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Abstract

Background

In wild plant populations, genetic divergence within continuous stands is common, some-

times at very short geographical scales. While restrictions to gene flow combined with local

inbreeding and genetic drift may cause neutral differentiation among subpopulations, micro-

geographical variations in environmental conditions can drive adaptive divergence through

natural selection at some targeted loci. Such phenomena have recurrently been observed

in plant populations occurring across sharp environmental boundaries, but the interplay be-

tween selective processes and neutral genetic divergence has seldom been studied.

Methods

We assessed the extent of within-stand neutral and environmentally-driven divergence in

the Neotropical tree Eperua falcate Aubl. (Fabaceae) through a genome-scan approach.

Populations of this species grow in dense stands that cross the boundaries between starkly

contrasting habitats. Within-stand phenotypic and candidate-gene divergence have already

been proven, making this species a suitable model for the study of genome-wide microgeo-

graphic divergence. Thirty trees from each of two habitats (seasonally flooded swamps and

well-drained plateaus) in two separate populations were genotyped using thousands of

AFLPs markers. To avoid genotyping errors and increase marker reliability, each sample

was genotyped twice and submitted to a rigorous procedure for data cleaning, which re-

sulted in 1196 reliable and reproducible markers.
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Results

Despite the short spatial distances, we detected within-populations genetic divergence,

probably caused by neutral processes, such as restrictions in gene flow. Moreover, habitat-

structured subpopulations belonging to otherwise continuous stands also diverge in relation

to environmental variability and habitat patchiness: we detected convincing evidence of di-

vergent selection at the genome-wide level and for a fraction of the analyzed loci (comprised

between 0.25% and 1.6%). Simulations showed that the levels of differentiation for these

outliers are compatible with scenarios of strong divergent selection.

Introduction
Microgeographic genetic divergence [1, 2] (i.e. the genetic divergence occurring within contin-
uous populations over geographical scales in the same range as species’ dispersal neighbor-
hood, in spite of extensive gene flow) has been frequently demonstrated in plant populations,
at least as early as the middle of the 20th century for both phenotypic traits [3–5] and molecu-
lar markers [1, 6–9]. Microgeographic divergence has been the subject of major review articles
[10–12] arguing that adaptive processes are relatively widespread at these very local scales.
However, Spatial Genetic Structure (SGS) is also common at local scales in wild plant popula-
tions [13, 14]. This commonly implies neutral divergence caused by restrictions in gene flow
(pollen and seeds), genetic drift and mating processes (such as mating among neighbors and
local inbreeding) [15, 16]. These processes are supposedly reinforced in plants because they are
sessile, even more in trees because of their long life cycle and large progeny sizes [17–19].
Microgeographic neutral divergence is very common in tropical tree species [13, 20, 21], al-
though the observed genetic structures are generally shallow. Pollen and seed flow are often re-
stricted because air humidity and frequent precipitation prevent wind dispersion of pollen and
seeds, and because the heavy seeds are often dispersed by gravity close to maternal tree crowns
[16, 22], as it is the case in the bat-pollinated and autochorous canopy tree Eperua falcata Aub-
let (Fabaceae). Consequently, mating among neighbors is frequent in aggregative tree species,
causing local inbreeding and contributing to the spatial genetic structuring [20].

While neutral genetic divergence is independent of habitat variation (except when such var-
iation induces barriers to dispersal [23]), adaptive genetic divergence is driven by habitat tran-
sitions at least for some specific loci [8, 10, 23]. In this case, the genetic differentiation is
expected to be stronger for adaptive loci than for neutral ones. This difference provides a theo-
retical framework for the discrimination of neutral and adaptive sources of
microgeographic differentiation.

Amazonian lowland forests are characterized by complex habitat patchiness whereby envi-
ronmental conditions vary at a small spatial scale (i.e. in the order of hundreds of meters). The
succession of waterlogged bottomlands and well-drained ‘terra firme’ plateaus is associated
with strong variations in tree communities [24–27]. Microgeographic environmental variabili-
ty is thus likely to participate to the maintenance of high diversity of tree species in the forest
landscapes of Amazonia [28]. More precisely, it has been suggested that divergent selective
pressures among local habitat types may have driven the specialization of trees species for
local conditions, and that ecological divergences among congeneric species would result from
adaptive radiations along topography gradients [29]. In E. falcata, a recent study has revealed
footprints of divergent selection between local subpopulations occupying distinct habitats at
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stress-response genes [8]. Genetic differentiation was accompanied by consistent phenotypic
divergence for growth and leaf physiology at the seedling stage in E. falcata and in the conge-
neric E. grandiflora [30]. These preliminary results make E. falcata a good model for the analy-
sis of adaptive processes over microgeographical scales.

In this study, we analyzed the neutral and adaptive sources of genetic structuring within
continuous stands of E. falcata in the eastern Guiana shield (French Guiana). To achieve our
goals, four populations (corresponding to the replication of the microgeographic ‘hilltop versus
bottomland’ environmental contrast in two distinct stands) were scanned with approximately
1200 AFLP markers. Genome-wide spatial genetic structure was evaluated and the extent of ge-
netic divergence was assessed at both regional and microgeographical scales. A landscape ap-
proach was combined with outlier detection tests to distinguish between neutral and adaptive
sources of genetic divergence, and to determine whether microgeographic adaptation to local
habitat patchiness was involved in genome-wide and/or locus-specific genetic divergence.

Methods

Ethics statements
E. falcata leaf samples were collected in two study sites of the Eastern Guiana shield: Laussat
(5°28’37”N; -53°34’36”W) and Régina (4°18’44”N; -52°14’6”W). The study sites are managed
by the French National Forests Office (ONF) which authorized tree labelling and leaf sampling.
E. falcata is not a protected or endangered species and we certify that our experiment complies
with the laws and ethical recommendations of France and French Guiana.

Species description, study sites and sampling
Eperua falcata (Aublet) is a canopy-subdominant tree species, hyper-abundant in the Guiana
shield [31]. Its distribution is aggregative, and aggregates often reach high population densities.
Pollination is ensured by bats while seed dispersal is autochorous [32]: heavy seeds are dis-
persed at short distance around crowns of mother trees through explosive dehiscence. Our
study includes two E. falcata populations located near the coast of the Eastern Guiana shield:
Laussat (5°28’37”N; -53°34’36”W) and Régina (4°18’44”N; -52°14’6”W). These populations ex-
perience contrasted rainfall regimes, with a mean annual precipitation of 2500 mm and 3500
mm respectively (in years 2010 and 2011), and with a harsher dry season in Laussat (data from
météo-FRANCE stations of ‘Iracoubo’ and ‘Régina’), Fig. 1. Both sites harbor different habitat
types, from a bottomland to terra firme, and differ in landscape raggedness. In Laussat, a per-
manently water-logged bottomland gently rises toward a plateau of low elevation. In Régina,
narrow seasonally flooded bottomlands and streambeds lie at the foot of hills and higher-eleva-
tion plateaus with steeper slopes. In both sites, bottomlands are characterized by hygromorphic
soils with a large accumulation of organic matter up to a depth of 1 m caused by intense water-
logging, while terra firme are composed of well-drained ferralitic soils, rich in iron oxides with
a sand-clay texture allowing free vertical drainage (S1 Fig.). Soil humidity and temperature
were assessed at the end of the dry season (in 2011 and 2012) in each study site and local habi-
tat using a soil moisture sensor TRIME-PICO32 (Table 1, Fig. 2 and S1 Table). Canopy open-
ing was estimated by realizing fisheye hemispherical photographs with a Nikon digital camera
and treated using Gap Light Analyzer V2.0 [33] to estimate canopy opening, Leaf Area Index
(LAI) and the total light transmitted to ground (Fig. 2, S1 Fig., and S1 Table).

All trees of diameter at breast height (d.b.h.)> 20 cm were mapped in a continuous area of
6.7 ha in Régina, and in two areas of 2.5 ha and 1.8 ha in Laussat. Population density varied be-
tween 29.9 adult trees/ha and 48.11 trees/ha in Régina and Laussat respectively. In each site,
two groups of 30 trees inhabiting distinct habitat types (named ‘bottomland’ and ‘hilltop’,
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Fig. 1) were randomly selected and sampled for genetic analyses, totaling 120 trees with eleva-
tions ranging from 17 to 60 m a.s.l. in Laussat and from 47 to 92 m a.s.l in Régina. The sample
size was set to 30 trees per population, in agreement with the intermediate sample size simulat-
ed by Foll and Gaggiotti [34] to test the powerful of their method to detect dominant loci
under selection. Tree descriptions (site, local habitat, coordinates) are accessible on Dryad
(http://dx.doi.org/10.5061/dryad.b2q88).

Molecular methods
Genome-scans are very powerful for apprehending the extent of genome-wide genetic differen-
tiation in wild populations and for detecting locus-specific signatures of population divergence
[35] which can be interpreted as suggestive of the action of natural selection [36]. In non-
model species, AFLP markers [37] are widely used for genome-wide analyses of within-popula-
tion genetic variation [38–43]. Despite the drawbacks of being dominant and anonymous, they
have been proved to outperform other markers-such as micro-satellites- in the detection of ge-
netic structure [44] and in the discrimination of taxa and populations [45, 46]. They present

Fig 1. Geographic and topographic situation of the study sites.Colored dots: trees sampled for genotyping (triangles: hilltop; squares: bottomland).

doi:10.1371/journal.pone.0121394.g001

Table 1. Summary of the environmental conditions in the study sites and local habitats: soil type, waterlogging frequency and seasonal soil
drought severity.

Site and local habitat Laussat Plateau Laussat Bottomland Régina Hilltop Régina Bottomland

Soil Type Ferralitic Hygromorphic Ferralitic Hygromorphic

Waterlogging frequency no permanent no seasonal

Seasonal Soil Drought Severity strong low very strong intermediate

Complete data are provided in S1 Table (see also Fig. 2).

doi:10.1371/journal.pone.0121394.t001
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the obvious advantage of being easily obtained, relatively robust, and of requiring no prior se-
quence information [45–48]. These markers have, however, been largely criticized for their
lack of reproducibility [49] and require rigorous strategies to check repeatability and to control
for genotyping errors [50].

Fresh leaves were sampled and frozen at -80°C as soon as they arrived to the lab (in the
evening following the sampling). Genomic DNA was extracted using a CTAB protocol [51,
52], and each sample was extracted twice independently. Amplified fragment length polymor-
phisms (AFLPs) profiling was performed according to the protocol of Vos, Hogers and Bleeker
[37]. DNA was digested using PstI andMseI restriction enzymes [37, 53–55]. Restriction frag-
ments were amplified through two selective PCRs with respectively one and three selective nu-
cleotides. Fifteen primer combinations were analyzed: Pst+ACA/Mse+TAA, Pst+ATT/Mse
+TAA, Pst+AAC/Mse+TAA, Pst+ATA/Mse+TAA, Pst+ACA/Mse+TAG, Pst+ATT/Mse+TAG,
Pst+AAC/Mse+TAG, Pst+ATA/Mse+TAG, Pst+TAA/Mse+CAA, Pst+TAG/Mse+CAA, Pst
+ACA/Mse+CAA, Pst+ATA/Mse+CAT, Pst+ACA/Mse+CAT, Pst+ATT/Mse+CAT, Pst+ATA/
Mse+CAT. The complete protocol (including DNA extraction, AFLP protocol and genotyping)
was realized twice independently for each sample to obtain a complete replicate of the dataset
(totaling 2 x 120 trees = 240 samples).

AFLPs were scored through an automated cleaning procedure (encoded in R): (i) negative
controls were used to define thresholds of peak detection, (ii) peak profiles were scanned using
PeakScanner Software v1.0 (Applied Biosystems) and the bin set was created using RawGeno
v2.0 [47] with the previously defined thresholds, (iii) a consensus AFLP profile was edited for
each sampled tree (only well replicated genotypes were kept, genotypes that were not replicated
were considered as missing), (iv) data were post-cleaned, in particular by removing markers
that were not genotyped in at least 15 trees per site/local habitat combination. The complete
method of AFLP scoring is available in the S1 Method; AFLPs data (binary) are accessible on
Dryad (http://dx.doi.org/10.5061/dryad.b2q88).

Genetic structure and spatial genetic structure analysis (SGS)
A Bayesian clustering analysis was performed using STRUCTURE v2.3.4 [56] at both regional
and local scale. The analyses were performed with the ‘admixture model’ and ‘correlated allelic
frequencies’ settings. A burn-in of 10,000 iterations was followed by 100,000 iterations. As we
had no a priori expectation about the number of clusters to be inferred, the model was run with
K (number of clusters) values from K = 1 to K = 10 (five runs were performed for each K
value). Trends in L(K) were analyzed using R software, in accordance with the ad-hoc ΔK

Fig 2. Environmental conditions in the study sites and local habitats: soil humidity (%), soil temperature (°C) and canopy opening (%). Complete
data are provided in S1 Table.

doi:10.1371/journal.pone.0121394.g002
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method proposed by Evanno, Regnaut and Goudet [57]. STRUCTURE results were summa-
rized using CLUMPAK server [58] to obtain the probability of each individual to belong to
each cluster.

Spatial genetic structuring and gene dispersal were assessed on AFLP data using the spatial
autocorrelation method based on kinship coefficients, as developed by Hardy and Vekemans
[59] and implemented in SPAGeDi v1.3 [60]. Within each site, spatial autocorrelation of kin-
ship coefficient (Fij) was analyzed over twenty evenly spaced distance classes between 0 and
500 m. 95% null confidence intervals were obtained through 1000 random permutations of in-
dividuals among geographical locations. Neighborhood size (Nb) and gene dispersal (σg) were
estimated with prior knowledge about population densities, and the slope (b) of the regression
of kinship relatedness (Fij) against geographic distance (dij) was computed with standard error
estimated by jack-knifing over loci. SGS intensity was measured as Sp = b/(F(1)-1) where F(1) is
the average kinship coefficient between individuals separated by distances belonging to the first
distance class.

Landscape-scale analysis of genome-wide divergence
A landscape approach was used to test whether environmental variations were involved in ge-
nome-wide genetic divergence. The simultaneous effects of neutral and adaptive sources of ge-
netic divergence were explored through a linear model. More precisely, the model aimed at
distinguishing the relative influence of geographic and environmental distances on genetic dis-
tance between individuals. Neutral components were estimated both at the regional (based on
the membership of individuals relative to different sites) and local scales (based on individual
coordinates in a two-dimensional x,y-plane and along a one-dimensional elevation gradient).
Adaptive components were modelled through the environmental distance between individuals
(soil type, waterlogging frequency and seasonal drought strength). Because light and soil tem-
perature were poorly variable among sites and local habitats, these two factors were excluded
from the model (Fig. 2 and S1 Table).

GENETi1;i2 ¼ mþ y1 � SITEi1;i2

� �þ 1� SITEi1;i2

� �
y2 � GEOi1;i2

� �þ y3 � ELEVi1;i2

� �� �

þ y4 � DROUGHTi1;i2

� �þ y5 �WATERLOGi1;i2

� �þ y6 � SOILi1;i2

� �þ s2
R

Where GENETi1,i2 is the genetic distance between the individuals i1 and i2 (Jaccard dis-
tance), μ is the global mean, and σ²R the residual variance. SITE i1,i2 describes whether the indi-
viduals i1 and i2 are from the same site or not (0 = same site, 1 = different sites), GEOi1,i2 and
ELEVi1,i2 are the geographic (Euclidean) distances between individuals inhabiting the same site
according to their two-dimensional coordinates in the x,y-plane and their one-dimensional co-
ordinates along an elevation gradient respectively. DROUGHTi1,i2, WATERLOGi1,i2, and
SOILTYPEi1,i2 describe the environmental distances between individuals for seasonal drought
severity, waterlogging frequency and soil type, according to sites and local habitat environmen-
tal properties as described in Table 1. The model was empirically calibrated through a Bayesian
method implemented in OpenBUGS [61, 62] (http://www.openbugs.net): 10,000 iterations
with a burning of 1,000. A complete description of the model and the BUGS code are provided
in S2 Method.

Allele frequency inference
Because properly estimating genotypic frequencies from dominant markers requires prior
knowledge of inbreeding coefficient, FIS was estimated from an already published dataset com-
posed of SNPs detected in sequenced ESTs [8] with ARLEQUIN v3.5.1.2 [63]. The mean FIS
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(across loci) varied from -0.207 to -0.089 depending on the population considered. Allele fre-
quencies within each study site and local habitat were inferred from AFLPs data based on a
mean inbreeding coefficient of -0.14, by solving the standard equation relating inbreeding coef-
ficient, allele frequencies and recessive genotype frequencies for each marker j, with f(00) the
relative frequency of the genotype (00) and p the relative frequency of the ‘0’ allele:

f ð00Þj ¼ ð1� FISÞp2j þ ðFISpjÞ;

Solving for p:

pj ¼
�FIS þ

ffiffiffiffiffi
Dj

q

2ð1� FISÞ

with

Dj ¼ FIS
2 �

h
4 1� FISð Þ �f 00ð Þj

� �i

Absolute frequencies were obtained by multiplying relative frequencies by twice the sample
size in each subpopulation, rounding to the nearest integer. These absolute frequencies were
used in all subsequent analyses of population differentiation and outlier detection.

Intra-site differentiation
For each study site, locus-specific genetic differentiation (FST) between local habitats was esti-
mated from inferred genotypic data through a classical analysis of molecular variance
(AMOVA [64]) using ARLEQUIN v3.5.1.2 (Slatkin’s method).

Detection of outlier loci
Excess divergence within populations inhabiting contrasting habitats was tested based on two
FST-based approaches:

a. the coalescent-based FDIST method [65] implemented in ARLEQUIN v3.5.1.2 [63]. We im-
plemented both a hierarchical island model including the two study sites simultaneously,
plus two classical island models for each site separately (within-Laussat and within-Régina
respectively). False-discovery rate was assessed according to Strimmer’s method [66, 67]: p-
values obtained from the coalescent method were converted into q-values using the ‘fdrtool’
package in R [67], and the latter was used to set an FDR threshold of 0.10.

b. the Bayesian method implemented in BAYESCAN [34], with an FDR threshold of 0.10.

For each outlier detected, X² tests were performed on AFLP band frequencies to test the hy-
pothesis of equal frequencies between local habitats within each study site.

Evaluating Type I and Type II error rates
Both the Bayesian- and the coalescent-based methods were submitted to a sensitivity analysis
by estimating Type I and Type II error rates. To do this, we simulated one-hundred datasets
with the same sample size and number of markers as our empirical datasets (two groups of two
populations with divergence between groups FCT = 0.01). Out of the 1196 simulated markers,
1146 were simulated with average FST = 0.039 and FST = 0.026 (equal to empirical within-site
FST values, corresponding to α = 0 in the Bayesian framework), 25 were constrained at FST =
0.11 (Bayesian α = 3) and 25 at FST = 0.23 (Bayesian α = 5) to simulate zero, moderate and
strong selection respectively. The simulations were submitted to the same outlier detection
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analyses as the empirical dataset, and the average number of significant markers in each class,
over the global set of one-hundred simulations, were reported. The ratio of number of neutral
markers detected as significant, over the total number of neutral markers, was taken as an esti-
mate of Type I error rate. The number of markers under selection not detected as significant,
out of the total number of markers under selection, was taken as an estimate of Type II
error rate.

Results

AFLP data
After data cleaning, 53.3% of markers (corresponding to 1196 bins out of 2242) were retained
for further analysis as described in S1 Method. The binset is available on Dryad (http://dx.doi.
org/10.5061/dryad.b2q88).

Blind analysis of population structure
L(K) was high from K = 1 to K = 7 for the regional-scale analysis (S2 Fig.), from K = 1to K = 7
within Laussat, and from K = 1to K = 5 within Regina (S3 and S4 Figs.). At the regional level, a
maximum peak of ΔK was detected at K = 3: individuals from ‘Régina’ were assigned to one
cluster, while the individuals from ‘Laussat’ were assigned to two clusters concordant with local
habitats (S2 Fig.). At K = 2, the inferred clusters distinguished the trees inhabiting the two
study sites of Laussat and Regina. At intra-site level, a maximum peak of ΔK was detected at
K = 2 in Laussat, and at K = 5 in Régina (S3 and S4 Figs.). In Laussat, the genetic clusters in-
ferred at K = 2 were geographically grouped in agreement with local habitat patchiness (S3
Fig.), except for five trees of hilltop assigned to the same genetic clusters than the trees inhabit-
ing the bottomland. In Régina the genetic structure was not clear at K = 5 as the individuals
were assigned to the different clusters with quasi-equal probabilities, indicating a complete ad-
mixture and the probable absence of genetic structuring (S4 Fig.).

Spatial Genetic Structure and gene dispersal within populations
Spatial genetic structure (SGS) was assessed by estimating relative relatedness in 1711 pairs of
individuals in Régina and 1810 pairs in Laussat. The mean number of pairs by distance class
was 86 in Laussat and 92 in Régina. Significant SGS were detected in both sites (Fig. 3 and
Table 2), with kinship declining with increasing geographical distance (b = -0.016 ±0.001 in
Laussat and b = -0.012 ±0.001 in Regina). In Laussat, spatial autocorrelation was significantly
positive until 56 m, and became significantly negative from 230 m onward, with a neighbor-
hood size (Nb) of 65.6. In Régina, autocorrelation was positive and significant until 30 m and
became negative and significant beyond 250 m, with a neighborhood size Nb = 78.5. In both
sites, the autocorrelation was positive at a distance corresponding to the distance separating
trees inhabiting the same habitat, and became negative at a distance corresponding to the dis-
tance separating trees inhabiting two distinct habitats. Gene dispersal was estimated at 45.7
and 64.4 m in Laussat and Régina respectively. We also checked that spatial genetic structure
did not vary among local habitats: significant SGS were detected in both habitats until 20 and
30 m in Laussat, and until 20 m in Régina (S5 Fig.), and we did not detect differences in SGS
among local habitat types within sites, on the basis of the extent of relatedness (Fi,j), SGS inten-
sity (Sp) and slope (b), S5 Fig.
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Landscape scale analysis of genetic divergence
Partitioning the genetic distance into neutral and adaptive processes through a landscape
Bayesian model revealed a strong ‘site’ effect on the genetic distance between individuals
(θ1 = 1.71.10-2, Table 3 and Fig. 4). Within site, we detected a positive relationship between the
geographic distance in the two-dimensional x,y-plane and the genetic distance between indi-
viduals: θ2 = 4.2.10-5 m-1 (i.e. the mean genetic distance between individuals increases of 0.042
every kilometer). However, there was no positive trend elevation and genetic distances. Among
environmental sources of genetic divergence, waterlogging frequency was positively related
with genetic distance (θ5 = 1.5.10-2).

Fig 3. Top: Number of tree pairs in each distance class. Bottom: Intra-site spatial genetic structure (SGS) analysis based on all AFLPmarkers.

doi:10.1371/journal.pone.0121394.g003

Table 2. SGS and gene dispersal parameters estimated by SpaGeDi.

Parameter Laussat Regina

SGS parameter estimates b (SE) -0.016 (0.001) -0.012 (0.001)

F1 (SE) 0.037 (0.003) 0.04 (0.032)

Sp 0.017 0.013

Gene dispersal parameter estimates D 0.005 0.003

Nb (SE) 65.62 (21.02) 78.51 (14.21)

σg (SE) 45.7 (7.33) 64.4 (5.82)

F1 is the autocorrelation of kinship coefficient in the first distance class, b is the slope of the regression between relatedness (Fij) and geographic distance

(dij), Sp is SGS intensity, D is population density, Nb is Neighborhood size, and σg is gene flow estimate.

doi:10.1371/journal.pone.0121394.t002
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Genetic differentiation among subpopulations inhabiting contrasted
habitats and outlier detection
Overall Slatkin’s FST between local habitats was respectively 0.03 (sd = 0.07) in Laussat and
0.02 (sd = 0.05) in Régina (S6 Fig.). Locus-specific FST was significant for 8.1% and 6.1% of loci
in Laussat and Régina respectively. Under the hierarchical island model, the extent of differen-
tiation between study sites was FCT = 0.01 (sd = 0.05), while the differentiation between local
habitats within sites was FSC = 0.03 (sd = 0.05) and the differentiation between local habitats
among sites FST = 0.04 (sd = 0.06), Fig. 5.

After local false-discovery rate assessment [66, 67], 42 loci were detected as outliers being
under divergent selection in at least one analysis (under a FDR threshold of 10%), Table 4.
Under the hierarchical coalescent model, fifteen (1.25%) outlier loci were detected between
subpopulations within regions (FST), Fig. 6 and Table 4 (column 2). The within-site coalescent
analyses revealed fifteen (1.35%) and eighteen (1.65%) outliers respectively for Laussat and Ré-
gina (out of 1109 and 1090 polymorphic markers respectively), Table 4 (columns 6 and 11).
Among all outliers detected by the hierarchical model, four were also detected by the within-
site coalescent model in Laussat (loci 345, 485, 624 and 742), and one in Régina (locus 463).
Locus 46 was detected by both within-site analyses but not in the hierarchical model. The

Table 3. Parameters inferred by the landscape Bayesianmodel with their respective posterior probabilities (mean, standard deviation, median,
and 95% credible interval): μ (global mean), θ1 (site effect), θ2 (slope of the relation between geographical and genetic distance within sites accord-
ing to a 2D x,y-plane), θ3 (slope of the relation between the geographical and genetic distance within sites according to an elevation gradient), θ4
(drought severity effect), θ5 (waterlogging frequency effect), and θ6 (soil type effect).

mean sd val2.5pc median val97.5pc

μ 1.95×10-01 6.82×10-04 1.93×10-01 1.95×10-01 1.96×10-01

θ1 1.70×10-02 1.03 ×10-03 1.52×10-02 1.71×10-02 1.92×10-02

θ2 4.19×10-05 5.81×10-06 3.05×10-05 4.19×10-05 5.32×10-05

θ3 -1.85×10-04 5.86×10-05 -2.98×10-04 -1.85×10-04 -6.93×10-05

θ4 -2.57×10-03 6.59×10-04 -3.88×10-03 -2.56×10-03 -1.29×10-03

θ5 1.45×10-02 8.54×10-04 1.28×10-02 1.45×10-02 1.62×10-02

θ6 -1.02×10-02 9.91×10-04 -1.22×10-02 -1.02×10-02 -8.23×10-02

doi:10.1371/journal.pone.0121394.t003

Fig 4. Results of the landscape-scale Bayesianmodel (values are provided in Table 3). Points show the inferred parameters with their 95% posterior
probability: μ is the global mean, θ 1 represents the effect of site, θ2 is the slope of the relation between the geographical and genetic distance within sites in a
two-dimensional x,y-plane, θ3 is the slope of the relation between the geographical and genetic distance within sites according to an elevation gradient, θ4
describes the effect of drought severity, θ5 describes the effect of waterlogging frequency and θ6 describes the effect of soil type.

doi:10.1371/journal.pone.0121394.g004
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Bayesian analysis detected four outliers (loci 86, 345, 485 and 624, FDR = 0.084 and
FNDR = 0.092) in Laussat, and two (loci 313 and 962, FDR = 0.01 and FNDR = 0.091) in Re-
gina (Fig. 7 and Table 4, columns 7 and 12). All outliers detected by the Bayesian methods were
also detected by within-site coalescent analyses (loci 86, 345, 485 and 624 in Laussat, loci 313
and 962 in Régina), and three (loci 345, 485 and 624) by the hierarchical model as well. Simula-
tions were used to assess Type I and Type II error rates. For the coalescent method, Type I
error rate was α = 0.3% and Type II error rate was β = 57% for both sites; error rates were simi-
lar for the Bayesian method (α = 0.3% and α = 0.2% for Laussat and Régina respectively; β =
54% for both sites).

To check whether variations in AFLP band frequencies between local habitats were consis-
tent with the hypothesis of selection acting in the same direction in the two replicates, we com-
pared the direction of inter-habitat variation in band frequencies between the two study sites
for outlier loci, Fig. 8. About half of all detected outliers showed the same trend of frequency
variations in the two study sites. For loci 30, 233, 416, 624, 668, 785, 791, 871 and 955, the fre-
quency of ‘1’ (band presence) was higher in hilltop than in bottomland in both sites. For loci
19, 46, 54, 221, 313, 359,468, 485, 757, and 860, the frequency of ‘1’ was higher in bottomland
than in hilltop in both sites. However, X² tests revealed significant differences in AFLP band
frequency between local habitats in at least one study site for only fifteen outliers (46, 54, 221,
233, 313, 359, 468, 485, 624, 757, 787, 791, 860, 871 and 955). Finally, congruent patterns of
AFLP band divergence between local habitats were supported by significant X² tests in the two
study sites for only three outliers: 46, 757 and 871. Six loci were monomorphic in one study
site: loci 69, 345, 451, 463, 799 and 848.

Fig 5. Box-plot of the distribution of single-locus fixation indices (FCT, FSC and FST) estimated under
the hierarchical model of population subdivision (boxes indicate 5%, 25%, 50%, 75% and 95%
quantiles). FCT is the differentiation between sites relative to total, FSC is the differentiation between local
habitats relative to sites, and FST is the differentiation between local habitats relative to total.

doi:10.1371/journal.pone.0121394.g005
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Discussion
The genetic clusters inferred by STRUCTURE were spatially aggregated. At regional scale, the
genetic structuring among populations inhabiting different study sites (K = 2) can easily be ex-
plained by isolation-by-distance. To evaluate the role of neutral processes in shaping within-
population genetic structure, we investigated the fine-scale genetic structuring over all loci
within each study site. Kinship coefficients decreased with geographical distances in the two
study sites as expected under the isolation-by-distance model. Gene flow estimates were very
low in both sites (around 50 m), and the lower gene flow estimated in Laussat (45.7 m against

Fig 6. Results of the coalescent outlier search under the hierarchical islandmodel. Blue dashed line:
95% neutral envelop; red dashed line: 99% neutral envelop. Only loci above the neutral envelop and retained
after multiple corrections (FDR = 10%) are shown.

doi:10.1371/journal.pone.0121394.g006

Fig 7. Results of the Bayesian outlier search under a 10% expected FRD.

doi:10.1371/journal.pone.0121394.g007
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64.4 m in Régina) was concordant with the stronger genome-wide genetic structuring among
local habitats in that site. Similar SGS patterns have been observed in many temperate [14, 39,
42, 68–72] and tropical tree species [73–79] (including the Guiana shield [13, 20, 80–82]), and
they are likely to be caused by neutral processes (restrictions in gene flow and local inbreeding
[80]). In tropical trees, pollen dispersal is commonly restricted to short distances, and seed dis-
persal is often highly restricted in autochorous species [13, 16, 22] causing the clumping of ma-
ternal progeny groups. Consequently, mating among neighboring relatives—which may be
frequent in dense populations—commonly results in local inbreeding. In autochorous E.

Fig 8. Band presence frequency (allele ‘1’) in each local habitats (‘B’: bottomland, ‘H’: hilltop) and each study site (circles: Laussat, squares:
Régina). The tables below show the result of X² tests on AFLP band frequency ('*': significant; ‘-’: non-significant or missing).

doi:10.1371/journal.pone.0121394.g008
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falcata, gene dispersal estimates (σg ranging from 45.7 to 64.4 m depending on the study site)
are in agreement with these characteristics [71, 83].

The slight variations in the fine-scale spatial genetic structuring between study sites and be-
tween local habitats within sites may possibly be caused by variations in environmental condi-
tions and their direct effect on pollen and seed dispersal. For example, fine-scale spatial genetic
structure and population differentiation were weaker, and gene flow was slightly higher, in the
study site of Régina (where the relief is steep with abrupt slopes and precipitation more abun-
dant with about 3500 mm/year) than in Laussat (where the relief is quite flat and precipitation
does not exceed 2500 mm/year). Variations in topography (relief and slopes), rainfall and
water flows may have a direct effect on gene flow and SGS. Even if the spatial genetic structur-
ing was quite similar among habitat types, it was slightly weaker in the bottomland than in the
plateau in Laussat, possibly because water flows caused by intense waterlogging contribute to
scatter seeds and to increase gene flow in this habitat.

The existence of genome-wide neutral divergence directly caused by geographic distances
(between and within study sites) was also corroborated by the landscape-scale analysis of ge-
netic divergence. Indeed, the inferred parameter θ1 revealed a site effect on the genetic diver-
gence. Even if it is more likely to be caused by neutral processes related to the geographic
distance itself (isolation-by-distance), this parameter may also capture genome-wide adaptive
processes caused by variations in both abiotic and biotic conditions between the study sites
(e.g. variation in rainfall, population density, competition levels, etc.). The parameter θ2 cap-
tured the effect of geographic distances on genetic distances within study sites (in the two-di-
mensional x,y-plane), confirming the existence of a neutral spatial genetic structuring within
study sites.

In addition to neutral, distance-based, genome-wide divergence, variations in waterlogging
frequency may constitute a source of adaptive genetic divergence as revealed by a positive esti-
mate of the parameter θ5. Surprisingly, the waterlogging effect was of the same order of magni-
tude as the site effect, despite the large differences in geographical scales separating sites
(hundreds of kilometers) and local habitats (hundreds of meters). This implies that a fraction
of genome-wide divergence may have been caused by ‘pervasive selection’ [8, 69] over micro-
geograhical scales, as expected under the isolation-by-adaptation (IBA) model [84]. Indeed, in-
direct estimates of gene flow in well-established adult populations represent the ‘effective’ gene
flow. They do not depend on seed and pollen dispersal only, but also on the ability of seedlings
to establish and grow in the environment where they were dispersed (i.e. on local adaptation
processes), that is particularly true for immobile organisms. The genetic differentiation be-
tween local subpopulations (FST = 0.04; sd = 0.06) was large regarding the differentiation be-
tween sites (FCT = 0.01; sd = 0.05), despite the geographical scales involved (about 300 km
among sites, up to 200 m between local habitats). As the effects of dispersal limitation can only
increase with distance, it seems unlikely that this kind of process would be stronger locally than
at the regional level. This means that genome-wide divergence may be influenced by local ad-
aptation to micro-environmental variability. In particular, waterlogging frequency influence
genome-wide divergence over microgeographical scales as revealed by the landscape-scale ap-
proach, probably through its direct effect on seedlings establishment.

Locus-specific footprints of local adaptation were also detected for a fraction of the analyzed
loci. Indeed, adaptive divergence may either affect many genes of low effects, or a reduced
number of targeted loci (few genes of major effects) involved in key metabolic or physiologic
pathways, themselves involved in fitness [85–92]. Both the coalescent and the Bayesian method
allowed the detection of outliers at the microgeographical scale. Among the 42 (3.5%) outliers
detected with the coalescent method, 6 were validated by the Bayesian method (0.5%, loci 85,
313, 345, 485, 624, 962) and are strong candidate targets of divergent selection [34, 65, 93].
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Precision tests performed through simulations showed that false-positive outliers should be
very rare (a fraction of a percent) making it unlikely that a large fraction of the detected outliers
are artifacts. Nineteen interesting outliers showed similar trends of band frequency variations
between local habitats in the two study sites: twelve were supported by significant variations in
AFLPs band frequency among local habitats (X² test) in one study site, and three were sup-
ported by significant variations in AFLPs band frequency among local habitats in the two
study sites. This result indicates that these outliers may be true positives and that divergent se-
lection would have driven variations in genotypic frequencies among local habitats in the same
direction in the two study sites. The majority of outliers were, however, detected in only one
study site. This can be ascribe to a lack of statistical power and/or to environmental differences
between the study sites. Indeed, simulations revealed that 50% of loci undergoing moderate to
strong selection would go undetected. Alternatively, different selective pressures caused by dif-
ferent selective agents may be involved in the adaptive genetic divergence within the two study
sites. Moreover, even assuming that the same selective agents occur in the two sites, different
multi-locus combinations of alleles or different loci may have been selected in the two popula-
tions. In the case of traits under multi-genic control, it is hard to detect single targets of selec-
tion of low strength and to identify conserved single-locus divergence patterns [94].

Outliers may also indicate the presence of some other indirect mechanisms inducing genetic
divergence that may not be directly related to environmental filters [65, 95, 96]. Outlier tests
based on a differentiation index (FST) are robust to inter-locus variations, and theoretical mod-
els show that footprints of natural selection persist longer in differentiation indices (FST) than
in intra-population estimators of genetic diversity [36]. FST-based methods are also supposed
to be robust to many demographic scenarios [97, 98], partly because demographic events affect
the genome in a homogeneous manner [89]. However, the inclusion of bottlenecked popula-
tions may bias the method [36]. Even if trees were sampled in mature and supposedly undis-
turbed forests, we have no evidence that the studied populations have not experienced a recent
demographic change (bottleneck or expansion), and the degree to which these tests are robust
to demography has not yet been fully explored [99].

Scans for outlier detection are abundant in the literature for a variety of geographical scales
and biological models, including animals and plants, both aquatic and terrestrial [8, 84, 91, 97,
100–107]. The proportion of outliers for selection detected was low, but surprisingly high
when considering the microgeographical scale studied here. This suggests that the same pro-
cesses that occur with a larger degree of spatial separation in other species may occur at very
short distances in E. falcata. These loci may be involved in metabolic pathways crucial for seed-
lings establishment and growth under the particular constraints imposed by each habitat, such
as waterlogging and hypoxia experienced in bottomlands, or seasonal soil drought experienced
in plateaus. However, the selective agency behind the observed divergence needs to be func-
tionally proven by showing that the putatively selected polymorphisms control adaptive traits.
This will require (i) identifying the genes involved in fitness-related phenotypic traits, and (ii)
targeting these loci for testing local adaptation on candidate genes [108].

Nevertheless, the patterns of divergence observed in this study are in agreement with previ-
ous reports based on SNPs within ESTs [8] and quantitative phenotypic traits [30], and rein-
force the idea that adaptive phenomena may affect a substantial fraction of the genome at
microgeographical scales in Neotropical tree populations. The example provided by E. falcata
is a piece of evidence that evolution may drive genetic differentiation and subpopulation diver-
gence even in conditions in which gene flow may easily erase the effects of weak selective forces
(i.e. over microgeographical scales in continuous stands of high population densities with ex-
tensive gene flow). At such spatial scales, dispersal and population connectivity (which are the
field of landscape genetics [109]) meet evolutionary processes (which are the field of
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population and ecological genetics) providing a deeper understanding of the ecological pro-
cesses responsible for the maintenance of biodiversity. Indeed, adaptive divergence caused by
microgeographic habitat patchiness may constitute the fuel that feeds the great diversity har-
bored by the tropical rainforest of Amazonia. The genetic diversity of wild populations in turn
conditions their adaptive potential (i.e. their ability to adapt to environmental variations) and
consequently their ability to persist when undergoing environmental changes. The present
study suggests that understanding evolutionary processes in tropical rainforests and in plant
populations more widely should require particular attention on microgeographic divergence
and local adaptation.

Supporting Information
S1 Fig. Environmental characterization: Canopy opening and pedology. A: Example of
hemispherical photograph done in the plateau of Laussat, B and C: Examples of soil topose-
quences (B: hygromorphic soil of Laussat bottomland, C: ferralitic soil of Laussat plateau).
(TIF)

S2 Fig. Bayesian clustering analysis on the whole data set. Upper pane: L(K) and ΔK values.
Middle pane: individual α values for K = 2 and K = 3. Lower pane: geographical distribution of
individuals belonging to the main clusters (see text).
(TIF)

S3 Fig. Bayesian clustering analysis on the Laussat data set. Upper pane: L(K) and ΔK values.
Middle pane: individual α values for K = 2. Lower pane: geographical distribution of individu-
als belonging to the main clusters (see text).
(TIF)

S4 Fig. Bayesian clustering analysis on the Régina data set. Upper pane: L(K) and ΔK values.
Middle pane: individual α values for K = 5. Lower pane: geographical distribution of individu-
als belonging to the main clusters (see text).
(TIF)

S5 Fig. Intra-habitat spatial genetic structure analysis based on all AFLP markers.
(TIF)

S6 Fig. Density distribution of Slatkin’s locus-specific FST overall loci and for loci display-
ing a significant FST.
(TIF)

S1 Method. AFLP scoring.
(DOCX)

S2 Method. Model description and BUGS Code.
(DOCX)

S1 Table. Environmental conditions in each of the study sites and local habitat.
(DOCX)

Acknowledgments
We thank Saint-Omer Cazal and Julien Engel for technical assistance, and Bruno Ferry for soil
characterization. We also thank météo-FRANCE for rainfall/ETP data for the stations of ‘Ira-
coubo’ and ‘Régina’.

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121394.s009


Author Contributions
Analyzed the data: LB. Wrote the paper: LB IS CSS MF. Conceived the experiment: LB IS. De-
signed the experiment: LB. Performed the experiment: LB. Helped perform the experiment:
CSS.

References
1. Nevo E, Beiles A, Storch N, Doll H, Andersen B. Microgeographic edaphic differentiation in hordein

polymorphisms of wild barley. Theor Appl Genet. 1983; 64: 123–132. doi: 10.1007/BF00272719
PMID: 24264871

2. Richardson JL, Urban MC, Bolnick DI, Skelly DK. Microgeographic adaptation and the spatial scale of
evolution. Trends Ecol Evol. 2014; 29: 165–176. doi: 10.1016/j.tree.2014.01.002 PMID: 24560373

3. Bradshaw A. Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environ-
ments. New Phytol. 1960; 59: 92–103.

4. Jain SK, Bradshaw AD. Evolutionary divergence among adjacent plant populations. I. The evidence
and its theoretical analysis. Heredity. 1966; 21: 407–441.

5. Schmitt J, Gamble SE. The effect of distance from the parental site on offspring performance and in-
breeding depression in Impatiens capensis: A Test of the local adaptation hypothesis. Evolution.
1990; 44: 2022–2030.

6. Hamrick JL, Allard RW. Microgeographical variation in allozyme frequencies in Avena barbata. Proc
Natl Acad Sci U S A. 1972; 69: 2100–2104. PMID: 16592002

7. Csilléry K, Lalagüe H, Vendramin GG, González-Martínez SC, Fady B, Oddou-Muratorio S. Detecting
short spatial scale local adaptation and epistatic selection in climate-related candidate genes in Euro-
pean beech (Fagus sylvatica) populations. Mol Ecol. 2014; 23: 4696–4708. doi: 10.1111/mec.12902
PMID: 25156570

8. Audigeos D, Brousseau L, Traissac S, Scotti-Saintagne C, Scotti I. Molecular divergence in tropical
tree populations occupying environmental mosaics. J Evol Biol. 2013; 26: 529–544. doi: 10.1111/jeb.
12069 PMID: 23286313

9. Turner TL, Bourne EC, VonWettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local
adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010; 42: 260–263. doi: 10.1038/ng.
515 PMID: 20101244

10. Linhart YB, Grant MC. Evolutionary significance of local genetic differentiation in plants. Annu Rev
Ecol Syst. 1996; 27: 237–277.

11. Nevo E. Evolution of genome—phenome diversity under environmental stress. Proc Natl Acad Sci U
S A. 2001; 98: 6233–6240. PMID: 11371642

12. Jump AS, Penuelas J. Running to stand still: adaptation and the response of plants to rapid climate
change. Ecol Lett. 2005; 8: 1010–1020.

13. Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevalier M-H, et al. Fine-scale genetic structure
and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol. 2006; 15: 559–571. PMID:
16448421

14. Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant popu-
lations. Mol Ecol. 2004; 13: 921–935. PMID: 15012766

15. Degen B, Roubik DW. Effects of animal pollination on pollen dispersal, selfing, and effective popula-
tion size of tropical trees: a simulation study. Biotropica. 2004; 36: 165–179.

16. Ward M, Dick CW, Gribel R, Lowe AJ. To self, or not to self: A review of outcrossing and pollen-medi-
ated gene flow in neotropical trees. Heredity. 2005; 95: 246–254. PMID: 16094304

17. Petit RJ, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst.
2006; 37: 187–214.

18. Hamrick JL. Response of forest trees to global environmental changes. For Ecol Manage. 2004; 197:
323–335.

19. Bacles CFE, Jump AS. Taking a tree's perspective on forest fragmentation genetics. Trends Plant
Sci. 2011; 16: 13–18. doi: 10.1016/j.tplants.2010.10.002 PMID: 21050799

20. Degen B, Bandou E, Caron H. Limited pollen dispersal and biparental inbreeding in Symphonia glo-
bulifera in French Guiana. Heredity. 2004; 93: 585–591. PMID: 15316558

21. Veron V, Caron H, Degen B. Gene flow and mating system of the tropical tree Sextonia rubra. Silvae
Genet. 2005; 54: 275–280.

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 19 / 23

http://dx.doi.org/10.1007/BF00272719
http://www.ncbi.nlm.nih.gov/pubmed/24264871
http://dx.doi.org/10.1016/j.tree.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24560373
http://www.ncbi.nlm.nih.gov/pubmed/16592002
http://dx.doi.org/10.1111/mec.12902
http://www.ncbi.nlm.nih.gov/pubmed/25156570
http://dx.doi.org/10.1111/jeb.12069
http://dx.doi.org/10.1111/jeb.12069
http://www.ncbi.nlm.nih.gov/pubmed/23286313
http://dx.doi.org/10.1038/ng.515
http://dx.doi.org/10.1038/ng.515
http://www.ncbi.nlm.nih.gov/pubmed/20101244
http://www.ncbi.nlm.nih.gov/pubmed/11371642
http://www.ncbi.nlm.nih.gov/pubmed/16448421
http://www.ncbi.nlm.nih.gov/pubmed/15012766
http://www.ncbi.nlm.nih.gov/pubmed/16094304
http://dx.doi.org/10.1016/j.tplants.2010.10.002
http://www.ncbi.nlm.nih.gov/pubmed/21050799
http://www.ncbi.nlm.nih.gov/pubmed/15316558


22. Dick C, Hardy O, Jones F, Petit R. Spatial scales of pollen and seed-mediated gene flow in tropical
rain forest trees. Trop Plant Biol. 2008; 1: 20–33.

23. Sagnard F, Oddou-Muratorio S, Pichot C, Vendramin G, Fady B. Effects of seed dispersal, adult tree
and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial
scales. Tree Genet Genomes. 2011; 7: 37–48.

24. Ferry B, Morneau F, Bontemps J-D, Blanc L, Freycon V. Higher treefall rates on slopes and water-
logged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol. 2010; 98:
106–116.

25. Kahn F. The distribution of palms as a function of local topography in Amazonian terra-firme forests.
Experientia. 1987; 43: 251–259.

26. Fortunel C, Fine PVA, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree
species. Funct Ecol. 2012; 26: 1153–1161.

27. Kraft NJ, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in an
amazonian forest. Science. 2008; 322: 580–582. doi: 10.1126/science.1160662 PMID: 18948539

28. Gentry AH. Changes in plant community diversity and floristic composition on environmental and geo-
graphical gradients. Ann Missouri Bot Gard. 1988; 75: 1–34.

29. Baraloto C, Morneau F, Bonal D, Blanc L, Ferry B. Seasonal water stress tolerance and habitat asso-
ciations within four neotropical tree genera. Ecology. 2007; 88: 478–489. PMID: 17479765

30. Brousseau L, Bonal D, Cigna J, Scotti I. Highly local environmental variability promotes intrapopula-
tion divergence of quantitative traits: an example from tropical rain forest trees. Ann Bot. 2013; 112:
1169–1179. doi: 10.1093/aob/mct176 PMID: 24023042

31. ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, et al. Hyperdominance
in the Amazonian tree flora. Science. 2013; 342.

32. Cowan RS. A monograph of the genus Eperua (Leguminosae-Caesalpinioideae): Smithsonian Insti-
tution Press; 1975.

33. Frazer GW, Canham CD, Lertzman KP. Gap Light Analyzer (GLA), Version 2.0: Imaging software to
extract canopy structure and gap light transmission indices from true-colour fisheye photographs,
users manual and program documentation: Simon Fraser University, Burnaby, British Columbia, and
the Institute of Ecosystem Studies, Millbrook, New York; 1999.

34. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant
and codominant markers: A Bayesian perspective. Genetics. 2008; 180: 977–993. doi: 10.1534/
genetics.108.092221 PMID: 18780740

35. Antao T, Beaumont MA. Mcheza: a workbench to detect selection using dominant markers. Bioinfor-
matics. 2011.

36. Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol
Ecol. 2005; 14: 671–688. PMID: 15723660

37. Vos P, Hogers R, Bleeker M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;
23: 4407–4414. PMID: 7501463

38. Campbell D, Bernatchez L. Generic scan using AFLPmarkers as a means to assess the role of direc-
tional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol. 2004; 21: 945–956.
PMID: 15014172

39. Chybicki IJ, Oleksa A, Burczyk J. Increased inbreeding and strong kinship structure in Taxus baccata
estimated from both AFLP and SSR data. Heredity. 2011; 107: 589–600. doi: 10.1038/hdy.2011.51
PMID: 21712844

40. Dasmahapatra KK, Lacy RC, AmosW. Estimating levels of inbreeding using AFLPmarkers. Heredity.
2007; 100: 286–295. PMID: 17987055

41. Gagnaire PA, Albert V, Jonsson B, Bernatchez L. Natural selection influences AFLP intraspecific ge-
netic variability and introgression patterns in Atlantic eels. Mol Ecol. 2009; 18: 1678–1691. doi: 10.
1111/j.1365-294X.2009.04142.x PMID: 19302349

42. Jump AS, Penuelas J. Extensive spatial genetic structure revealed by AFLP but not SSRmolecular
markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol. 2007; 16: 925–936. PMID: 17305851

43. Paris M, Despres L. Identifying insecticide resistance genes in mosquito by combining AFLP genome
scans and 454 pyrosequencing. Mol Ecol. 2012; 21: 1672–1686. doi: 10.1111/j.1365-294X.2012.
05499.x PMID: 22348648

44. Hardy OJ. Estimation of pairwise relatedness between individuals and characterization of isolation-
by-distance processes using dominant genetic markers. Mol Ecol. 2003; 12: 1577–1588. PMID:
12755885

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 20 / 23

http://dx.doi.org/10.1126/science.1160662
http://www.ncbi.nlm.nih.gov/pubmed/18948539
http://www.ncbi.nlm.nih.gov/pubmed/17479765
http://dx.doi.org/10.1093/aob/mct176
http://www.ncbi.nlm.nih.gov/pubmed/24023042
http://dx.doi.org/10.1534/genetics.108.092221
http://dx.doi.org/10.1534/genetics.108.092221
http://www.ncbi.nlm.nih.gov/pubmed/18780740
http://www.ncbi.nlm.nih.gov/pubmed/15723660
http://www.ncbi.nlm.nih.gov/pubmed/7501463
http://www.ncbi.nlm.nih.gov/pubmed/15014172
http://dx.doi.org/10.1038/hdy.2011.51
http://www.ncbi.nlm.nih.gov/pubmed/21712844
http://www.ncbi.nlm.nih.gov/pubmed/17987055
http://dx.doi.org/10.1111/j.1365-294X.2009.04142.x
http://dx.doi.org/10.1111/j.1365-294X.2009.04142.x
http://www.ncbi.nlm.nih.gov/pubmed/19302349
http://www.ncbi.nlm.nih.gov/pubmed/17305851
http://dx.doi.org/10.1111/j.1365-294X.2012.05499.x
http://dx.doi.org/10.1111/j.1365-294X.2012.05499.x
http://www.ncbi.nlm.nih.gov/pubmed/22348648
http://www.ncbi.nlm.nih.gov/pubmed/12755885


45. Meudt HM, Clarke AC. Almost forgotten or latest practice? AFLP applications, analyses and ad-
vances. Trends Plant Sci. 2007; 12: 106–117. PMID: 17303467

46. Campbell D, Duchesne P, Bernatchez L. AFLP utility for population assignment studies: analytical in-
vestigation and empirical comparison with microsatellites. Mol Ecol. 2003; 12: 1979–1991. PMID:
12803646

47. Arrigo N, Tuszynski J, Ehrich D, Gerdes T, Alvarez N. Evaluating the impact of scoring parameters on
the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP
scoring. BMC Bioinformatics. 2009; 10: 33. doi: 10.1186/1471-2105-10-33 PMID: 19171029

48. Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a
toolbox for molecular ecologists and evolutionists. Mol Ecol. 2007; 16: 3737–3758. PMID: 17850542

49. Crawford LA, Koscinski D, Keyghobadi N. A call for more transparent reporting of error rates: the qual-
ity of AFLP data in ecological and evolutionary research. Mol Ecol. 2012; 21: 5911–5917. doi: 10.
1111/mec.12069 PMID: 23121160

50. Ley AC, Hardy OJ. Improving AFLP analysis of large-scale patterns of genetic variation—a case
study with the Central African lianasHaumania spp (Marantaceae) showing interspecific gene flow.
Mol Ecol. 2013; 22: 1984–1997. doi: 10.1111/mec.12214 PMID: 23398575

51. Colpaert N, cavers S, Bandou E, Caron H, Gheysen G, Lowe AJ. Sampling tissue for DNA analysis of
trees: trunk cambium as an alternative to canopy leaves. Silvae Genet. 2005; 54: 265–269.

52. Doyle JJ, Doyle JL. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phyto-
chem Bull. 1987; 19: 11–15.

53. Montemurro C, Pasqualone A, Simeone R, Sabetta W, Blanco A. AFLPmolecular markers to identify
virgin olive oils from single Italian cultivars. Eur Food Res Technol. 2008; 226: 1439–1444.

54. Chen DH, Ronald PC. A Rapid DNAMinipreparation Method Suitable for AFLP and Other PCR Appli-
cations. Plant Mol Biol Report. 1999; 17: 53–57.

55. Barrett BA, Kidwell KK, Fox PN. Comparison of AFLP and pedigree-based genetic diversity assess-
ment methods using wheat cultivars from the Pacific Northwest. Crop Sci. 1998; 38: 1271–1278.

56. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype
data. Genetics. 2000; 155: 945–959. PMID: 10835412

57. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software
structure: a simulation study. Mol Ecol. 2005; 14: 2611–2620. PMID: 15969739

58. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. CLUMPAK: a program for identify-
ing clustering modes and packaging population structure inferences across K. Submitted.

59. Hardy OJ, Vekemans X. Isolation by distance in a continuous population: reconciliation between spa-
tial autocorrelation analysis and population genetics models. Heredity. 1999; 83: 145–154. PMID:
10469202

60. Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure
at the individual or population levels. Mol Ecol Notes. 2002; 2: 618–620.

61. Lunn D, Thomas A, Best N, Spiegelhalter D. WinBUGS—A Bayesian modelling framework: concepts,
structure, and extensibility. Stat Comput. 2000; 10: 325–337. PMID: 10902901

62. Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat
Assoc. 1990; 85: 398–409.

63. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genet-
ics analyses under Linux andWindows. Mol Ecol Resour. 2010; 10: 564–567. doi: 10.1111/j.1755-
0998.2010.02847.x PMID: 21565059

64. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred frommetric distances
among DNA haplotypes: application to humanmitochondrial DNA restriction data. Genetics. 1992;
131: 479–491. PMID: 1644282

65. Excoffier L, Hofer T, Foll M. Detecting loci under selection in a hierarchically structured population. He-
redity. 2009; 103: 285–298. doi: 10.1038/hdy.2009.74 PMID: 19623208

66. Strimmer K. A unified approach to false discovery rate estimation. BMC Bioinformatics. 2008; 9: 303.
doi: 10.1186/1471-2105-9-303 PMID: 18613966

67. Strimmer K. 'fdrtool': a versatile R package for estimating local and tail area-based false discovery
rates. Bioinformatics. 2008; 24: 1461–1462. doi: 10.1093/bioinformatics/btn209 PMID: 18441000

68. Hampe A, Masri LE, Petit RJ. Origin of spatial genetic structure in an expanding oak population. Mol
Ecol. 2010; 19: 459–471. doi: 10.1111/j.1365-294X.2009.04492.x PMID: 20070522

69. Jump AS, Rico L, Coll M, Penuelas J. Wide variation in spatial genetic structure between natural pop-
ulations of the European beech (Fagus sylvatica) and its implications for SGS comparability. Heredity.
2012; 108: 633–639. doi: 10.1038/hdy.2012.1 PMID: 22354112

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 21 / 23

http://www.ncbi.nlm.nih.gov/pubmed/17303467
http://www.ncbi.nlm.nih.gov/pubmed/12803646
http://dx.doi.org/10.1186/1471-2105-10-33
http://www.ncbi.nlm.nih.gov/pubmed/19171029
http://www.ncbi.nlm.nih.gov/pubmed/17850542
http://dx.doi.org/10.1111/mec.12069
http://dx.doi.org/10.1111/mec.12069
http://www.ncbi.nlm.nih.gov/pubmed/23121160
http://dx.doi.org/10.1111/mec.12214
http://www.ncbi.nlm.nih.gov/pubmed/23398575
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://www.ncbi.nlm.nih.gov/pubmed/15969739
http://www.ncbi.nlm.nih.gov/pubmed/10469202
http://www.ncbi.nlm.nih.gov/pubmed/10902901
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://www.ncbi.nlm.nih.gov/pubmed/21565059
http://www.ncbi.nlm.nih.gov/pubmed/1644282
http://dx.doi.org/10.1038/hdy.2009.74
http://www.ncbi.nlm.nih.gov/pubmed/19623208
http://dx.doi.org/10.1186/1471-2105-9-303
http://www.ncbi.nlm.nih.gov/pubmed/18613966
http://dx.doi.org/10.1093/bioinformatics/btn209
http://www.ncbi.nlm.nih.gov/pubmed/18441000
http://dx.doi.org/10.1111/j.1365-294X.2009.04492.x
http://www.ncbi.nlm.nih.gov/pubmed/20070522
http://dx.doi.org/10.1038/hdy.2012.1
http://www.ncbi.nlm.nih.gov/pubmed/22354112


70. Leonardi S, Menozzi P. Spatial structure of genetic variability in natural stands of Fagus sylvatica L.
(beech) in Italy. Heredity. 1996; 77: 359–368.

71. Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki I, Vendramin GG, Suyama Y. Comparison of di-
rect and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and
Fagus crenata. For Ecol Manage. 2010; 259: 2151–2159.

72. Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J, Kremer A. Within-population genetic structure
inQuercus robur L. andQuercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites.
Mol Ecol. 1998; 7: 317–328.

73. Born C, Hardy OJ, Chevalier M-H, Ossari S, Atteke C, Wickings EJ, et al. Small-scale spatial genetic
structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to
infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol.
2008; 17: 2041–2050. doi: 10.1111/j.1365-294X.2007.03685.x PMID: 18331246

74. Cloutier D, Kanashiro M, IampiI AYC, Schoen DJ. Impact of selective logging on inbreeding and gene
dispersal in an Amazonian tree population ofCarapa guianensis Aubl. Mol Ecol. 2006; 16: 1–13.

75. Collevatti RG, Lima JS, Soares TN, Telles MPdC. Spatial genetic structure and life history traits in
Cerrado tree species: Inferences for conservation. Natureza & Conservacao. 2010; 08: 54–59.

76. Dick CW, Etchelecu G, Austerlitz F. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by
native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol.
2003; 12: 753–764. PMID: 12675830

77. Doligez A, Joly HI. Genetic diversity and spatial structure within a natural stand of a tropical forest tree
species,Carapa procera (Meliaceae), in French Guiana. Heredity. 1997; 79: 72–82.

78. Konuma A, Tsumura Y, Lee CT, Lee SL, Okuda T. Estimation of gene flow in the tropical-rainforest
tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Mol Ecol. 2000; 9:
1843–1852. PMID: 11091320

79. Lowe AJ, Jourde B, Breyne P, Colpaert N, Navarro C, Wilson J, et al. Fine-scale genetic structure and
gene flow within Costa Rican populations of mahogany (Swietenia macrophylla). Heredity. 2003; 90:
268–275. PMID: 12634811

80. Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, et al. Optimal sampling strategy for
estimation of spatial genetic structure in tree populations. Heredity. 2005; 95: 281–289. PMID:
16030529

81. Dutech C, Seiter J, Petronelli P, Joly HI, Jarne P. Evidence of low gene flow in a neotropical clustered
tree species in two rainforest stands of French Guiana. Mol Ecol. 2002; 11: 725–738. PMID:
11972760

82. Latouche-Halé C, Ramboer A, Bandou E, Caron H, Kremer A. Long-distance pollen flow and toler-
ance to selfing in a neotropical tree species. Mol Ecol. 2004; 13: 1055–1064. PMID: 15078444

83. Heuertz M, Vekemans X, Hausman JF, Palada M, Hardy OJ. Estimating seed vs. pollen dispersal
from spatial genetic structure in the common ash. Mol Ecol. 2003; 12: 2483–2495. PMID: 12919486

84. Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes:
Isolation by adaptation and multiple roles for divergent selection. Evolution. 2008; 62: 316–336.
PMID: 17999721

85. Amato R, Pinelli M, Monticelli A, Marino D, Miele G, Cocozza S. Genome-wide scan for signatures of
human population differentiation and their relationship with natural selection, functional pathways and
diseases. PLoS ONE. 2009; 4: e7927. doi: 10.1371/journal.pone.0007927 PMID: 19936260

86. Burgarella C, Navascuas M, Zabal-Aguirre M, Berganzo E, Riba M, Mayol M, et al. Recent population
decline and selection shape diversity of taxol-related genes. Mol Ecol. 2012; 21: 3006–3021. doi: 10.
1111/j.1365-294X.2012.05532.x PMID: 22574693

87. Eckert A, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, et al. Multilocus patterns of nucle-
otide diversity and divergence reveal positive selection at candidate genes related to cold-hardiness
in coastal Douglas-fir (Pseudotsuga menziesii var.menziesii). Genetics. 2009; 183: 289–298. doi: 10.
1534/genetics.109.103895 PMID: 19596906

88. Eckert AJ, Heerwaarden JV, Wegrzyne JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, et al.
Patterns of population structure and environmental associations to aridity across the range of Loblolly
Pine (Pinus taeda L., Pinaceae). Genetics. 2010; 185: 969–982. doi: 10.1534/genetics.110.115543
PMID: 20439779

89. Eveno E, Collada C, Guevara MA, Léger V, Soto A, Diaz L, et al. Contrasting patterns of selection at
Pinus pinaster Ait. drought stress candidate gees as revealed by genetic differenciation analyses. Mol
Biol Evol. 2008; 25: 417–437. PMID: 18065486

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 22 / 23

http://dx.doi.org/10.1111/j.1365-294X.2007.03685.x
http://www.ncbi.nlm.nih.gov/pubmed/18331246
http://www.ncbi.nlm.nih.gov/pubmed/12675830
http://www.ncbi.nlm.nih.gov/pubmed/11091320
http://www.ncbi.nlm.nih.gov/pubmed/12634811
http://www.ncbi.nlm.nih.gov/pubmed/16030529
http://www.ncbi.nlm.nih.gov/pubmed/11972760
http://www.ncbi.nlm.nih.gov/pubmed/15078444
http://www.ncbi.nlm.nih.gov/pubmed/12919486
http://www.ncbi.nlm.nih.gov/pubmed/17999721
http://dx.doi.org/10.1371/journal.pone.0007927
http://www.ncbi.nlm.nih.gov/pubmed/19936260
http://dx.doi.org/10.1111/j.1365-294X.2012.05532.x
http://dx.doi.org/10.1111/j.1365-294X.2012.05532.x
http://www.ncbi.nlm.nih.gov/pubmed/22574693
http://dx.doi.org/10.1534/genetics.109.103895
http://dx.doi.org/10.1534/genetics.109.103895
http://www.ncbi.nlm.nih.gov/pubmed/19596906
http://dx.doi.org/10.1534/genetics.110.115543
http://www.ncbi.nlm.nih.gov/pubmed/20439779
http://www.ncbi.nlm.nih.gov/pubmed/18065486


90. Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A. Imprints of natural selection
along environmental gradients in phenology-related genes ofQuercus petraea. Genetics. 2013; 195:
495–512. doi: 10.1534/genetics.113.153783 PMID: 23934884

91. Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J. Natural selection and climate change: temper-
ature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol. 2006; 15:
3469–3480. PMID: 16968284

92. Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, et al. Sympatric speciation in
palms on an oceanic island. Nature. 2006; 441: 210–213. PMID: 16467788

93. Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome
scans. Mol Ecol. 2004; 13: 969–980. PMID: 15012769

94. Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci under local adaptation. Mol
Ecol. 2012; 21: 1548–1566. doi: 10.1111/j.1365-294X.2012.05479.x PMID: 22332667

95. Bierne N, Roze D, Welch JJ. Pervasive selection or is it? Why are FST outliers sometimes so fre-
quent? Mol Ecol. 2013; 22: 2061–2064. PMID: 23671920

96. Hermisson J. Who believes in whole-genome scans for selection? Heredity. 2009; 103: 283–284. doi:
10.1038/hdy.2009.101 PMID: 19654610

97. Bonin A, Taberlet P, Miaud C, Pompanon F. Explorative genome scan to detect candidate loci for ad-
aptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol. 2006; 23:
773–783. PMID: 16396915

98. Beaumont MA. Adaptation and speciation: what can Fst tell us? Trends Ecol Evol. 2005; 20: 435–440.
PMID: 16701414

99. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective
sweeps using SNP data. Genome Res. 2005; 15: 1566–1575. PMID: 16251466

100. Galindo J, Moran P, Rolan-Alvarez E. Comparing geographical genetic differentiation between candi-
date and noncandidate loci for adaptation strengthens support for parallel ecological divergence in
the marine snail Littorina saxatilis. Mol Ecol. 2009; 18: 919–930. doi: 10.1111/j.1365-294X.2008.
04076.x PMID: 19207246

101. Makinen HS, Cano JM, Merila J. Identifying footprints of directional and balancing selection in marine
and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol Ecol. 2008; 17:
3565–3582. doi: 10.1111/j.1365-294X.2008.03714.x PMID: 18312551

102. Meier K, Hansen MM, Bekkevold D, Skaala O, Mensberg KLD. An assessment of the spatial scale of
local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci. He-
redity. 2011; 106: 488–499. doi: 10.1038/hdy.2010.164 PMID: 21224872

103. Oetjen K, Reusch TBH. Genome scans detect consistent divergent selection among subtidal vs. inter-
tidal populations of the marine angiosperm Zostera marina. Mol Ecol. 2007; 16: 5156–5157. PMID:
17986196

104. Pariset L, Joost S, Marsan P, Valentini A. Landscape genomics and biased FST approaches reveal
single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC
Genet. 2009; 10: 7. doi: 10.1186/1471-2156-10-7 PMID: 19228375

105. Prunier J, Laroche J, Beaulieu J, Bousquet J. Scanning the genome for gene SNPs related to climate
adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol. 2011; 20:
1702–1716. doi: 10.1111/j.1365-294X.2011.05045.x PMID: 21375634

106. Soto-Cerda BJ, Cloutier S. Outlier loci and selection signatures of simple sequence repeats (SSRs) in
flax (Linum usitatissimum L.). Plant Mol Biol Report. 2013: 1–13.

107. Storz JF, Dubach JM. Natural selection drives altitudinal divergence at the albumin locus in deer
mice, Peromyscus maniculatus. Evolution. 2004; 58: 1342–1352. PMID: 15266982

108. McKay JK, Latta RG. Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol.
2002; 17: 285–291.

109. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the geno-
mics of trees: approaches for understanding local adaptation and population responses to changing
climate. Tree Genet Genomes. 2013; 9: 901–911.

Microgeographic Genetic Divergence in Continuous Populations

PLOS ONE | DOI:10.1371/journal.pone.0121394 March 25, 2015 23 / 23

http://dx.doi.org/10.1534/genetics.113.153783
http://www.ncbi.nlm.nih.gov/pubmed/23934884
http://www.ncbi.nlm.nih.gov/pubmed/16968284
http://www.ncbi.nlm.nih.gov/pubmed/16467788
http://www.ncbi.nlm.nih.gov/pubmed/15012769
http://dx.doi.org/10.1111/j.1365-294X.2012.05479.x
http://www.ncbi.nlm.nih.gov/pubmed/22332667
http://www.ncbi.nlm.nih.gov/pubmed/23671920
http://dx.doi.org/10.1038/hdy.2009.101
http://www.ncbi.nlm.nih.gov/pubmed/19654610
http://www.ncbi.nlm.nih.gov/pubmed/16396915
http://www.ncbi.nlm.nih.gov/pubmed/16701414
http://www.ncbi.nlm.nih.gov/pubmed/16251466
http://dx.doi.org/10.1111/j.1365-294X.2008.04076.x
http://dx.doi.org/10.1111/j.1365-294X.2008.04076.x
http://www.ncbi.nlm.nih.gov/pubmed/19207246
http://dx.doi.org/10.1111/j.1365-294X.2008.03714.x
http://www.ncbi.nlm.nih.gov/pubmed/18312551
http://dx.doi.org/10.1038/hdy.2010.164
http://www.ncbi.nlm.nih.gov/pubmed/21224872
http://www.ncbi.nlm.nih.gov/pubmed/17986196
http://dx.doi.org/10.1186/1471-2156-10-7
http://www.ncbi.nlm.nih.gov/pubmed/19228375
http://dx.doi.org/10.1111/j.1365-294X.2011.05045.x
http://www.ncbi.nlm.nih.gov/pubmed/21375634
http://www.ncbi.nlm.nih.gov/pubmed/15266982

