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Abstract 

 In the dicot Arabidopsis thaliana, the B3 transcription factors, ABA-INSENSITIVE 3 

(ABI3), FUSCA 3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) are key regulators of seed 

maturation. This raises the question of the role of ABI3/FUS3/LEC2 (AFL) proteins in 

cereals, where not only the embryo but also the persistent endosperm accumulates reserve 

substances. Among the five ZmAFL genes identified in the maize genome, ZmAFL2 and 

ZmAFL3/ZmVp1 closely resemble FUS3 and ABI3, respectively, in terms of their sequences, 

domain structure and gene activity profiles. Of the three genes that fall into the LEC2 

phylogenetic sub-clade, ZmAFL5 and ZmAFL6 have constitutive gene activity, whereas 

ZmAFL4, like LEC2, has preferential gene activity in pollen and seed, although its seed gene 

activity is restricted to the endosperm during reserve accumulation. Knock down of ZmAFL4 

gene activity perturbs carbon metabolism and reduces starch content in the developing 

endosperm 20 DAP. ZmAFL4 and ZmAFL3/ZmVp1 trans-activate a maize oleosin promoter 

in a heterologous moss system. In conclusion our results suggest, based on gene activity 

profiles, that the functions of FUS3 and ABI3 could be conserved between dicot and monocot 

species. In contrast, LEC2 function may have partially diverged in cereals where our findings 

provide first evidence of the specialization of ZmAFL4 for roles in the endosperm. 
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Abbreviations 

aba-insensitive 3 (ABI3); ABI3/FUS3/LEC2 (AFL); ADP-glucose pyrophosphorylase 

(AGPase); analysis of variance (ANOVA); basic leucine zipper (bZIP); days after pollination 

(DAP); fusca 3 (FUS3); glycerol-3-phosphate (G3P); leafy cotyledon (LEC); quantitative 

reverse transcription-PCR (qRT-PCR); RNA interference (RNAi); Zea mays viviparous1 

(ZmVp1). 

1. Introduction 

 In maize, as in many cereal crops, the reserve substances necessary for efficient 

germination of the embryo, and thus successful propagation, are stored both within the 

embryo (mainly oil and protein) and in a surrounding nourishing tissue, the endosperm 

(mainly starch and protein). Whereas the entire maize seed is cherished by mankind as a major 

source of food and animal feed, the non-food use of the maize seed is largely limited to the 

endosperm and more precisely to starch extraction for industrial products or hydrolysis for 

biofuels. 

 In maize, the accumulation of reserve substances in the embryo and endosperm occurs 

during the filling stage of seed development [1,2]. This stage is preceded by developmental 

events such as pattern formation, morphogenesis and differentiation, and followed by seed 

dehydration, which allows the seed to become quiescent. Distinct transcriptome profiles 

suggest that the three developmental stages (early, filling and desiccation) have dedicated 

genetic programs which are controlled mainly at the transcriptional level [3,4]. Despite 

passing through functionally equivalent stages, the embryo and endosperm clearly execute 
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different genetic programs to elaborate their characteristic morphology and to accumulate 

distinct reserve substances [5,6]. 

 The control of seed filling has been well characterized in Arabidopsis, where the 

endosperm is largely transient and reserve substances therefore principally accumulate in the 

embryo. The three B3 domain transcription factors ABA-INSENSITIVE 3 (ABI3) [7], 

FUSCA3 (FUS3) [8] and LEAFY COTYLEDON 2 (LEC2) [9] form the so-called “AFL 

network” in association with LEAFY COTYLEDON 1 (LEC1) [10], which is homologous to 

the HAP3 subunits of the CAAT box-binding factor family [11,12]. Mutations in these genes 

cause pleiotropic but distinct effects on seed maturation, including a lack of both storage 

reserve accumulation and desiccation tolerance [13-15]. AFL genes have distinct temporal and 

spatial gene activity patterns during Arabidopsis seed development. All three genes are active 

in the embryo and LEC2 and FUS3 also are active in the endosperm [2,16]. Temporally, LEC2 

is the first gene to become active, with a peak at the heart stage. The activity of the FUS3 gene 

peaks during early seed maturation, and finally ABI3 is active during desiccation [17,18]. 

Despite a certain overlap in their gene activity patterns, each AFL gene has a distinct function. 

Networking is indicated by interactions among AFL genes. For example, LEC2 activates ABI3 

and FUS3 gene activity whereas ABI3 and FUS3 auto-regulate themselves and interact 

through mutual activation [17,19,20]. In addition, interactions between LEC1 and AFL genes 

have been shown by genetic and transcriptome analyses: LEC1 can activate ABI3 and FUS3 

activity whereas LEC1 activity is up-regulated by LEC2 [21-23]. 

 AFL transcription factors are considered master regulators since they trigger a 

regulatory cascade by activating secondary transcription factors, which in turn govern multiple 

metabolic and developmental pathways. For example WRI1, which encodes the main regulator 
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of lipid biosynthesis in the seed, is a direct target of LEC2 [24]. However LEC2 also acts 

directly on genes involved in reserve accumulation including OLE1, encoding an oleosin [25] 

and At2S1–S4 and 2S-like, which encode seed storage proteins [17,26]. Direct targeting by 

LEC2 is mediated by its B3 domain, which binds specifically to RY-motifs such as CATGCA 

[19,26]. 

 The functions of AFL genes have been extensively studied in Arabidopsis, and putative 

orthologs have been described in several monocot and dicot species [2]. However, it remains 

unclear to what extent their functions and targets are conserved. The best characterized AFL 

gene in cereals is ZmVIVIPAROUS1 (ZmVp1), the maize ortholog of ABI3 [27-29]. However, 

the extensive characterization of the Zmvp1 mutant has focused largely on a single aspect, the 

role of ZmVp1 in ABA-mediated regulation of kernel dormancy [30,31]. Indications for 

functional conservation also exist for ZmLEC1 and ZmWri1, since their over-expression 

increases seed oil content in maize [32,33]. ZmWri1a and ZmWri1b both complement their 

putative co-ortholog WRI1 in the Arabidopsis wri1 mutant, despite minor qualitative changes 

in the oil of wri1 mutants complemented with ZmWri1a and ZmWri1b [32,34]. However, 

since in maize oil accumulates principally in the scutellum of the embryo [35] and since 

dormancy also concerns primarily the embryo, these data do not shed light on the question of 

a potential control of endosperm reserve substances by members of the AFL network, which 

cannot be satisfactorily addressed in the exalbuminous Arabidopsis seed.  

The identities of the transcriptional regulators of well-known structural genes needed 

for endosperm starch synthesis in cereals remain surprisingly elusive despite their potential as 

targets for the modification of important crop traits. Recent work has shown that the rice basic 

leucine zipper (bZIP) transcription factor bZIP58 directly regulates Starch synthase IIa and 
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Starch branching enzyme 1 gene activity [36]. In addition, seed storage protein gene activity 

in the maize endosperm is known to be regulated by the bZIP transcription factor OPAQUE2 

and interacting proteins such as the zinc finger transcription factor PBF [37]. Here we address 

the important question of whether members of the AFL family could also participate in the 

regulation of seed storage product accumulation. We present the identification, phylogenetic 

analysis and gene activity analysis of putative maize orthologs of ABI3, FUS3 and LEC2. Our 

results indicate a previously unexplored function for ZmAFL4 in kernel metabolism and the 

regulation of starch accumulation in the maize endosperm. 

2. Materials and methods 

2.1. Plant material and plant culture 

 Maize plants were grown in a greenhouse with a 16-h photoperiod (400 µmol m
−2

 s
-1

) 

at 24°C/19°C (day/night) and without control of the relative humidity, as described in 

Pouvreau et al [32]. All plants were propagated by hand pollination. Maize genotype B73 was 

used for temporal and spatial gene activity analyses of ZmAFL genes during kernel 

development, and genotype A188 for maize transformation and for gene activity analyses of 

ZmAFL genes in maize organs. Seed of the Zmvp1 mutant allele vp1-Mum1::Mu was obtained 

from the Maize Genetics Cooperation Stock Center (stock 326BH). 

2.2. T-DNA constructs and plant transformation 

 The coding sequences of ZmAFL genes were PCR amplified from cDNA from 

appropriate kernel stages (genotype B73), using primers reported in Supplementary Table S3. 

The PCR products were cloned into the vector pDONRZeo (Invitrogen), and the resulting 
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entry vectors were sequenced prior to LR recombination. The final plasmids L1238 (ZmAFL2-

RNAi), L1240 (ZmAFL4-RNAi) and L1242 (ZmAFL5/6-RNAi) were used for maize 

transformation as described previously [32]. The plasmids contained the backbone of vector 

pSB11, a Basta resistance cassette (rice Actin promoter and intron, Bar gene and Nos 

terminator) next to the right border, a GFP cassette (CsVMV promoter and FAD2 intron, GFP 

gene and Nos terminator) and the respective ZmAFL gene fragment separated by the rice 

Tubulin intron in a head to head configuration under the control of the constitutive rice Actin 

promoter and intron. 

2.3. Sequence analysis 

 Protein sequences similar to AtAFL proteins were retrieved by using the BlastP 

program to query the maize genome database (http://blast.gramene.org/Multi/blastview) and 

the protein database of the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). The protein sequence alignments were 

generated using the programs ClusalW2 or Omega available at 

http://www.ebi.ac.uk/Tools/msa/. Gene models were downloaded from release AGPv3 of the 

B73 maize (Zea mays) genome assembly (http://ensembl.gramene.org/Zea_mays/Info/Index). 

Functional B3 domains were identified using the Pfam HMM database 

(http://pfam.xfam.org/). A1, B1, B2 and C-terminal were defined as conserved blocks in 

multiple sequence alignments [7]. 

2.4. Phylogenetic analysis 

 Amino acid sequences were aligned using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo). Conserved blocks were selected manually with the 

http://blast.gramene.org/Multi/blastview
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/
http://ensembl.gramene.org/Zea_mays/Info/Index
http://pfam.xfam.org/
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Seaview program (http://doua.prabi.fr.fr/software/seaview.html) and phylogenetic trees were 

generated using PHYML with the WAG substitution model and 1000 bootstrap replicates. 

2.5. Analysis of gene activity by qRT-PCR 

 Total RNA was extracted with the Tri-Reagent® (Molecular Research Center) and 

treated with DNase as described previously [38]. First strand cDNA was prepared using 

random hexamers (Amersham Biosciences) and Superscript III reverse transcriptase 

(Invitrogen) according to the manufacturer’s protocol. The resulting cDNA was diluted 50 

times. Quantitative RT-PCR was carried out using FastStart SYBR Green Master mix (Roche) 

on a StepOne Real-Time PCR System (Applied Biosystems) according to the manufacturer’s 

protocol with the following program: 10 min at 95°C, followed by 40 cycles of 95°C for 10 

sec, 60°C for 30 sec. The average threshold cycle (Ct) was calculated using StepOne software 

v2.3 (Applied Biosystems). The PCR efficiency (E) and the relative gene activity (R) of target 

genes were calculated as described [39] using Actin as a reference gene. The primers used are 

listed in Supplementary Table S3. The number of plants, seeds and biological replicates used 

for gene activity analyses are indicated in the respective figure legends. With regard to 

ZmAFL4-RNAi plants, the gene activity analyses of ZmAFL4 (Figure 3) and of Zein genes 

(Supplementary Figure S5) were performed with the same biological material as for the 

metabolomics analyses and the determination of starch and protein content. 

2.6. Metabolomic measurements and analysis 

 Metabolomics analyses were performed in biological triplicate on separated embryos 

and endosperm of homozygous ZmAFL4-RNAi and wild-type kernels at 20 DAP. Each 

replicate represented a different plant, from which at least 50 endosperms or 50 embryos of 

http://doua.prabi.fr.fr/software/seaview.html
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the same ear were pooled. The extraction of metabolites from plant tissues and their analysis 

by gas chromatography coupled to time of flight mass spectrometry were performed as 

described [40]. Data were analyzed by principal component analysis. 

2.7. Starch dosage 

 Three biological replicates representing individual homozygous transgenic or wild-

type plants were analyzed. Starch was extracted from 10 or 20 mg fresh weight by three 

successive ethanol extractions at 80°C for 20 min each with 250 µl of 98% v/v ethanol, 80% 

v/v ethanol and 50% v/v ethanol. Starch content was measured by spectrophotometric 

quantification of NADPH at 340 nm, produced during glucose phosphorylation by hexokinase 

after enzymatic degradation of starch [41]. 

2.8. Physcomitrella patens protoplast trans-activation assay 

 Moss culture, protoplast preparation and transformation as well as flow cytometry 

were carried out as described [42]. The ZmAFL coding sequences were recombined into the 

destination vector pBS-TPp-A [42]. Trans-activation was monitored in four biological 

repetitions by GFP fluorescence quantification using flow cytometry. GFP fluorescence was 

detected with an FITC 527 nm/30 nm band-pass filter. 

3. Results 

3.1. The maize genome encodes five AFL genes 

 To identify ZmAFL (ABI3, FUS3, LEC2) candidate genes in the maize genome, a 

BLASTp search against the deduced amino acid sequences of LEC2, FUS3 and ABI3 was 

carried out in the maize protein data base (http://www.maizesequence.org). Six ZmAFL genes 

http://www.maizesequence.org/
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were identified and named ZmAFL1 to ZmAFL6 (Table 1). ZmAFL3 was identical to the 

ZmVp1 gene originally described by McCarty et al. [43]. 

 An initial analysis of domain structure revealed that the B3 domain of the deduced 

ZmAFL1 protein was associated with a CW-type zinc finger. Since this domain combination 

is characteristic of VAL/HSI but not AFL family members [44], and since a phylogenetic 

relationship between ZmAFL1 and VAL rather than AFL proteins was established 

(Supplementary Fig. S2), this gene was removed from our study. 

 The gene model (GRMZM2G405699) provided for ZmAFL5 in the maize genome 

database (http://www.maizesequence.org) was truncated compared to genes from sorghum 

and rice. We extended the model using the EST sequence DN219455 to give the complete 

deduced amino acid sequence presented in Supplementary Fig. S1. This sequence shared more 

than 92% identity with the ZmAFL6 sequence indicating that the corresponding genes might 

be paralogs. However, further analysis showed that the genes were not located in duplicated 

blocks of the present maize genome, which arose during the most recent whole genome 

duplication 5 million year ago [45]. Consequently ZmAFL5 and ZmAFL6 were not nearly 

identical paralogs as defined by Emrich et al. [46] but merely two closely related genes 

without a precise phylogenetic history. 

3.2. Phylogenetic relationship between maize and Arabidopsis AFL 

 To identify potential orthologs between maize and Arabidopsis AFL genes, and to 

clarify the phylogenetic position of the AFL subfamily, a partial phylogenetic tree of the B3 

family was constructed for the monocots maize (Zea mays) and rice (Oryza sativa), the dicot 

Arabidopsis thaliana and the moss Physcomitrella patens. For maize 13 non redundant 

http://www.maizesequence.org/
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sequences identified by Peng and Weselake [47] and named "ABI3/Vp1" by these authors 

were completed with 14 more maize protein sequences including ZmAFL2 and ZmAFL5 

from the NCBI (Supplementary Table S1). The 28 rice and 37 Arabidopsis sequences were 

taken from Peng and Weselake [47] and the three Physcomitrella sequences from Marella et 

al. [48]. 

 In the resulting tree the five ZmAFL proteins (ZmAFL2, ZmAFL3/ZmVp1, ZmAFL4, 

ZmAFL5 and ZmAFL6) clustered cleanly with the three Arabidopsis AFL proteins, founding 

an AFL clade, which could be further divided into three sub-clades (Fig. 1; Supplementary 

Fig. S2). A first, robust sub-clade was formed by ZmVp1 and ABI3, consistent with the 

observation that ZmVp1 complements the Arabidopsis abi3 mutant [30] and with multiple 

alignments confirming earlier observations that only ZmVp1 and ABI3 contained additional 

conserved domains named A1, B1 and B2 [7,49]. ZmAFL2 and FUS3 clustered in a second 

sub-clade consistent with the B3 domain sequence of ZmAFL2 showing stronger conservation 

with that of FUS3 (63% identity) than with those of ABI3 (62%) or LEC2 (54%). In addition 

only FUS3 and ZmAFL2 were found to contain a conserved C-terminal domain of 

approximately 60 amino acids. Together these results indicated that ZmAFL2 was the putative 

ortholog of FUS3. The remaining three maize AFL proteins, ZmAFL4, ZmAFL5 and 

ZmAFL6 were grouped in the LEC2 sub-clade. Consequently ZmAFL4, ZmAFL5 and 

ZmAFL6 were putative co-orthologs of LEC2. 

3.3. Diversification of ZmAFL gene activity patterns 

 To investigate the potential conservation of AFL functions between maize and 

Arabidopsis, the activity of each ZmAFL gene in both vegetative and reproductive maize 
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organs was measured by quantitative reverse transcription-PCR (qRT-PCR) experiments. 

Whereas all 5 ZmAFL genes were active in the maize kernel (Fig. 2A), only ZmVp1 gene 

activity was kernel specific, mirroring silique-specific gene activity of ABI3 in Arabidopsis 

[7]. ZmAFL2 and ZmAFL4 showed strong additional gene activity in tassels and in pollen. 

Their gene activity patterns are reminiscent of those of FUS3 and LEC2, characterized by a 

high level of transcripts in young siliques but also in stamens for FUS3 or mature pollen for 

LEC2 (http://bar.utoronto.ca/welcome.htm; [50-52]). ZmAFL5 and ZmAFL6 were active in 

almost all organs examined, mRNA levels being higher in reproductive organs. 

 To gain further insight into the role of ZmAFL genes in maize kernel development, 

more detailed temporal gene activity patterns were established (Fig. 2B). ZmAFL2, ZmAFL5 

and ZmAFL6 gene activity was highest in ovules and young kernels with a peak at 3 days after 

pollination (DAP), although moderate gene activity, in particular of ZmAFL2, persisted during 

the filling stage between 9 and 30 DAP. ZmAFL4 transcripts were most abundant at the filling 

stage with a peak of gene activity at 15 DAP. Finally, ZmVp1 exhibited a high mRNA level 

from the end of the filling stage throughout the dehydration phase, reaching a maximum at 35 

DAP. The temporal gene activity pattern of ZmVp1 was very similar to its proposed ortholog 

in Arabidopsis, whereas the onset of ZmAFL2 activity was earlier than that of FUS3 

[9,17,18,53]. In the LEC2 clade ZmAFL5 and ZmAFL6 were active very early in kernel 

development, resembling LEC2 gene activity in Arabidopsis [9,17], whereas ZmAFL4 peaked 

later during the filling stage. In summary, ZmAFL genes were sequentially expressed at 

different stages of kernel development, reflecting to a certain degree the situation in 

Arabidospis. 
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 The spatial gene activity patterns of ZmAFL genes in the maize kernel were studied at 

15 DAP in dissected embryo, endosperm and pericarp samples (Fig. 2C). Whereas ZmAFL5 

and ZmAFL6 had gene activity in all three seed compartments, the other ZmAFL genes 

showed strong activity either in one single, or two compartments. ZmAFL2 and ZmVp1 were 

active exclusively in the embryo, whereas ZmAFL4 transcripts were most abundant in the 

endosperm, present in the pericarp and nearly absent in the embryo from 9 to 30 DAP (Fig. 

2C, Supplementary Fig. S3). In conclusion, the five ZmAFL genes presented both distinct 

spatial and distinct temporal gene activity patterns. Contrary to the situation in Arabidopsis, 

where ABI3, LEC2 and FUS3 are active in both the embryo and endosperm ([2,16], 

http://bar.utoronto.ca/welcome.htm), our results showed a dichotomy in spatial gene activity 

for ZmAFL2 and ZmVp1 (embryo) and ZmAFL4 (endosperm and pericarp), suggesting 

differences in the regulation of seed development between the two species. 

3.4. Absence of macroscopic kernel phenotypes in ZmAFL-RNAi lines 

 To elucidate the function of ZmAFL genes, three RNA interference (RNAi) constructs 

under the control of the constitutive rice Actin promoter were generated, targeting ZmAFL2, 

ZmAFL4 or both ZmAFL5 and ZmAFL6. From eight independent transformation events per 

construct, two were selected for analysis of T1 kernels based on the confirmation of complete 

T-DNA transfer, single transgene copy number and high gene activity level of the construct. 

Molecular analysis of T1 kernels indicated that none of the transgenic lines showed a 

complete suppression of target gene transcript levels. The most efficient silencing was found 

in ZmAFL2-RNAi and ZmAFL4-RNAi kernels, for which the strongest event showed a 61% 

and a 87% decrease in mRNA levels, respectively (Fig. 3A; Supplementary Fig. S4A). In 
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ZmAFL5/6-RNAi lines, no significant decrease in transcript level was detected. Despite the 

knockdown of ZmAFL2 and ZmAFL4 gene activity, the corresponding transgenic kernels did 

not show visible defects such as shriveled kernels, modification of pigmentation, 

developmental arrest or vivipary of the embryo. 

 The ZmAFL2-RNAi and ZmAFL4-RNAi kernels as well as Zmvp1 mutant kernels 

were used to investigate potential cross regulation between the five ZmAFL genes 

(Supplementary Fig. S4). Whereas no significant changes in ZmAFL gene activity were 

observed in either ZmAFL2-RNAi (Supplementary Fig. S4A) or ZmAFL4-RNAi kernels at 15 

DAP (Supplementary Fig. S4B), in Zmvp1 kernels, ZmAFL2 mRNA levels were clearly 

increased at 30 DAP, suggesting a negative regulation of ZmAFL2 by ZmVp1 (Supplementary 

Fig. S4C). In addition, ZmAFL4 gene activity was drastically reduced in Zmvp1 kernels at 30 

DAP (Supplementary Fig. S4C). Since ZmAFL4 and ZmVp1 are not expressed in the same 

compartment, this result indicated either an indirect regulatory mechanism, or movement of 

the ZmVp1 protein. 

3.5. ZmAFL4, a transcription factor contributing to the regulation of starch accumulation 

 Among the five ZmAFL genes, only ZmAFL4 displayed strong gene activity in the 

endosperm (Fig. 2C, Supplementary Fig. S3) and showed a peak of gene activity during the 

filling stage (Fig. 2B). ZmAFL4 was therefore an excellent candidate regulator for the 

accumulation of reserve substances in the maize endosperm. To verify this hypothesis and to 

assess the impact of knocking down ZmAFL4 gene activity on carbon metabolism in the 

maize kernel, a metabolomics analysis was performed. Embryos and endosperms were 

dissected at 20 DAP from the T3 kernels from self-pollinated ears of three homozygous 
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ZmAFL4-RNAi plants from the strongest transformation event, and three wild-type siblings. 

Not surprisingly, 58 of the 81 metabolites tested showed significant differences between 

embryo (accumulating fatty acids) and endosperm (accumulating starch) samples, independent 

of the genotype. These included monosaccharides (glucose, fructose, galactose) and fatty acids 

(linoleic acid). 

 In the endosperm data analysis, the first principal component clearly separated wild-

type and transgenic samples. Analysis of variance (ANOVA) revealed significant differences 

(p-value <0.05) between wild-type and ZmAFL4-RNAi endosperms in the content of short-

chain organic acids (succinic, malic and glyceric acid), free amino acids (aspartic acid, 

cysteine and glycin) and monosaccharides (ribose, xylose, glucose and fructose). For all 

significantly different metabolites except cysteine, the content was found to decrease in 

transgenic endosperm (Table 2). 

 Within the embryo data set, the content of 10 metabolites was significantly lower (p-

value <0.05) in transgenic ZmAFL4-RNAi embryos compared to wild-type embryos 

(Supplementary Table S2). These could be classed into short organic acids (succinic acid), 

free amino acids (leucine, phenylalanine, alanine, tyrosine and valine), monosacharides 

(ribose, arabinose) and glycerol-3-phosphate (G3P). Due to the absence of gene activity in the 

embryo, the effect of ZmAFL4 on embryo metabolites was likely indirect, possibly involving 

metabolic feedback. 

 To complement the metabolomics analysis, starch content was determined in the same 

20 DAP endosperm samples, as well as in samples from a second independent transformation 

event, by a spectrophotometric method based on enzymatic degradation. A significant 

reduction in starch content (p-value <0.05) was revealed in transgenic kernels at 20 DAP (Fig. 
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3B). Since no morphological defects had been noted in mature ZmAFL4-RNAi kernels, starch 

content was also measured in mature kernels. No statistically significant decrease was 

detected in ZmAFL4-RNAi kernels (Fig. 3C), indicating that the deficit observed at 20 DAP 

had been compensated during later development. Taken together these findings suggest that 

ZmAFL4 is involved in the regulation of starch metabolism, especially at the beginning of the 

filling stage. 

3.6. ZmAFL4 is not involved in seed protein storage 

 In maize, large amounts of protein are deposited in the endosperm, zeins being the 

major class. Analysis of Zein gene activity showed only minor up or down regulation of 

individual genes in ZmAFL4-RNAi endosperm compared to wild-type endosperm 

(Supplementary Fig. S5A). In addition, the total protein content was not significantly different 

in transgenic endosperms or embryos compared to wild-type (Supplementary Fig. S5B). 

Therefore, in contrast to Arabidopsis LEC2 [9,17,26], ZmAFL4 does not appear to be involved 

in the regulation of seed storage protein accumulation. 

3.7. ZmVp1 is involved in seed oil storage 

 To explore the implication of ZmAFL genes in maize seed oil storage, upstream 

sequences of the two putative maize Oleosin genes ZmOLE2 (GRMZM2G096435) and 

ZmOLE3 (GRMZM2G480954) were tested for trans-activation by ZmAFL transcription 

factors in a Physcomitrella patens protoplast system [42]. Whereas strong background activity 

rendered the use of the ZmOLE3 promoter impracticable, statistically significant trans-

activation of the ZmOLE2 promoter was observed in the presence of ZmVp1 or ZmAFL4 (Fig. 

4). Since micro-array data indicated that within the kernel ZmOLE2 is active exclusively in 
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the embryo [54], the rather weak trans-activation by ZmAFL4, which is not active in the 

embryo, was unlikely to be biologically relevant. On the other hand, the increase of ZmOLE2 

transcription in the presence of the embryo-specific ZmVp1 was supported by down-

regulation of ZmOLE2 activity in Zmvp1 mutant kernels (Supplementary Fig. S6) and 

provided first evidence that ZmVp1 might be directly involved in the regulation of seed oil 

storage. 

4. Discussion 

 Our results suggest that the gene activity and function of AFL (ABI3/FUS3/LEC2) 

transcription factors, key regulators of storage reserve accumulation in the Arabidopsis seed, 

are at least partially conserved in the maize kernel. The gene activity patterns of the five 

ZmAFL genes identified in the maize genome indicate that each gene is actively transcribed in 

at least one seed compartment. In particular ZmAFL4, a putative LEC2 co-ortholog with 

preferential activity in endosperm during kernel development, is involved in carbon 

metabolism and contributes to the regulation of starch accumulation. 

4.1. Divergence of AFL gene activity and function between Arabidopsis and cereals 

 The number of AFL genes increases from three in Arabidopsis, through four in rice, to 

five ZmAFL genes identified in the maize genome, raising the question of which cereal 

gene(s) were the putative (co)-orthologs of ABI3, FUS3 and LEC2. A phylogenetic analysis 

together with the absence or presence of characteristic domains in addition to the common B3 

domain confirmed the previously established orthologous relationship between 

ZmAFL3/ZmVp1 and ABI3 [30] and provided data suggesting that ZmAFL2 is the putative 
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maize ortholog of FUS3 and that ZmAFL4, ZmAFL5 and ZmAFL6 are potential co-orthologs 

of LEC2. 

 In Arabidopsis, AFL genes have distinct temporal and spatial gene activity patterns 

during seed development [17,18,53] and conserved gene activity patterns in cereals would be 

a first indication for functional equivalence. Interestingly, the gene activity patterns of two 

ZmAFLs mirrored that of their putative Arabidopsis orthologs. Firstly our data confirmed that 

ZmVp1 has gene activity in embryo at the end of the filling stage, as described previously for 

ABI3 [28] and TaVp1 from wheat [55,56]. This result completes data from other studies 

showing gene activity of ZmVp1 and ABI3 in the outer endosperm layer [2,57]. Secondly, 

ZmAFL2 gene activity peaks during early maize kernel development and continues at the 

beginning of the filling stage, as has previously been shown for FUS3 in the Arabidopsis seed. 

In addition, both genes share strong gene activity in non-seed tissues, particularly in mature 

gametes. Similarly in rice, OsLFL1 has gene activity in anthers, pollens and young developing 

embryos [58], whilst in wheat although TaFUS3 activity has not been assessed in reproductive 

tissues it is active in young embryos [55]. However, at least in maize and rice seeds, the gene 

activity of the putative FUS3 orthologs is restricted to the embryo whereas FUS3 itself has 

gene activity in both embryo and endosperm. 

 The situation is more complex for LEC2 and its putative co-orthologs. The fairly 

constitutive gene activity of ZmAFL5, ZmAFL6 and rice IDEF-1 [59] contrasts sharply with 

LEC2 gene activity, leaving in a first instance ZmAFL4 as its putative functional equivalent. 

LEC2 gene activity is detected mainly in pollen, embryo and endosperm, reaching a maximum 

at the heart stage of embryogenesis. ZmAFL4 is also expressed in pollen, but its gene activity 

pattern in the seed is spatially more restricted (absent from the embryo, strong in endosperm) 
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and temporally shifted (detected at filling stage only), representing a new gene activity pattern 

for an AFL gene. In wheat the gene activity of TaL2LA, which has been proposed to be the 

ortholog of LEC2, has not been assessed in reproductive tissues and shows only early gene 

activity in the embryo similar to LEC2, ZmAFL5 and ZmAFL6 [55]. The activity pattern of the 

closely related Ta2L2B has not been described in detail [55]. This data provides evidence for a 

certain divergence in the gene activity patterns and possibly functions of LEC2 genes between 

monocot and dicot species, in contrast to the situation for FUS3 and ABI3. 

 Similarly to the situation in Arabidopsis, where complex direct and indirect regulatory 

links and interactions between AFL genes have been demonstrated by molecular and genetic 

analyses [17,18,20,23], our results indicate that cross regulation does exist in maize. In Zmvp1 

mutant kernels ZmAFL4 is down-regulated, whereas ZmAFL2 is up-regulated. In the latter 

case the situation is at first sight different from Arabidopsis, where mutual activation loops 

between ABI3 and FUS3 have been established [18]. However, a better spatial and temporal 

resolution of the gene activity patterns in maize mutants or knockdowns is needed prior to in 

depth comparisons between the regulatory networks. 

 LEC2 and FUS3 are both known to be involved directly or indirectly in competence 

for somatic embryogenesis, storage reserve accumulation and the acquisition of desiccation 

tolerance [9,13-15]. Our ZmAFL2-RNAi, ZmAFL4-RNAi and ZmAFL5/6-RNAi lines seemed 

to be unaltered in their acquisition of desiccation tolerance and did not show any alteration in 

their capacity for organogenesis during the transformation process. Similarly in rice, RNAi 

lines for OsLFL1, the likely ortholog of ZmAFL2 and FUS3, also exhibited normal grain 

development [58]. The lack of visible phenotypes in cereals may be due to (i) residual activity 

of the targeted AFL transcription factors due to incomplete knockdown by RNAi, (ii) 
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functional redundancy between AFL genes with overlapping gene activity patterns such as 

ZmAFL4 and ZmAFL6, and/or (iii) modification of AFL function between Arabidopsis and 

cereals. 

4.2. ZmAFL4 is involved in starch metabolism 

 Knocking down ZmAFL4 gene activity causes considerable metabolic alterations in the 

maize kernel, highlighting ZmAFL4 as a regulator of carbon metabolism. However, whether 

the observed decrease in content of metabolites such as short organic acids, free amino acids 

and monosaccharides is linked to the transient decrease in the content of the reserve 

compound starch needs to be established. Starch biosynthesis initiates in the kernel at 10 DAP 

when starch grains become visible and the activity of AGPase starts to increase until it reaches 

a maximum at around 30 DAP [60,61]. The gene activity pattern of ZmAFL4 mirrors this 

trend not only in the endosperm, it also in pollen, another tissue showing high levels of starch 

accumulation. 

 Although ZmAFL4 is essentially active in the endosperm, knocking down its gene 

activity also causes metabolic changes in the embryo, and particularly a significant decrease in 

G3P, a key component for fatty acid biosynthesis. Since movement of the ZmAFL4 protein 

over several layers is improbable, the changes seen in the embryo are most likely adjustments 

to altered metabolite fluxes between the embryo and endosperm. In conclusion, in the maize 

kernel ZmAFL4 acts primarily in the endosperm where it may be exclusively linked with 

carbon metabolism. 
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4.3. Role of ZmAFL genes in maize seed development 

 In Arabidopsis at least one AFL gene, LEC2, is directly involved in the regulation of 

genes coding for seed storage proteins [17,26] and oleosins [25]. In maize, protein is mainly 

stored in endosperm where 70% of the protein content is composed of prolamins such as zeins 

[62]. No notable modification of total protein content or in the activity of Zein genes was 

observed in ZmAFL4-RNAi endosperm. Whereas these results seem to exclude ZmAFL4 

from the regulation of this major class of seed protein genes, they do not allow the drawing of 

general conclusions regarding the regulation of embryo and endosperm seed protein genes by 

AFL transcription factors. With regard to oleosins, trans-activation of the ZmOle2 promoter 

by ZmVp1 and ZmAFL4 demonstrated that maize AFL transcription factors have the potential 

to directly regulate genes coding for these structural proteins of oil bodies, and indicated that 

ZmVp1 may play additional roles to those already established in ABA signaling [31]. 

 The detailed functions of ZmAFL4 as well as of ZmAFL2, ZmVp1, ZmAFL5 and 

ZmAFL6 remain to be fully elucidated. Since all RNAi transgenic lines used in this study had 

at least some residual gene activity, the identification of true knockout plants for each ZmAFL 

gene as well as the generation of multiple mutants will be essential for the investigation of 

ZmAFL function and the identification of direct target genes. In addition, in Arabidopsis 

LEC2, ABI3 and FUS3 associate with LEC1, which is also required for reserve accumulation 

and seed development. Together these proteins constitute the LAFL network [10,63]. 

Consequently the analysis of interactions between ZmAFLs and ZmLEC1 will also be of the 

utmost importance for a comprehensive understanding of the control of reserve accumulation 

in the maize kernel. 
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Tables 

Table 1: ZmAFL genes in the maize genome. 

Gene Name 
Gene  

model
1
 

Protein 

size 

Sorghum Rice Arabidopsis 

putative 

ortholog 

% 

identity
2
 

putative 

ortholog 

% 

identity
2
 

putative 

ortholog 

% 

identity
2
 

% 

identity 

of B3 

domain 

ZmAFL1 GRMZM2G008356 957 Sb02g036430 91 LOC_Os07g37610 79 
AT4G21550 

(VAL3) 
36 66 

ZmAFL2 GRMZM2G035701 292 Sb03g032730 78 
LOC_Os01g51610 

(LFL1) 
57 

AT3G26790 

(FUS3) 
25 62 

ZmAFL3 

(ZmVp1) 
GRMZM2G133398 691 Sb03g043480 81 

LOC_Os01g68370 

(OsVP1) 
60 

AT3G24650 

(ABI3) 
27 87 

ZmAFL4 GRMZM2G149940 439 Sb06g032870 83 LOC_Os04g58000 37 
AT1G28300 

(LEC2) 

17 54 

ZmAFL5 GRMZM2G405699 313 
Sb07g000220 

81 LOC_Os08g01090 

(IDEF1) 

51 32 57 

ZmAFL6 GRMZM2G125596 369 91 56 31 57 
1
Gene models refer to AGPv3 for maize and maize protein size is indicated in amino acids. 

2
% identity refers to protein identity between maize and other species. 
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Table 2: Metabolites with significantly altered content in ZmAFL4-RNAi endosperm from the strongest transformation event. 

Metabolite Trend 

Average
1
 

ZmAFL4-

RNAi 

endosperm 

Average
1
 

WT 

endosper

m 

SD 

ZmAFL4-

RNAi 

endosperm 

SD 

WT 

endosper

m 

Ratio 

ZmAFL4-

RNAi 

/WT 

p-value
2
 

ANOVA 

Glyceric acid DOWN 0.13 0.26 0.00 0.01 0.50 0.0005613 

2,4-dihydroxybutanoic acid DOWN 0.69 1.10 0.00 0.05 0.62 0.003038 

Phosphoric acid DOWN 81.00 113.15 0.19 4.04 0.72 0.003185 

Ribose DOWN 2.27 3.27 0.07 0.14 0.69 0.005397 

Aspartic acid DOWN 51.39 79.57 1.11 4.32 0.65 0.006021 

Malic acid DOWN 36.84 49.12 0.91 2.06 0.75 0.00869 

Glycine DOWN 0.82 1.21 0.06 0.07 0.68 0.01651 

Maleic acid DOWN 0.57 1.00 0.08 0.08 0.57 0.02185 

Succinic acid DOWN 5.80 8.23 0.09 0.64 0.71 0.02579 

Glucose DOWN 35.29 61.50 2.81 6.97 0.57 0.02969 

Cysteine UP 1.11 0.62 0.14 0.10 1.78 0.04024 

Fructose DOWN 202.98 308.40 14.24 33.19 0.66 0.04628 

Xylose DOWN 0.18 0.31 0.04 0.03 0.59 0.04868 

1
 Average of three biological replicates (each replicate representing a different plant, from which at least 50 endosperms and 50 

embryos (see Supplemental Table 2) of the same ear were pooled) expressed in arbitrary units representing peak areas. 

2
 In order of statistical significance of the difference between transgenic and wild-type endosperm established by one-factor ANOVA. 
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Figure captions 

Fig. 1: Partial phylogenetic tree of the B3 family: the AFL clade. 

(A) A maximum likelihood phylogenetic tree was generated for the "ABI3/VP1" branch of the 

B3 family as defined by Peng and Weselake (2013) with PHYML software using the WAG 

amino acids substitution model. Nod values are bootstrap values expressed as percentages and 

based on 1000 replicates. AFL proteins from Arabidopsis thaliana and Zea mays are colored 

in green and red, respectively. The entire phylogenetic tree is available in Supplementary Fig. 

S2. (B) Schematic view of conserved domains in maize and Arabidopsis AFL proteins as 

originally defined by Giraudat et al. (1992). 

Fig. 2: Gene activity patterns of ZmAFL genes. 

Relative mRNA levels were determined by qRT-PCR in different maize organs (A), during 

kernel development (B) and in dissected kernel compartments (C). Error bars correspond to 

the standard deviation calculated from technical triplicates on pools of tissues from more than 

two different plants (A, B) or to biological replicates (each representing pools of dissected 

tissues from a single plant) executed in technical triplicates (C). 

Fig. 3: ZmAFL4 contributes to the regulation of starch accumulation. 

(A) The expression level of ZmAFL4 in ZmAFL4-RNAi endosperm was established at 20 

DAP by qRT-PCR in two independent ZmAFL4-RNAi transformation events and wild-type 

siblings. Error bars correspond to the standard deviation calculated from biological triplicates 

for each event. Each replicate represents a different plant, from which at least 50 endosperms 

of the same ear were pooled. (B, C) Starch content was determined in 20 DAP endosperm (B) 
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and in mature kernels (C) from the same plants as in (A). Error bars correspond to the 

standard deviation calculated from biological triplicates on pools of endosperm or mature 

kernels (Student’s test value: * p<0.05). FW: Fresh weight. 

Fig. 4: Transcriptional activation by ZmAFL transcription factors. 

Trans-activation of the ZmOLE2 promoter (GRMZM2G096435) measured in Physcomitrella 

patens protoplasts co-transfected with plasmids encoding the indicated AFL transcription 

factors alone or in combination. Mean activities were calculated from at least four biological 

repetitions. Error bars indicate standard deviation (Student’s test significance: *, p<0.05; **, 

p<0.01; ***, p <0.001). 
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Fig. 1. Partial phylogenetic tree of the B3 family: the AFL clade. 
(A) A maximum likelihood phylogenetic tree was generated for the "ABI3/VP1" branch of the B3 family as 
defined by Peng and Weselake (2013) with PHYML software using the WAG amino acids substitution model. 
Nod values are bootstrap values expressed as percentages and based on 1000 replicates. AFL proteins from 
Arabidopsis thaliana and Zea mays are colored in green and red, respectively. The entire phylogenetic tree is 
available in Supplementary Fig. S2. (B) Schematic view of conserved domains in maize and Arabidopsis AFL 
proteins as originally defined by Giraudat et al. (1992). 



Figure 2 

Fig. 2: Gene activity patterns of ZmAFL genes. 
Relative mRNA levels were determined by qRT-
PCR in different maize organs (A), during kernel 
development (B) and in dissected kernel 
compartments (C). Error bars correspond to the 
standard deviation calculated from technical 
triplicates on pools of tissues from more than 
two different plants (A, B) and to biological 
replicates (each representing pools of dissected 
tissues from a single plant) executed in 
technical triplicates (C).  
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Figure 3 

A 

B 

C 

Fig. 3: ZmAFL4 contributes to the regulation of starch accumulation. 
(A) The expression level of ZmAFL4 in ZmAFL4-RNAi endosperm was established at 20 DAP by qRT-PCR in two 
independent ZmAFL4-RNAi transformation events and wild-type siblings. Error bars correspond to the standard 
deviation calculated from biological triplicates for each event. Each replicate represents a different plant, from 
which at least 50 endosperms of the same ear were pooled. (B, C) Starch content was determined in 20 DAP 
endosperm (B) and in mature kernels (C) from the same plants as in (A). Error bars correspond to the standard 
deviation calculated from biological triplicates on pools of endosperm or mature kernel (Student’s test value: * 
p<0.05). FW: Fresh weight. 
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 Trans-activation of proZmOLE2 

Fig. 4: Transcriptional activation by ZmAFL transcription factors. 
Trans-activation of the ZmOLE2 promoter (GRMZM2G096435) measured in Physcomitrella patens 
protoplasts co-transfected with plasmids coding for the indicated AFL transcription factors alone or in 
combination. Mean activities were calculated from at least four biological repetitions. Error bars indicate 
standard deviation (Student’s test significance: *, p<0.05; **, p<0.01; ***, p <0.001). 
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>ZmAFL2_(GRMZM2G035701_P01) 
MAGITKRRTSPASTSSSSGDVLPQRVTRKRRSARRGPRSTARRPSAPPPMNELDLNTAALDPDHYATGL
RVLLQKELRNSDVSQLGRIVLPKKEAESYLPILMAKDGKSLCMHDLLNSQLWTFKYRYWFNNKSRMYVL
ENTGDYVKAHDLQQGDFIVIYKDDENNRFVIGAKKAGDEQTATVPQVHEHMHISAALPAPQAFHDYAGP
VAAEAGMLAIVPQGDEIFDGILNSLPEIPVANVRYSDFFDPFGDSMDMANPLSSSNNPSVNLATHFHDE
RIGSCSFPYPKSGPQM 
  
>ZmAFL3_ZmVp1_(GRMZM2G133398_P03) 
MEASAGSSPPHSQENPPEHGGDMGGAPAEEIGGEAADDFMFAEDTFPSLPDFPCLSSPSSSTFSSNSSS
NSSSAYTNTAGRAGGEPSEPASAGEGFDALDDIDQLLDFASLSMPWDSEPFPGVSMMLENAMSAPPQPV
GDGMSEEKAVPEGTTGGEEACMDASEGEELPRFFMEWLTSNRENISAEDLRGIRLRRSTIEAAAARLGG
GRQGTMQLLKLILTWVQNHHLQRKRPRDVMEEEAGLHVQLPSPVANPPGYEFPAGGQDMAAGGGTSWMP
HQQAFTPPAAYGGDAVYPSAAGQQYSFHQGPSTSSVVVNSQPFSPPPVGDMHGANMAWPQQYVPFPPPG
ASTGSYPMPQPFSPGFGGQYAGAGAGHLSVAPQRMAGVEASATKEARKKRMARQRRLSCLQQQRSQQLS
LGQIQASVHLQEPSPRSTHSGPVTPSAGGWGFWSPSSQQQVQNPLSKSNSSRAPPPSLEAAAVAPQTKP
APAGARQDDIHHRLAAASDKRQGAKADKNLRFLLQKVLKQSDVGSLGRIVLPKKEAEVHLPELKTRDGI
SIPMEDIGTSRVWNMRYRFWPNNKSRMYLLENTGEFVRSNELQEGDFIVIYSDVKSGKYLIRGVKVRPP
PAQEQGSGSSGGGKHRPLCPAGPGRAAAAGAPEDAVVDGVSGACKGRSPEGVRRVRQQGAGAMSQMAVS
I 
  
>ZmAFL4_(GRMZM2G149940_P01) 
MANANGSSTGAGHSDLVRAISHEQHQAFMASVPRAAPGGVNVHHQQHFHQYPAGLIPAPVALPVHAPVS
SQTSPYSAQIAVPPPPPPLIASPDHRLHSLPPTGCYQLDYSPYGNAAAPSQQHTSAIRGFADWGTHSNA
LMSLAHATSFGNNGSSNINNNGLLHQNLSPYTTHTWTTTYVQRPYNTAVYAPATMNMLQTPPFHSNSHE
KESGAVFSNSFNMAPSVTPTSPFQLMSPSSTNYTSTQIFEETNNLEDTSRVFGGGDNESNNSEEPDPKP
AVEMEDLNQGNDHTSNKTANCQDYRMVLRKDLTNSDVGNIGRIVLPKKDAEPNLPILEDKDGLILEMDD
FELPVVWNFKYRYWPNNKSRMYILESTGEFVKRHGLQAKDILIIYRNKKSGRYVARAVKAEDIAPPECE
CVEAGNPREECGFSVSPSINKKIIT 
  
>ZmAFL5_(GRMZM2G405699_P01mod) 
MGQMGGPDGDGPHHQYHYQALLAAVQNPSQGLHVPLHAGAGAPAAGPGPRPGADADASSTHNANATPHS
QPPRAFTDWSASNSAFAAQPAPATTNTPFHYNLSQSYALWTHYMLNKNVSYSTYSTPHEPLRHTHIPDK
YSGCAFSLGFDSFTTMSLGPNICANMTPMERSISAKEPENSEDLPTVVRSSDEMDTRNSGDVRRDTVDT
LPESKQSHESCASVSNKFDSGEYQVILRKELTKSDVANSGRIVLPKKDAEAGLPPLVQGDPLILQMDDM
VLPIIWKFKYRFWPNNKSRMYILEAAGEFVKTHGLQAGDTLIIYKNSVPGKFIIRGEKSIQQTNP 
  
>ZmAFL6_(GRMZM2G125596_P01) 
MGQMGGPDGDGDGGAGPHHQYHYQALLAAVQNPSQGLHPFPLPFHVPLHAGAGAPAAGPGPGADADAST
HNANAAHHSQPPRGFTDWSASNSAFAAVASQPAPATTNTPFHYNLSQSYALWTHYMLNKNVSYSTYPTP
HEEHPHPLRHTHIQENPHPLRHTHIPDKDSGCASSLGFDSFTTMSLGPNICSHMTPMEGSISAKEPENS
EDLPAIVRSSDEMDTRNSGKVHRDTVGTLPESKQSHESCASVNNKFNSGEYQVILRKELTKSDVANSGR
IVLPKKDAEAGLPPLVQGDPLILQMDDMVLPIIWKFKYRFWPNNKSRMYILEAAGEFVKTHGLQAGDAL
IIYKNSVPGKFIIRGEKSIQQTNP 

Supplementary Figure S1 

Supplementary Fig. S1. Deduced amino acid sequences of ZmAFL coding sequences. 
Sequences were retrieved from http://www.maizesequence.org. In the case of multiple gene models, 
preference was given to the model best supported by EST coverage. The gene model of ZmAFL5 was 
extended at its 3' end using the EST sequence DN219455. 

http://www.maizesequence.org/�
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Supplementary Figure S2 

Supplementary Fig. S2. Partial phylogenetic tree of the B3 family of transcription factors. 



Supplementary Figure S3 

Supplementary Fig. S3. ZmAFL4 gene activity in embryo and endosperm. 
The gene activity pattern of ZmAFL4 in dissected endosperms (blue) and embryos (red) during early 
development (9 and 12 DAP) and filling stage (15 and 30 DAP) was determined by qRT-PCR. Error bars 
correspond to the standard deviation calculated from technical triplicates on pools of tissues from more than 
two different plants. 
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Supplementary Figure S4 

Supplementary Fig. S4. Gene activity of ZmAFL genes in different genetic backgrounds. 
The mRNA levels of the indicated ZmAFL genes were determined by qRT-PCR at 12 DAP in ZmAFL2-RNAi 
and wild-type kernels (A), at 15 DAP in ZmAFL4-RNAi and wild-type kernels (B) and at 30 DAP in 
homozygous Zmvp1 and wild-type kernels (C). Error bars correspond to the standard deviation calculated 
from biological replicates, each replicate consisting of 5 kernels from a single heterozygous plant (A,B). 
Error bars correspond to the standard deviation calculated from biological triplicates, each replicate 
consisting of a pool of 4 kernels from a single wild-type or homozygous Zmvp1 plant (C). 
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Supplementary Figure S5 

Supplemental Figure S5. Zein gene activity and protein content in ZmAFL4-RNAi kernels. 
(A) The mRNA level of Zein genes in ZmAFL4-RNAi endosperm at 20 DAP was established by qRT-PCR. 
(B) Total protein content determined by Bradford dosage in ZmAFL4-RNAi endosperms and embryos. Error 
bars correspond to the standard deviation calculated from biological triplicates, each replicate representing a 
different plant, from which at least 50 endosperms or 50 embryos of the same ear were pooled. 



Supplementary Figure S6 

Supplementary Fig. S6. ZmOle gene activity in the Zmvp1 mutant. 
The gene activity pattern of ZmOle1 and ZmOle2 in wild-type (blue) and Zmvp1 mutant kernels (red) was 
determined by qRT-PCR at 20 and 30 DAP. Error bars correspond to the standard deviation calculated from 
biological triplicates, each replicate consisting of a pool of 4 kernels from a single wild-type or homozygous 
Zmvp1 plant. 
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Supplementary Table S1: Gene models encoding B3 domains in maize. 

Gene model % identity1 Source Gene name 
GRMZM2G133398_P02 89 NCBI, Peng et al,2013 ZmAFL3 (ZmVp1) 
GRMZM2G035701_P01 59 NCBI ZmAFL2 
GRMZM2G405699_P01 59 NCBI ZmAFL5 
GRMZM2G149940_P01 58 NCBI, Peng et al,2013 ZmAFL4 
GRMZM2G125596_P01 55 NCBI, Peng et al,2013 ZmAFL6 
GRMZM2G018336_P01 40 NCBI  
GRMZM2G423393_P01 36 NCBI  
GRMZM2G082227_P01 35 NCBI  
GRMZM2G125095_P01 35 NCBI  
GRMZM2G142999_P01 35 NCBI  
GRMZM2G024948_P01 34 Peng et al,2013  
GRMZM2G098443_P01 34 NCBI  
GRMZM2G102059_P01 34 NCBI  
GRMZM5G805685_P01 34 NCBI, Peng et al,2013  
GRMZM2G027253_P01 33 NCBI  
GRMZM2G018485_P01 33 NCBI  
GRMZM2G180168_P01 33 NCBI  
GRMZM2G328742_P01 32 NCBI, Peng et al,2013  
GRMZM2G405170_P01 32 NCBI  
GRMZM2G102938_P01 30 Peng et al,2013  
GRMZM2G126194_P01 25 Peng et al,2013  
GRMZM2G106673_P01 24 Peng et al,2013  
GRMZM2G173321_P02 24 Peng et al,2013  
GRMZM2G111123_P01 23 Peng et al,2013  
GRMZM2G019956_P01 22 NCBI  
GRMZM2G174610_P01 21 Peng et al,2013  
GRMZM2G109480_P01 20 Peng et al,2013  

1 identity with B3 domain of ABI3 
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Supplementary Table S2: Metabolites with significantly altered content in ZmAFL4-RNAi embryo from the strongest 

transformation event.. 

Metabolite Trend 

Average1 

ZmAFL4-

RNAi embryo 

Average1 

WT 

embryo 

SD 

ZmAFL4-

RNAi embryo 

SD 

WT 

embryo 

Ratio 

ZmAFL4-

RNAi /WT 

p-value2 

ANOVA 

Glycerol-3-Phosphate DOWN 4.12 5.63 0.78 0.66 0.73 0.001337 

Valine DOWN 47.33 58.87 1.23 0.92 0.80 0.002639 

Phenylalanine DOWN 1.32 2.12 0.00 0.19 0.62 0.01853 

Arabinose DOWN 0.34 0.40 0.02 0.10 0.84 0.02739 

Leucine DOWN 12.47 23.77 0.28 3.40 0.52 0.03604 

Succinic acid DOWN 0.88 1.48 0.02 0.19 0.59 0.04116 

Erythritol DOWN 69.06 117.22 6.85 23.17 0.59 0.04159 

Tetradecanoic acid DOWN 17.30 29.31 0.12 6.30 0.59 0.04641 

Tyrosine DOWN 8.96 14.48 0.31 1.83 0.62 0.04664 

Ribose DOWN 0.49 0.64 0.06 0.02 0.76 0.04887 
1 Average of three biological replicates (each replicate representing a different plant, from which at least 50 embryos and 50 

endosperms (see Table 2) of the same ear were pooled) expressed in arbitrary units. 

2 In order of statistical significance of the difference between transgenic and wild-type embryo established by one-factor ANOVA. 

. 
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Supplementary Table S3: Primer sequences used in this study. 

Gene model Gene name Primer name Primer sequence (5' to 3') Use 

GRMZM2G035701 ZmAFL2 

ZmAFL2-RNAi-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCTC 

AGCAAGGAGACTTCATCGTGAT 
RNAi construct 

ZmAFL2-RNAi-R 
GGGGACCACTTTGTACAAGAAAGCTGGGTCAGG 

TTGACCGAGGGGTTATTGG 

GRMZM2G149940 ZmAFL4 

ZmAFL4-RNAi-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATC 

GCATCTCCAGACCACCGC 
RNAi construct 

ZmAFL4-RNAi-R 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCAG 

TGTTATAAGGCCTCTGCACGT 

GRMZM2G405699 ZmAFL5 

ZmAFL5-RNAi-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGG 

AGCAGTGATGAAATGGACACTAGAAAC 
RNAi construct 

ZmAFL5-RNAi-R 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCCA 

TGTGTCTTCACGAATTCACCT 

GRMZM2G126010 Actin 
actin-q-F TACCCGATTGAGCATGGCA 

Expression pattern 
actin-q-R TCTTCAGGCGAAACACGGA 

GRMZM2G035701 ZmAFL2 
ZmAFL2-q-F CGACCCGTTCGGTGACTC 

Expression pattern 
ZmAFL2-q-R CACATCTGAGGCCCGGAT 

GRMZM2G133398 ZmVp1 
VP1-q-F AGGTCTCCGGAAGGCGT 

Expression pattern 
VP1-q-R AATATATGGCGGAGTCTGCTG 

GRMZM2G149940 ZmAFL4 
ZmAFL4-q-F GGAAACCCTAGAGAAGAGTGCGGCT 

Expression pattern 
ZmAFL4-q-R TTCTCGGTGTGCTCCTGCGC 

GRMZM2G405699 ZmAFL5 
ZmAFL5-q-F CCTTCTCGCGTAGTCCGTAG 

Expression pattern 
ZmAFL5-q-R GTCTCGACCCGTGGTAGC 

GRMZM2G125596 ZmAFL6 
ZmAFL6-q-F CAGGATCTATAAGGTAAAGGAAGTGG 

Expression pattern 
ZmAFL6-q-R AAATGTTGGTAAAATGAATGAGACAA 

GRMZ2G068506 Brittle2 
BT2-q-F CATACCTCAATCCTCAAGCTCA 

Starch biosynthesis 
BT2-q-R CGCTTCTTTGTCAAGGGGTA 

GRMZM2G348551 Sugary 2 
SU2-q-F GGCTGCTGAATGTTCTCCAT 

Starch biosynthesis 
SU2-q-R CCCATACCTTGGTACCACAAC 

GRMZM2G141399 Dull1 
DU1-q-F GAGGTTTGGTTTCGATGTTCA 

Starch biosynthesis 
DU1-q-R AGGCATCTCGTGGAACGTAA 

Not applicable 1 z1A 
αz1A-q-F GCTCCTTGGTCTTTCTGCAA 

Storage proteins 
αz1A-q-R GGTAACTGCTGTAATAGGGCTGATG 
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z1B 
αz1B-q-F CCAGCCCTATCTTTGGTGCA 

Storage proteins 
αz1B-q-R TCAGTGCGGCCAATTGGTTA 

z1C 
αz1C-q-F TTCCACAATGCTCACTTGCT 

Storage proteins 
αz1C-q-R GTTGTTGTAAGACGCTCGCC 

z1D 
αz1D-q-F GTTGTTGTAAGACGCTCGCC 

Storage proteins 
αz1D-q-R AATGGTAGTAGCTGTTGTGC 

GRMZM2G1387272 
27-kD γ-zein 

 (gz27) 

γz1-q-F AGTGTTGCCAGCAGCTCAG 
Storage proteins 

γz1-q-R TGGACTGGAGGACCAAGC 

GRMZM2G0604292 
16-kD γ-zein  

(gz16) 

γz2-q-F AGTGCGTCGAGTTCCTGAG 
Storage proteins 

γz2-q-R CACCGTATGTCGCCTGGTA 

GRMZM2G1386892 
50-kD γ-zein  

(gz50) 

γz3-q-F CACCAAGCAATCTACAACATGG 
Storage proteins 

γz3-q-R AAGATTGCCACCGCACTTT 

GRMZM2G0862942 
15-kD β-zein 

 (bz15) 

βz-q-F TGTACGAGCCAGCTCTGATG 
Storage proteins 

βz-q-R GTAGCTGGGCAGCTGGTACT 

GRMZM2G1000182 
18-kD δ-zein 

 (dz18) 

δz-q-F CAGCAACTGTTGGCCTCAC 

Storage proteins 
δz-q-R TGGCATCATATTCGGCATC 

 

1: Primers taken from Feng et al., 2009 

2: Primers taken from Woo et al., 2001 
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