634 and BC4943). A large number of genes with unknown functions have also been shown to be induced during growth at low temperature in *B. subtilis* (10).

Finally, three promoters from the same locus (BC5402 to BC5398) were identified from distinct screenings. No detection of resolution events in the three corresponding control-cip clones during growth at 30 °C suggests a specific expression of this locus when *B. cereus* was grown at 10 °C. The BC5402 gene was predicted to encode a regulator of the LacI family. Five regulators of this family have been studied in *Erwinia* and are involved in repression of adjacent genes (47). Gene BC5402 is the first of five genes occurring in an operon strongly expressed at low temperature. However, the BC5402 gene, when mutated singly, does not affect the growth of *B. cereus* at low temperature. This seems to indicate that this gene is not coding for an essential function by itself; however, we cannot assert that this gene therefore plays no role or only a very minor one in the acclimation of the bacterium to cold or in the regulation of adjacent genes. Many traits contributing to ecological performance result in only subtle or difficult-to-score phenotypic changes upon inactivation, and are likely to be overlooked. Moreover, it is more and more frequently accepted that many regulators act in a partially or fully redundant manner and so mutation of one such gene is unlikely to fully abolish the activity of all the genes under its control. In the ATCC 14579 genome, two genes encoding a putative lipase/acylhydrolase member of the GDSL family are located in operon structures that include a putative transcriptional regulator-encoding gene. These are BC5401/BC5402 and BC4123/4124. A third gene (BC2449) also displayed sequence homology with BC5401, but the GDSL motif was degenerated as GDSF, and this gene was not adjacent to a gene encoding a putative transcriptional regulator. These genes may have similar functions, and we cannot rule out the possibility that disruption of BC5402 is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 22 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

complemented by the expression of its paralog. A search for other possible redundant factors should accordingly be pursued.

By contrast to the BC5402 deletion mutant, the BC5401 deletion mutant was shown to be significantly impaired in its ability to grow at low-temperature. This indicates that in ΔBC5402, transcription of the BC5401, encoding a member of the GDSL-lipase family, and possibly of the three remaining genes located downstream BC5401 could still proceed adequately, probably from the promoter found upstream from BC5401. Despite the cold-induced IVET-identified promoter upstream from BC5400, a possible polar effect affecting the downstream genes in the BC5401 deletion mutant cannot be discounted. Thus the possible role of BC5400, BC5399 and BC5398 during growth at low temperature remains to be clarified.

12 Although widely distributed in bacteria, the lipases of the GDSL family have been described 13 mostly in plants. Expression of GDSL-like lipase was up-regulated in rice overexpressing a 14 gene involved in various types of stress tolerance, including cold stress (30). In bacteria, lipases of this family are generally described as lipolytic enzymes, but their physiological role 15 16 is not well understood (2). Lipases (triacylglycerol acylhydrolases; EC 3.1.1.3) generally 17 govern the turnover of lipids and the biogenesis of membranes in bacteria and are by 18 definition carboxylesterases, whose major substrates are long-chain triacylglycerols ($\geq C_{10}$), 19 releasing fatty acids and glycerol (31). They generally act at the water-lipid interface and 20 display wide substrate specificity, a property that lends the microorganisms access to diverse 21 carbon sources during plant cell wall degradation or during the recycling of lipid-containing 22 nutrients (27, 28). It has also been suggested that some of these enzymes might play a role in 23 the turnover of membrane lipids and lipid-anchored proteins, by altering cell membrane 24 composition to change cell membrane functions or adapt cell membranes to environmental 25 changes (41, 46). The main factor controlling the expression of lipase activity is therefore the

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology 76 (8), 2562-2573, DOL: 10.1128/AEM.02348-09

1

2

3

4

5

6

7

8

9

10

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 23 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

1 presence of lipid sources, although lipase production is also significantly influenced by other 2 carbon sources such as sugars, polysaccharides, amino acids and other complex compounds. 3 In addition, lipase synthesis is influenced by other physicochemical factors such as 4 temperature, pH, inorganic salts, agitation, and oxygen concentration (28). In B. cereus, the 5 role of BC5401 in the FA profile of *B. cereus* was investigated. As already described in many 6 other bacteria and in other B. cereus strains (29), both the ATCC 14579 WT strain and the 7 BC5401 mutant can adapt the fluidity of their membranes at lower growth temperature by 8 increasing the proportion of unsaturated fatty acids. Interestingly, compared with growth at 9 37 °C, the growth at low temperature led to a major increase in i13 for the WT. This is a 13-10 carbon chain fatty acid branched at position n-2. No such increase was observed for the 11 BC5401 mutant. Although the role of this fatty acid compound at low temperature is not 12 known, a similar increase was observed in Shewanella piezotolerans grown at 4 °C versus 13 20 °C (50). However, the exact role of the BC5401 product gene on i13 biosynthesis during 14 bacterial growth at low temperature remains to be investigated.

In conclusion, we have shown the applicability of the IVET approach to gaining a fuller understanding of the gene machinery specifically activated during the growth of *B. cereus* at low temperature. This study gives insight into the properties required for the ecological adaptation of *B. cereus* to cold environments and provides a first background for the investigation of the adaptation of gene-expression mechanisms at low temperatures. The different genes identified in this study certainly reflect the complexity of the processes involved in *B. cereus* low-temperature adaptation (acclimation).

24 Acknowledgements

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI: 10.1128/AEM.02348-09

15

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 24 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

- 1 This work was supported by INRA (Institut National de la Recherche Agronomique) and by a
- 2 grant from the Agence Nationale de la Recherche (ANR) (France) as part of an ANR-05-PNRA-
- 3 013 *B. cereus* contract

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573., DOI : 10,1128/AEM.02348-09

References

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

- 1. Aguilar, P. S., A. M. Hernandez-Arriaga, L. E. Cybulski, A. C. Erazo, and D. de Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J 20:1681-91.
- 2. Akoh, C. C., G. C. Lee, Y. C. Liaw, T. H. Huang, and J. F. Shaw. 2004. GDSL family of serine esterases/lipases. Prog Lipid Res **43**:534-52.
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-402.
- 4. Arantes, O., and D. Lereclus. 1991. Construction of cloning vectors for *Bacillus thuringiensis*. Gene 108:115-9.
- 5. Arnaud, M., A. Chastanet, and M. Debarbouille. 2004. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol **70**:6887-91.
- 6. **Bailey, T. L., and C. Elkan.** 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol **2:**28-36.
- 7. Bouillaut, L., N. Ramarao, C. Buisson, N. Gilois, M. Gohar, D. Lereclus, and C. Nielsen-Leroux. 2005. FlhA influences *Bacillus thuringiensis* PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol **71**:8903-10.
- 8. **Brigulla, M., T. Hoffmann, A. Krisp, A. Volker, E. Bremer, and U. Volker.** 2003. Chill induction of the SigB-dependent general stress response in *Bacillus subtilis* and its contribution to low-temperature adaptation. J Bacteriol **185:**4305-14.
- 9. Brillard, J., K. Susanna, C. Michaud, C. Dargaignaratz, M. Gohar, C. Nielsen-Leroux, N. Ramarao, A. B. Kolsto, C. Nguyen-The, D. Lereclus, and V. Broussolle. 2008. The YvfTU Two-component System is involved in *plcR* expression in *Bacillus cereus*. Bmc Microbiology 8.
- 10. **Budde, I., L. Steil, C. Scharf, U. Volker, and E. Bremer.** 2006. Adaptation of *Bacillus subtilis* to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology **152**:831-53.
- 11. **Chan, Y. C., K. J. Boor, and M. Wiedmann.** 2007. SigmaB-dependent and sigmaBindependent mechanisms contribute to transcription of *Listeria monocytogenes* cold stress genes during cold shock and cold growth. Appl Environ Microbiol **73:**6019-29.
- 12. Chan, Y. C., and M. Wiedmann. 2009. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49:237-53.
- 13. Choma, C., M. H. Guinebretiere, F. Carlin, P. Schmitt, P. Velge, P. E. Granum, and C. Nguyen-The. 2000. Prevalence, characterization and growth of *Bacillus cereus* in commercial cooked chilled foods containing vegetables. J Appl Microbiol 88:617-25.
- 14. Chung, B. H., R. Y. Cannon, and R. C. Smith. 1976. Influence of growth temperature on glucose metabolism of a psychotrophic strain of *Bacillus cereus*. Appl Environ Microbiol **31**:39-45.
- 15. **Culham, D. E., T. Romantsov, and J. M. Wood.** 2008. Roles of K+, H+, H2O, and DeltaPsi in solute transport mediated by major facilitator superfamily members ProP and LacY. Biochemistry **47**:8176-85.
- 16. de Been, M., C. Francke, R. Moezelaar, T. Abee, and R. J. Siezen. 2006. Comparative analysis of two-component signal transduction systems of *Bacillus cereus*, *Bacillus thuringiensis* and *Bacillus anthracis*. Microbiology 152:3035-3048.

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 26 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

- 17. de Been, M., M. H. Tempelaars, W. van Schaik, R. Moezelaar, R. J. Siezen, and T. Abee. 2009. A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of *Bacillus cereus*. Environ Microbiol.
- 18. **Destaillats, F., and P. Angers.** 2002. One-step methodology for the synthesis of FA picolinyl esters from intact lipids. J. Am. Oil Chem. Soc. **79:**253-256
- 19. Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. Nucleic Acids Res 16:6127-45.
- 20. **EFSA.** 2007 Request for updating the former SCVPH opinion on *Listeria monocytogenes* risk related to ready-to-eat foods and scientific advice on different levels of *Listeria monocytogenes* in ready-to-eat foods and the related risk for human illness. Scientific Opinion of the Panel on Biological Hazards. The EFSA Journal **599:**1-42.
- Fay, L., and U. Richli. 1991. Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J. Chromatogr. 541:89-98.
- 22. Fedhila, S., N. Daou, D. Lereclus, and C. Nielsen-LeRoux. 2006. Identification of *Bacillus cereus* internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol **62**:339-55.
- 23. Francis, K. P., R. Mayr, F. von Stetten, G. S. Stewart, and S. Scherer. 1998. Discrimination of psychrotrophic and mesophilic strains of the *Bacillus cereus* group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol **64**:3525-9.
- 24. Galperin, M. Y. 2008. Telling bacteria: do not LytTR. Structure 16:657-9.
- 25. Guerout-Fleury, A. M., K. Shazand, N. Frandsen, and P. Stragier. 1995. Antibiotic-resistance cassettes for *Bacillus subtilis*. Gene 167:335-6.
 - Guinebretiere, M. H., F. L. Thompson, A. Sorokin, P. Normand, P. Dawyndt, M. Ehling-Schulz, B. Svensson, V. Sanchis, C. Nguyen-The, M. Heyndrickx, and P. De Vos. 2008. Ecological diversification in the *Bacillus cereus* Group. Environ Microbiol 10:851-65.
- 27. **Gunstone, F. D.** 1999. Enzymes as biocatalysts in the modification of natural lipids. J. Sci. Food Agric. **79:**1535–1549.
- 28. **Gupta, R., N. Gupta, and P. Rathi.** 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol **64:**763-81.
- 29. **Haque, M. A., and N. J. Russell.** 2004. Strains of *Bacillus cereus* vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiology **150**:1397-404.
- 30. Hu, H., J. You, Y. Fang, X. Zhu, Z. Qi, and L. Xiong. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169-81.
- 31. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol **53**:315-51.
- 32. Kaan, T., G. Homuth, U. Mader, J. Bandow, and T. Schweder. 2002. Genomewide transcriptional profiling of the *Bacillus subtilis* cold-shock response. Microbiology **148**:3441-55.
- 33. **Kaneda, T.** 1972. Positional preference of fatty acids in phospholipids of *Bacillus cereus* and its relation to growth temperature. Biochim Biophys Acta **280**:297-305.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 27 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

- 34. Law, C. J., P. C. Maloney, and D. N. Wang. 2008. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289-305.
- 35. Leonardi, R., S. A. Fairhurst, M. Kriek, D. J. Lowe, and P. L. Roach. 2003. Thiamine biosynthesis in *Escherichia coli*: isolation and initial characterisation of the ThiGH complex. FEBS Lett **539**:95-9.
- 36. Lereclus, D., O. Arantes, J. Chaufaux, and M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in *Bacillus thuringiensis*. FEMS Microbiol Lett **51:**211-7.
- 37. Letunic, I., R. R. Copley, S. Schmidt, F. D. Ciccarelli, T. Doerks, J. Schultz, C. P. Ponting, and P. Bork. 2004. SMART 4.0: towards genomic data integration. Nucleic Acids Res **32:**D142-4.
- 38. **Pfaffl, M. W.** 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res **29:**e45.
- 39. **Sasser, M.** 1990. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acids Methyl Esters (GC-FAME). MIDI Technical Note **101:**1-6.
- 40. Sasser, M., C. Kunitsky, and G. Jackoway. 2005. Identification of *Bacillus anthracis* from Culture Using Gas Chromatographic Analysis of Fatty Acid Methyl Esters. Journal of AOAC International **88**:178-181.
- 41. Schmid, R., and R. Verger. 1998. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. **37:**1608–1633.
- 42. Schultz, J., F. Milpetz, P. Bork, and C. P. Ponting. 1998. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857-64.
- 43. Schumann, W. 2009. Temperature sensors of Eubacteria, p. 213-256, Advances in Applied Microbiology, vol. 67.
- 44. **Tatusov, R. L., M. Y. Galperin, D. A. Natale, and E. V. Koonin.** 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res **28**:33-6.
- 45. **Tatusov, R. L., E. V. Koonin, and D. J. Lipman.** 1997. A genomic perspective on protein families. Science **278:**631-7.
- 46. **Titball, R. W.** 1998. Bacterial phospholipases. Symp Ser Soc Appl Microbiol **27**:127S-137S.
- 47. Van Gijsegem, F., A. Wlodarczyk, A. Cornu, S. Reverchon, and N. Hugouvieux-Cotte-Pattat. 2008. Analysis of the LacI family regulators of *Erwinia chrysanthemi* 3937, involvement in the bacterial phytopathogenicity. Mol Plant Microbe Interact 21:1471-81.
- 48. van Schaik, W., M. H. Tempelaars, J. A. Wouters, W. M. de Vos, and T. Abee. 2004. The alternative sigma factor sigmaB of *Bacillus cereus*: response to stress and role in heat adaptation. J Bacteriol **186**:316-25.
- 49. Villafane, R., D. H. Bechhofer, C. S. Narayanan, and D. Dubnau. 1987. Replication control genes of plasmid pE194. J Bacteriol **169**:4822-9.
- 50. Wang, F., X. Xiao, H. Y. Ou, Y. Gai, and F. Wang. 2009. Role and regulation of fatty acid biosynthesis in the response of *Shewanella piezotolerans* WP3 to different temperatures and pressures. J Bacteriol **191:**2574-84.
- 51. Weber, M. H., and M. A. Marahiel. 2002. Coping with the cold: the cold shock response in the Gram-positive soil bacterium *Bacillus subtilis*. Philos Trans R Soc Lond B Biol Sci **357**:895-907.
- 52. Wood, J. M., D. E. Culham, A. Hillar, Y. I. Vernikovska, F. Liu, J. M. Boggs, and R. A. Keates. 2005. A structural model for the osmosensor, transporter, and osmoregulator ProP of *Escherichia coli*. Biochemistry **44**:5634-46.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 28 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

Legend to the figures

Fig. 1: (A) Map of the *B. cereus* ATCC 14579 BC5398-BC5402 chromosomal region.

Grey arrows represent ORFs. The positions of the kanamycin resistance gene integrated in the chromosome of the mutant to disrupt BC5402 or BC5401 are indicated. Small arrows represent promoters. Function or putative function of gene products is indicated above the ORFs. Dashed lines with small black arrows annotated by letters in brackets correspond to RT-PCR amplicons (see text and Fig. 1B). The invert repeat corresponding to a predicted stem-loop at the end of BC5398 is represented by two facing grey arrows. The full lines correspond to the IVET identified fragments containing promoters specifically expressed at 10 °C identified (the cip-clones numbers are indicated).

(B) RT-PCR detection of BC5402 and downstream ORFs in *B. cereus* strain ATCC 14579.

RT-PCR was performed on 500 ng of RNA. Negative controls, RT-PCR on 500 ng of RNA with a heat-inactivated reverse-transcriptase. Positive controls, PCR on 100 ng of genomic DNA. Letters refer to the positions of the RT-PCR products on the locus, as represented on Fig. 1A. Experiments were performed with the Titan One Tube RT-PCR System (Roche). RNA extraction was performed on strains grown at 10 °C in LB broth and harvested in their exponential phase ($OD_{600} = 0.7$).

19

Fig. 2: Resolution frequencies induced by the 20 cold-induced promoters (cip) at two temperatures.

Transformants of the *B. cereus* R2SK strain harbouring each of the 20 selected pHT304-I
derivatives were grown at two temperatures. Resolution frequencies at 30 °C (grey bars) and
10 °C (dashed bars) were calculated as the amount of KmR CFU/ml divided by the total size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 29 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

of the population (EmR CFU/ml). Experiments were repeated twice and the mean values are

presented (variability between duplicate experiments was below 15 %).

* Excess estimate values: at 30 °C, population of KmR CFU was below the detection

threshold (10 CFU/ml), and was therefore artificially set at 9 CFU/ml. For the control

(*B. cereus* R2SK strain harbouring the pHT304-I), no KmR CFU was detectable at both tested temperatures.

Fig. 3: Growth curves of *B. cereus* WT and \triangle BC5401 at various temperatures.

WT (black squares) and BC5401 mutant (white squares) strains were grown at 12 °C (A), 30 °C (B) or 45 °C (C). The cultures were incubated in an automated turbidometer with vigourous constant shaking and the OD_{600nm} was measured at 15-min intervals (at 30 °C or 45 °C) or a 1 hour interval (at 12 °C). Results are the mean values with standard deviation of triplicate experiments.

Fig. 4: Fatty acid profiles of *B. cereus* WT and ΔBC5401 strains at two temperatures.

WT (black) and Δ BC5401 (grey) strains were grown at 37 °C (full bars) or 12 °C (dashed bars) on LB agar. The profiles of fatty acid (FA) methyl esters were determined by GC-MS as previously described (39). The area of the detected peaks (each corresponding to distinct FA) was measured. Each bar represents the relative amount of one FA compound, expressed as the area of each peak divided by the sum of the areas of all the peaks on the chromatogram (mean value +/- SEM of triplicate biological samples measured twice). Only major FA compounds are presented (i.e. FA for which the area of the peak represented >2% at either 37 °C or 12 °C). For a given FA, the same letters above the bars indicate that no significant difference between temperature and/or strain was detected (Tukey's honest significant difference test at *P* > 0.01)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09 - 30 -

Table 1: Strains and plasmids used in this work

Strain or plasmid	Relevant genotype ^a	Source or reference
Strains		
B. cereus ATCC14579		Laboratory collection
B. cereus R2SK	Bc::R2SK, chromosomal reporter B. cereus strain	(22)
B. cereus Δ5402	ATCC14579 BC5402::Km	This work
B. cereus ∆5401	ATCC14579 BC5401::Km	This work
<i>E. coli</i> TG1	Δ (<i>lac-proAB</i>) supE thi hsd-5 (F' traD36 proA ⁺ proB ⁺ lacI ^q lacZ Δ M15)	Laboratory collection
<i>E. coli</i> ET12567	F ⁻ dam-13::Tn9 dcm-6 hsdM hsdR recF143 zjj-202: :Tn10 galK2 galT22 ara14 pacY1 xyl-5 leuB6 thi-1	Laboratory collection
Plasmids		
рНТ304-І	Ap ^R and Em ^R shuttle vector used for <i>B. cereus</i> genomic library	(22)
pRN5101	Ap ^R and Em ^R shuttle vector	(49)
pRN∆5401	Recombinant pRN5101 harboring BC5401::Km	This work
pRN∆5402	Recombinant pRN5101 harboring BC5402::Km	This work
pHT304	Ap ^R and Em ^R cloning vector	(4)
pDG783	Ap ^R and Km ^R cloning vector	(25)
pHT304-Km	pHT304 carrying the <i>aphA3</i> Km ^r gene with its own promoter cloned between the <i>Xba</i> I and <i>Pst</i> I sites of pHT304	This work

^a Km, kanamycin; Ap, ampicillin; Em, erythromycin

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09 - 31 -

Table 2: Primers used in this study

Primer name	5'-3' sequence ^a	Restriction
		sites
5Up-01_Bam	CG <u>GGATCC</u> ATAGCGCTATTATCGAGGGG	Bam HI
3Up-01_Pst	AAAA <u>CTGCAG</u> CGCCCAACATAGCCAATTCC	PstI
5Dn-01_Xba	GC <u>TCTAGA</u> ACAAGGAGGGGTAAAATGACG	XbaI
3Dn-01_Eag	CG <u>CGGCCG</u> GCCTTCTACACTCACTTCCC	EagI
5Up-02_Bam	CG <u>GGATCC</u> GCGAACTATCGAATTGAAGGG	Bam HI
3Up-02_Pst	AAA <u>CTGCAG</u> GCTGTCTCTTTTGATATCCCC	PstI
5Dn-02_Xba	GC <u>TCTAGA</u> GCGGGGGATGGTTACAGAAGC	XbaI
3Dn-02_Eag	CG <u>CGGCCG</u> CTCTGTGTCAGGACGTACG	EagI
Km5in	TCTG <u>TCTAGA</u> CATTTGAGGTGATAGG	XbaI
Km3in	GCTA <u>CTGCAG</u> ATCGATACAAATTCCTCGTAGGCG	PstI
Km5out	CGGTATAATCTTACCTATCACC	
Km3out	TACTCTGATGTTTTATATCTTTTCTAA	
IVET-I1	CCCTGAACAGTGTTCTCGG	
IVET-I2	GGCGATTAAGTTGGGTAAC	
RT-5402-F	TTATTGCCACACGTAAATGA	
RT-5402-R	CCCACGTGAAAATACTTTGT	
RT-5402-01-F	ACAAGGAGTTCGTATTCCAG	
RT-5402-01-R	GCCAATTCCTTCTTTATCAC	
RT-5401-F	GATGTAGTGGCAAAAGAGAA	
RT-5401-R	CAGGACGATACGTCTCTAAA	
RT-5401-00-F	AGCGCTAAACGATAAAAATG	
RT-5401-00-R	TCTGGGTTTTCAACGATACT	
RT-5400-F	CGAATGTTAGTCGGATTGAT	
RT-5400-R	TAATCCCTGCTGGATCTAAA	
RT-5400-5399-F	GAAGGCGATCGATTACTATG	
RT-5400-5399-R	CGGTTCTGAGAATCAACAAT	
RT-5399-98-F	AGGTTTATCGATGGGATTTT	
RT-5399-98-R	CAGAAAAGCTTAAACCATGC	
RT-5398-F	TTGTCATTTTAGGGCAAGAT	
RT-5398-R	CCCCCACAATATGAAAATAA	
LC-BC5402-F	TTATTGCCACACGTAAATGA	
LC-BC5402-R	CCCACGTGAAAATACTTTGT	
LC-BC5401-F	CATATGGCTTTGTTTCAGG	
LC-BC5401-R	TTTGCACCACTAACTGCTAA	
LC-16S-F	GGTAGTCCACGCCGTAAACG	
LC-16S-R	GACAACCATGCACCACCTG	

^a Restriction enzyme sites are underlined

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Applied and Environmental - 32 - Microbiology, 2010, ahead of print, DOI: 10.1128/AEM.02348-09

Table 3: Equivalent chain length (ECL) of the fatty acid methyl esters identified from *B. cereus* ATCC 14579

Compounds name		Retention	<u> </u>
as referred in the text	Chemical name	time $(min)^a$	ECL
il3	Methyl 11-methyldodecanoate	10.535	12.48
i14	Methyl 12-methyltridecanoate	11.721	13.48
n14	Methyl tetradecanoate	12.380	14.00
i15	Methyl 13-methyltetradecanoate	13.159	14.49
a15	Methyl 12-methyltetradecanoate	13.408	14.65
i16	Methyl 14-methylpentadecanoate	14.875	15.48
i16:1 (1)	Methyl 14-methyl-5-pentadecenoate	15.213	15.64
i16:1 (2)	Methyl 14-methyl-10-pentadecenoate	15.574	15.83
n16	Methyl hexadecanoate	15.842	16.00
C16:1 n-11	Methyl 5-hexadecenoate	16.195	16.15
C16:1 n-6	Methyl 10-hexadecenoate	16.629	16.33
i17	Methyl 15-methylhexadecanoate	16.932	16.48
a17	Methyl 14-ethylhexadecanoate	17.308	16.65
i17:1 (1)	Methyl 15-methyl- 5-hexadecenoate	17.300	16.65
i17:1 (2)	Methyl 15-methyl 10-hexadecenoate	17.676	16.82
n18	Methyl stearate	20.574	18.00
C18:1 n-9	Methyl oleate	21.206	18.21
C18:2	Methyl linoleate	22.567	18.68
Standard C19	Methyl nonadecanoate	23.422	19.00

^a The retention time was obtained on a GC/MS instrument (Shimadzu QP2010) equipped with an UBWAX column (see material and methods section).

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI: 10.1128/AEM.02348-09

clone	insert	number of	downstream O	RF ^b	COG^{c}	Broad COG category ^d	Assigned function ^e
reference ^a	size	potential	NCBI number	ERGO number			
	(bp)	promoter					
cip60	719	1	BC0544 (+3)	RZC04345	С	Metabolism	iron-sulfur cluster-binding protein
cip81	711	1	BC0749 (+6)	RZC02927	Н	Metabolism	Thiazole biosynthesis protein thiG
cip16	1473	2	BC0795,	RZC01484,	О,	Cellular processes and signaling,	Molybdopterin biosynthesis MoeB protein,
			BC0796	RZC01487	Р	Metabolism	Rhodanese-related sulfurtransferases
cip30	558	1	BC1235 (+6)	RZC03344	E	Metabolism	Indole-3-glycerol Phosph synthase
cip50	1083	1	BC1647 (+8)	RZC03052	NU	Cellular processes and signaling	Flagellar biosynthesis/type III secretory pathway ATPase
cip13	1931	1	BC2489	RZC06907	Ι	Metabolism	Acyl-coenzyme A synthetases/AMP-(fatty) acid ligases
cip47	1536	2	BC3197,	RZC04150,	I,	Metabolism,	Permeases of the major facilitator superfamily,
-			BC3196	RZC07700	GEPR	Metabolism	Biotin carboxylase
cip49	1155	3	BC4246,	RZC02388,	*	Poorly characterized,	Hypothetical protein,
			BC4247,	RZC02389,	*	Poorly characterized,	Hypothetical protein,
			BC4248	RZC02393	*	Poorly characterized	Hypothetical protein
cip25	1315	1	BC4634	RZC01131	*	Poorly characterized	Hypothetical protein
cip7	498	1	BC4851	RZC00481	IQ	Metabolism	O-succinylbenzoic acidCoA ligase
cip18	1166	1	BC4866	RZC03491	G	Metabolism	glc-1P-adenyl transferase
cip85	641	1	BC4943	RZC07012	*	Poorly characterized	Hypothetical protein
cip54	963	1	BC4977 (+2)	RZC02376	F	Metabolism	5'-nucleotidase/2',3'-cyclic phosphodiesterase and related esterases
cip5	702	1	BC5400 (+2)	RZC04931	V	Cellular processes and signaling	Bacitracin transport ATP-binding protein BcrA
cip22	858	1	BC5401 (+3)	RZC04935	E	Metabolism	Lipase/Acylhydrolase with GDSL-like motif
cip26	1691	1	BC5402 (+4)	RZC04938	K	Information storage and processing	Transcriptional regulator, LacI family
cip39, cip2, cip1	1187	1	BC5440	RZC06561	KT	Information storage and processing	Autolysin response regulator

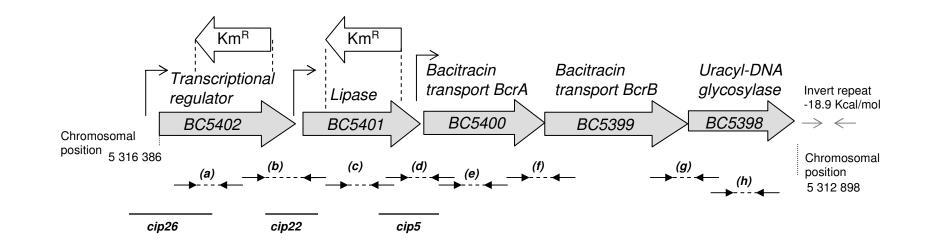
Table 4: B. cereus genes specifically expressed during growth at low temperature identified in this study

^a Three numbers indicate that the same clone was identified in 3 independent screenings ^b numbers in brackets correspond to the number of genes organized as an operon found downstream

^c COG: cluster of ortholog group, according to Tatusov et al., (44). *, no COG

^d Broad functional COG categories according to the NCBI website (ftp://ftp.ncbi.nih.gov/pub/COG/COG/fun.txt)

^e Assigned function according to the *B. cereus* genome databases (www.integratedgenomics.com or <u>http://www.ncbi.nlm.nih.gov</u>)


Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology. 76 (8), 2562-2573. DOI: 10.1128/AEM.02348-09

Version postprint

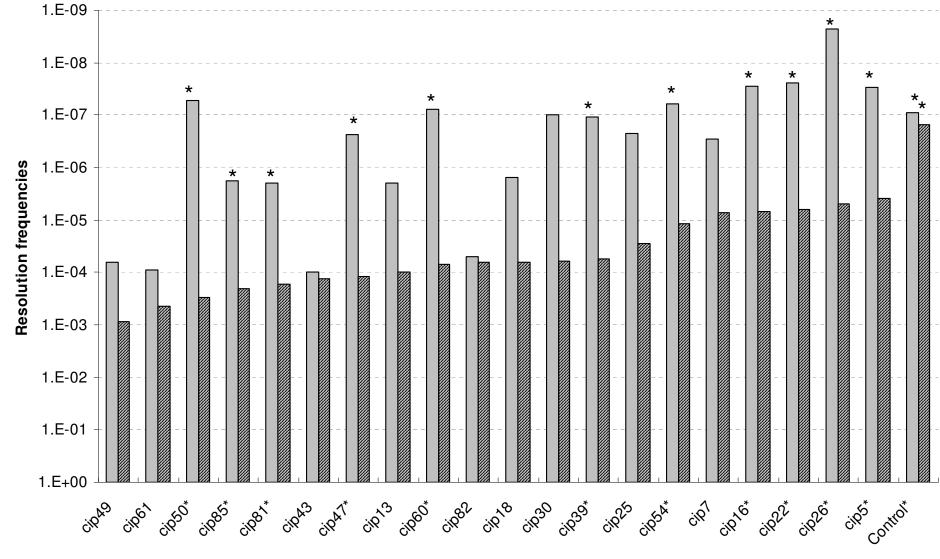
Table 5: Analysis by real-time RT-PCR of the level of expression of BC5402 and BC5401 at various times of the kinetics of growth

	Fold change at	Fold change at 10°C relative to 37°C during ^a		
Gene	Middle Exp.	End Exp.	Early Stat.	
BC5402	9.46	2.69	4.42	
BC5401	3.41	3.22	1.53	

^a Exp., exponential phase of growth; Stat., stationary phase of growth. See material and methods section for details

RT-PCR

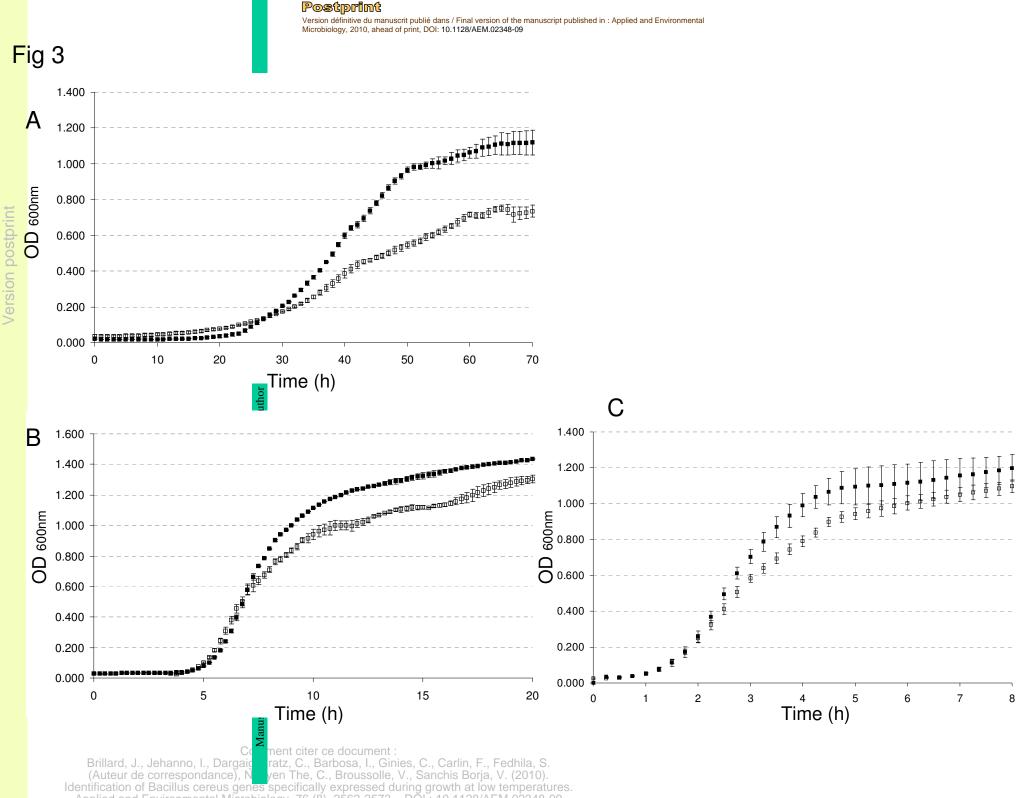
positive control negative control h q a g g h


Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

В

Fig 1

Α


Version postprint

* Excess estimate values

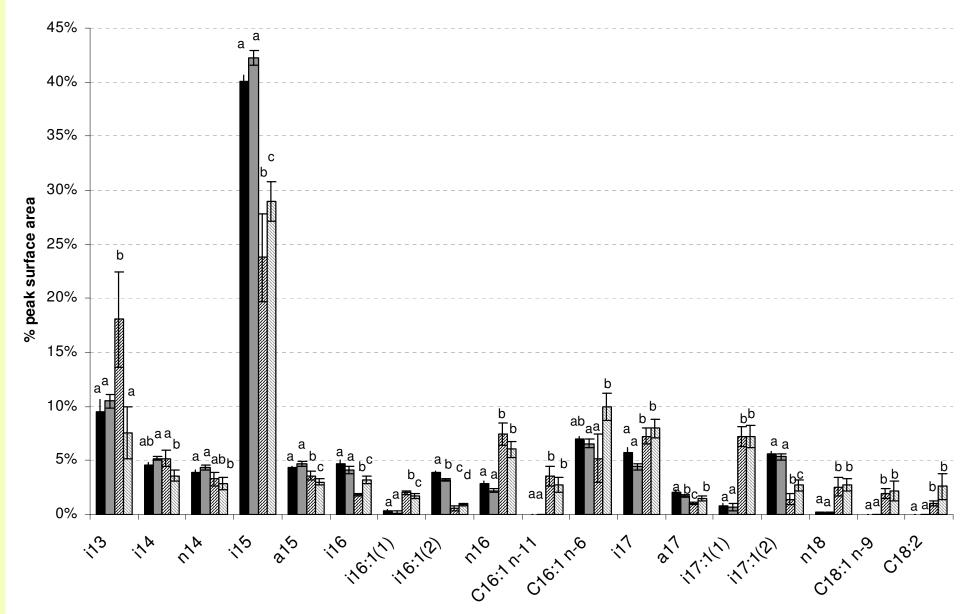

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI : 10.1128/AEM.02348-09

Fig 2

Applied and Environmental Microbiology, 76 (8), 2562-2573. DOI: 10.1128/AEM.02348-09

Fig 4

Comment citer ce document : Brillard, J., Jehanno, I., Dargaignaratz, C., Barbosa, I., Ginies, C., Carlin, F., Fedhila, S. (Auteur de correspondance), Nguyen The, C., Broussolle, V., Sanchis Borja, V. (2010). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Applied and Environmental Microbiology, 76 (8), 2562-2573, DOI : 10.1128/AEM.02348-09

Version postprint