

Detecting directional and epistatic selection from candidate genes: methodological improvements and a case study of European beech

Katalin Csillery, Giovanni Giuseppe Vendramin, Santiago C González-Martínez, Bruno Fady, Sylvie Muratorio

▶ To cite this version:

Katalin Csillery, Giovanni Giuseppe Vendramin, Santiago C González-Martínez, Bruno Fady, Sylvie Muratorio. Detecting directional and epistatic selection from candidate genes: methodological improvements and a case study of European beech. SMBE Satellite meeting SMBEBA 2015 "Investigating biological adaptation with NGS: data and models", May 2015, Hameau de l'étoile, France. 1 p. hal-01204227

HAL Id: hal-01204227 https://hal.science/hal-01204227

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Detecting directional and epistatic selection from candidate genes: methodological improvements and a case study of European beech

K CSILLÉRY¹, H LALAGÜE^{1,2}, GG VENDRAMIN², SC GONZÁLEZ-MARTÍNEZ³, B FADY¹, S ODDOU-MURATORIO¹ INRA Avignon (FR)¹, Inst. of Biosciences & BioResources (IT)², INIA Madrid (SP)³, with financial support from: ERANET-BiodivERsA: LINKTREE & TIPTREE

SUMMARY

SIGNATURE OF SELECTION AT SINGLE- AND MULTILOCUS LEVELS

- \mathbf{P} accounting for the uncertainty of haplotype inference in F_{ST} outlier tests
- Pre-discoveing Ohta's test of epistatic selection for candidate genes

A CASE STUDY OF Fagus sylvatica

- sampling at a **short spatial scale** with sharp environmental differences
- SNPs from candidate genes potentially involved in **climate response**

See more details in: K Csilléry, H Lalagüe, GG Vendramin, SC González-Martínez, B Fady and S Oddou-Muratorio 2014 Detecting local adaptation and epistatic selection in climate related candidate genes at a short spatial scale in European beech (*Fagus sylvatica* L.) populations. Molecular Ecology 23: 4696-4708

MATERIALS & METHODS

DETECTING DIRECTIONAL SELECTION:

 F_{ST} outlier test at the SNP and candidate gene levels with Bayescan¹ For gene level tests, haplotype phase was estimated using PHASE²

DETECTING EPISTATIC SELECTION:

lation components: D_{IS}^2 : within subpopulations D'_{ST}^2 : total population

NETADAPT: A FUTURE TEST FOR CANDIDATE GENES

KEY REFERENCES

¹Foll and Gaggiotti. Genetics 180.2 (2008): 977-993; ²Stephens and Scheet. AJHG 76 (2005):449-462; ³Ohta. PNAS 79.6 (1982): 1940-1944; ⁴Mackay. Nat. Rev. Genet. (2013); ⁵Hansen. Evolution 67.12 (2013): 3501-3511; ⁶Lander et al. Mol. Ecol. 20.24 (2011): 5182-5196; ⁷Lehner. Trends in Genet. 27.8 (2011): 323-331.

Following Ohta³, we decomposed the variance of linkage disequilibrium within a subdivided population into between and within popu-

 D_{ST}^2 : two loci of different gametes in a subpopulation relative to the total population D'_{IS}^2 : two loci of one gamete in a subpopulation relative to the total population

Ohta's test: epistatic selection is more likely than drift if $D_{ST}^2 < D_{IS}^2$ and $D'_{IS}^2 < D'_{ST}^2$

POLYGENIC ADAPTATION

• Most traits that potentially play a role in adaptation are controlled by many genes

• Genes do not act independently, but interact through developmental, metabolic and biochemical networks⁴

THE ROLE OF EPISTASIS IN ADAPTATION

• Negligible? The elevated frequency of co-occurrence of beneficial allele combinations at different genes is expected to be continuously broken down by recombi-

• Not necessarily! However, if genes carrying beneficial allele combinations are also functionally connected via networks, the statistical signal of epistatic selection may be maintained⁵

WHAT ARE EPISTATIC NETWORK GENES CODE FOR?

Key genes with unique between gene epistatic selection signal in North/High (N/H) and South/Low (S/L) population pairs:

- mancy

FIRST AUTHOR'S CONTACT

Present address: INRA Avignon, UR629, France Address from Oct 2015: ETH Zürich, ACE, Switzerland Web https://sites.google.com/site/katalincsillery/ Email kati.csillery@gmail.com

RESULTS: EPISTATIC SELECTION

Gene pairs "light-up" in red if they contain at least an SNP that show a signal of epistatic selection between them. Genes in the diagonal show within-gene epistatic selection signal. Networks are drawn between genes that show a unique between-gene epistatic selection signal.

• (N/H) Gene 68 is connected 61_2 and 142 via two nonsynonymous SNPs. Gene 61_2 is a member of the heat shock protein 70 family and 68 catalyzes glycolysis, both play a key role in stress response.

• (S/L) Gene 50's SNP was situated in a 3'UTR region and the gene codes a major transcription factor in response to abiotic stress and has been shown to respond to cold temperatures.

• (S/L) Gene 80 regulates stomatal closure (key importance in response to drought) and has been suggested to play a role in dor-

• (S/L) Genes 148_1 and 145_2 are well-known budburst candidate genes.

Ohta's test has been relatively little used and most studies found no signal of epistatic selection, so why did it work here?

- ular environment⁷

CONCLUSIONS:

- outlier detection at the SNP (A) vs gene level (B) revealed different loci under selection
- gene level outlier detection was strongly influenced by **uncertainty in haplotype reconstruction** (C-F)
- uncertainty of haplotype inference can be accounted for by averaging Bayes factors over many possible phase reconstructions (B)

WHY DID IT WORK?

• Recent selection: F. sylvatica populations re-colonized Mont Ventoux about five generations ago⁶ and since have been exposed to sharp environmental differences

• Functionally related genes favored the build-up and maintenance of LD due to epistatic selection

• Samping from sharply different environments: 0.23% of the SNP pairs showed evidence of epistatic selection, with nearly 80% of them being within genes. However, most epistatic interactions unique to a population pair (N, S, H, or L) were observed between different genes. Indeed, most systematically mapped epistatic interactions between different genes bring new functionality that may only be advantageous in a partic-