

Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.

Mathilde Francin-Allami, Kahina Merah, Cécile Albenne, Hélène Rogniaux, Marija Pavlovic, Virginie Lollier, Richard Sibout, Fabienne Guillon, Elisabeth Jamet, Colette Larre

▶ To cite this version:

Mathilde Francin-Allami, Kahina Merah, Cécile Albenne, Hélène Rogniaux, Marija Pavlovic, et al.. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.. Proteomics, 2015, 15 (13), pp.2296-2306. 10.1002/pmic.201400485 . hal-01204179

HAL Id: hal-01204179 https://hal.science/hal-01204179

Submitted on 19 Sep 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Cell wall proteomic of Brachypodium distachyon grains:
2	A focus on cell wall remodeling proteins
3	
4	Mathilde Francin-Allami ¹ , Kahina Merah ^{1,2,3} , Cécile Albenne ^{2,3} , Hélène Rogniaux ¹ ,
5	Marija Pavlovic ¹ , Virginie Lollier ¹ , Richard Sibout ⁴ , Fabienne Guillon ¹ , Elisabeth Jamet ^{2,3} ,
6	Colette Larré ¹
7	
8	^{1.} INRA, UR 1268 Biopolymères Interactions Assemblages, 44000 Nantes, France
9	^{2.} Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales;
10	BP 42617, F-31326 Castanet-Tolosan, France
11	^{3.} CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
12	^{4.} INRA, Institut Jean-Pierre Bourgin (IJPB) UMR1318, Saclay Plant Science, 78000
13	Versailles, France
14	
15 16	Correspondence : Dr Mathilde Francin-Allami, INRA, UR 1268 Biopolymères Interactions
10	Assemblages, 44000 Nances, Plance
17	E-mail: mfrancin@nantes.inra.fr
18	Fax : +33(0) 2 40 67 50 84
19	
20	Proteomic data are available at: <u>http://www.polebio.lrsv.ups-tlse.fr/WallProtDBSeed/</u>
21	
22	

23 Abstract

Cell walls play key roles during plant development. Following their deposition into the cell 24 wall, polysaccharides are continually remodeled according to the growth stage and stress 25 environment to accommodate cell growth and differentiation. To date, little is known 26 concerning the enzymes involved in cell wall remodeling, especially in gramineous and 27 particularly in the grain during development. Here, we investigated the cell wall proteome of 28 the grain of *Brachypodium distachyon*. This plant is a suitable model for temperate cereal 29 crops. Among the 606 proteins identified, 299 were predicted to be secreted. These proteins 30 were distributed into 8 functional classes; the class of proteins that act on carbohydrates was 31 the most highly represented. Among these proteins, numerous glycoside hydrolases were 32 found. Expansins and peroxidases, which are assumed to be involved in cell wall 33 polysaccharide remodeling, were also identified. Approximately half of the proteins identified 34 in this study were newly discovered in grain and were not identified in the previous proteome 35 36 analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of *B. distachyon* infers a global cell wall proteome consisting of 460 proteins. 37 At present, this is the most extensive cell wall proteome of a monocot species. 38

39

40 Abbreviations: CAZy, carbohydrate-active enzyme; CE, carbohydrate esterase; CL,

41 carbohydrate lyase; CWP, cell wall protein; DAF, day after flowering; DUF, domain of

42 unknown function; GH, glycoside hydrolase; LC-MS/MS, liquid chromatography coupled to

43 tandem mass spectrometry; **mRFP**, monomeric red fluorescent protein; **OR**, oxido-reductase;

44 **PME**, pectin methylesterase; **XTH**, xyloglucan endotransglycosylase/hydrolase.

45

46 Keywords: *Brachypodium distachyon /* Grain / Plant cell wall / Polysaccharide / Proteome

47 **1 Introduction**

Plant cell walls are extracellular matrices that provide the skeletal framework for tissues and play essential roles in protection, cell-to-cell adhesion and growth regulation [1]. In cereal grains, cell walls impact grain filling and germination. In addition to the physiological roles of plant cell walls, they are actively studied for their use in the production of biofuel through the fermentation of the sugars that they contain [2]. As a source of dietary fibers, cell walls also have a major impact on the nutritional quality of cereal foods [3].

54 Cell walls are mostly composed of polysaccharides (pectins, cellulose and hemicelluloses); a 55 smaller proportion consists in cell wall proteins (CWPs) such as structural and enzymatic proteins. In gramineous plants, cell walls contain a low amount of pectic polymers. Their 56 hemicellulose composition consists in a low proportion of xyloglucans and a high content of 57 58 arabinoxylans and (1-3)(1-4)- β -glucans that create the network structure between cellulose microfibrils [4-6]. With the exception of cellulose, oligosaccharide precursors are synthesized 59 in the Golgi apparatus and then transported to the extracellular matrix. Inside the cell wall, 60 these oligosaccharides likely are assembled into larger polysaccharides that can be re-61 arranged to respond to the physiological needs of the plant during their development and in 62 63 response to external constraints [7].

Thus, a complex machinery is required to perform these adaptations. It encompasses the enzymes required for catalyzing the numerous modifications, including transglycosylation ('cutting and pasting' molecules), cross-linking, hydrolysis, transacylation, oxidation and acetylation. CWPs possibly involved in the assembly and remodeling of cell wall components have been described in different plant species [8]; however, the precise function of these proteins is often unknown. Today, the largest cell wall proteome available is that of the dicot model plant *Arabidopsis thaliana*; approximately 500 proteins with a predicted signal peptide

have been identified [9]. Monocot apoplastic or cell wall proteomes were also analyzed in 71 72 Saccharum officinalis [10], in the tropical grass Oryza sativa [11-14], and in temperate grasses including Zea mays and Triticum aestivum [15, 16]. Among the proteins potentially 73 involved in the reorganization of cell wall components, glycoside hydrolases (GHs) are 74 thought to play a central role [17]. GHs belong to one of the largest protein families found in 75 plants; many of these proteins are involved in cell wall remodeling [17]. Other proteins, such 76 77 as class III peroxidases [18, 19] and expansins [20], have been shown to take part in the organization and remodeling of cell wall polysaccharides. Expansins are considered to be 78 loosening agents that regulate cell wall enlargement in growing cells [21]. 79

For a few years, *Brachypodium distachyon* has proved to be a suitable plant model for cereal 80 crops such as wheat and barley; this is due to its small, diploid, and sequenced genome and 81 the existence of an efficient transformation system [22, 23]. In addition, this monocot plant 82 has a small size and a short lifecycle. It begins to produce grains after only a few months of 83 growth. The grains of *B. distachyon* have been recently characterized [24-26], exhibiting the 84 same major cell wall polysaccharides as those encountered in other cereals, but information 85 86 on its cell wall proteome is still lacking. A proteomic analysis of the cell walls of culms and 87 leaves of *B. distachyon* has been recently performed. Among the identified proteins, many of them were assumed to be involved in assembly and remodeling of the cell wall 88 polysaccharides [27]. 89

In this study, our goal was to identify the secreted grain proteins in the gramineous model
plant *B. distachyon*. CWPs were extracted from purified cell walls. Protein identification was
performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).
Among the numerous CWPs identified, we have focused on those possibly involved in cell
wall construction and remodeling. Functional data were obtained by checking the sub-cellular
localization of some CWPs; the transcript level of genes encoding a subset of CWPs was also

analyzed. We compared the cell wall grain proteome with those of vegetative tissues of *B*. *distachyon* that have been previously described. Altogether, these data lead to an enlargement
of the known *B. distachyon* cell wall proteome that further elucidate the mechanisms behind
the organization and remodeling of cell walls in gramineous plants.

100

101 2. Materials and methods

102 2.1. Plant material

103 *B. distachyon* line Bd21 was grown at temperatures of 24°C day/18°C night with a

104 photoperiod of 20 h light/4 h dark. Grains were harvested at 19 days after flowering (DAF)

and frozen in liquid nitrogen prior to storage at -20°C. *Nicotiana tabacum* plants were grown

106 in a growth chamber under a 16 h light/8 h dark photoperiod at temperatures of 24°C

107 day/18°C night for 5-6 weeks prior to *Agrobacterium tumefaciens* infiltration.

108 2.2. Cell wall purification and extraction of CWPs

109 Cell wall purification was performed as previously described [28]. The only protocol

110 modification was that the entire process was scaled-down to allow for the handling of only 0.5

111 g of fresh material. Proteins were extracted via 4 successive incubations with 0.2 M CaCl₂

112 (twice) and 2 M LiCl (twice) as described previously [29]. Two biological repeats were

113 performed.

114 2.3. Identification of proteins by mass spectrometry and bioinformatics

115 Proteins (50 µg) were separated by 1D-electrophoresis in 12% polyacrylamide gels. For MS

analyses, a short migration was performed in 2 cm of gel. After this separation, proteins were

stained with Coomassie Brilliant Blue G250 (Sigma, Saint Louis, MO) as previously

118	described [30]. Each gel lane was cut in 12 slices of approximatively 1.7 mm width. Briefly,
119	these gel pieces were washed three times in 50% (v/v) ACN/25 mM ammonium bicarbonate.
120	Proteins were then reduced using DTT and alkylated with iodoacetamide prior to tryptic
121	digestion as previously described [26].
122	Nanoscale LC-MS/MS analyses of the samples were performed using an Ultimate 3000
123	RSLC system (Thermo-Fisher Scientific, MA, USA) coupled with an LTQ-Orbitrap VELOS
124	mass spectrometer (Thermo-Fisher Scientific). Chromatographic separation was conducted on
125	a reverse-phase capillary column (Acclaim Pepmap C18 2 μ m 100 Å, 75- μ m i.d. x 15-cm in
126	length, Thermo-Fisher) at a flow rate of 300 nL.min ⁻¹ , as previously described [31]. MS data
127	acquisitions were performed using Xcalibur 2.1 software. Full MS scans were acquired at
128	high resolution (FWMH 30,000) using an Orbitrap analyzer (mass-to-charge ratio (m/z): 400
129	to 2000), while collision-induced dissociation (CID) spectra were recorded on the five most

130 intense ions in the linear LTQ traps.

The workflow corresponding to the MS data collection and protein identification is described 131 in Fig. 1 of the Supporting Information. LC-MS/MS spectrum files were processed via two 132 pipelines. Both pipelines were based on the X!tandem peptide search engine from the Global 133 134 Proteome Machine (GPM) [32]. The pipelines were as follows: (i) the X!tandemPipeline available at http://pappso.inra.fr/bioinfo/xtandempipeline used X!tandem version 2008.02.01 135 136 (called TORNADO); and (ii) the Labkey Server platform (v. 13.1) available at 137 https://labkey.com integrated in the Trans Proteomic Pipeline (TPP v. 4.3) used tandem 138 pluggable scoring [33] on GPM X!tandem version 2007.07.01. Protein identification was achieved by confronting MS data against the UniProt Knowledgebase restricted to B. 139 140 distachyon (http://www.uniprot.org/, October 2013) and a contaminant database including human keratins and trypsin. Enzymatic cleavage was declared as a tryptic digestion with one 141 possible miscleavage event. The fixed modifications of cysteine residues by iodoacetamide 142

and the possible oxidation of methionines were considered. Precursor mass and fragment
mass tolerance were set at 5 ppm and 0.5 Da, respectively. Results from the X!tandem
analysis were validated by filtering the peptide e-values below 0.01 in X!tandemPipeline and
p-values greater or equal to 0.995 in PeptideProphet [34], a component of TPP. In both
processes, proteins were identified with at least two peptides according to the above
specifications. For X!tandemPipeline, an additional protein e-value threshold was set to 10e4.

The redundancy of the protein sequence data common to the two biological replicates and to the two pipelines was reduced by clustering; this was done for the later functional analyses of the identified proteins. The Cd-hit software clustered proteins sharing at least 90% of their sequence and produced a set of non-redundant (nr) representative sequences as its output [35].

154 Bioinformatic analysis of identified proteins was performed using the ProtAnnDB tool

155 (<u>www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/</u>) [36]. The sub-cellular localizations of proteins

156 were predicted using different software: TargetP (http://www.cbs.dtu.dk/services/TargetP/),

157 Predotar (https://urgi.versailles.inra.fr/predotar/predotar.html), SignalP

158 (http://www.cbs.dtu.dk/services/SignalP/) and TMHMM

159 (http://www.cbs.dtu.dk/services/TMHMM-2.0/). The protein functions were predicted using

160 PROSITE (<u>http://prosite.expasy.org/</u>), Pfam (<u>http://pfam.xfam.org/</u>) and InterProScan

161 (http://www.ebi.ac.uk/Tools/pfa/iprscan5/) bioinformatic programs [36]. The proteomic data

162 of the present work have been included in the WallProtDB database (www.polebio.lrsv.ups-

163 <u>tlse.fr/WallProtDB/</u>). WallProtDB tools were used for cell wall proteome comparisons.

164

165 **2.4. Immunolabeling**

166 After the 1D-electrophoresis analysis, the separated CWPs (13 µg of proteins per sample)

167 were electrotransferred to a nitrocellulose membrane (Invitrogen, CA, USA). The presence of

168 CWPs was revealed using antibodies against *B. distachyon* GH1 and GH3, which have been

169 previously described [27]. These antibodies were used at a 1: 20000 dilutions, and detection

170 was performed using an alkaline phosphatase-conjugated goat anti-mouse antibody (1:2000

dilution). The enzymatic activity of the alkaline phosphatase was revealed with 5-bromo-4-

172 chloro-3-indoyl phosphate (BCIP) and nitroblue tetrazolium (NBT) (Kit Promega, Madison,

173 WI, USA) according to the manufacturer's instructions.

Sample preparation for the immunofluorescence labeling of grain sections was conducted as described previously [24]. The antibodies were diluted in PBS containing 1% (w/v) BSA and 0.05% (w/v) Tween-20. Dilutions of 1:200 were used for the GH1 and GH3 antibodies. Alexa 546-conjugated secondary antibody (Molecular Probes, CA, USA) was diluted in PBS [1:100 (v/v)]. To remove (1–3) (1–4)- β -glucans, the sections were pre-treated with lichenase (40 U/mL, Megazyme International, Ireland) for 12 h at 38°C. The sections were then rinsed thoroughly with de-ionized water.

181 **2.5. Sub-cellular localization of GH1 and GH3**

182 Total RNA was extracted from 19 DAF grains, culms or leaves (all developmental stages

183 were mixed) of *B. distachyon* using the RNA kit (Qiagen, Courtaboeuf, France). RNA

184 samples were treated twice with the DNase set (Qiagen) and then purified using the RNeasy

185 MinElute Cleanup kit (Qiagen) by following the manufacturer's instructions. Reverse

transcription was carried out with 2 µg of total RNA, random hexamers, and the Transcriptor

187 First Strand cDNA synthesis kit (Roche Applied Science, Mannheim, Germany).

188 The Gateway® cloning system was used to obtain different constructs of interest (Invitrogen,

189 San Diego, CA). The cDNAs encoding GH1 (*Bradi1g10930*) and GH3 (*Bradi1g08570*) were

amplified by polymerase chain reaction (PCR) using specific primers (Supporting Information

191 Table S1). A second PCR was performed with AttB1 and AttB2 primers (Supporting

- 192 Information Table S1). Entry clones were obtained via a BP reaction in pDONR-207
- 193 (Invitrogen). The binary vector pH7RWG2 [37] was used to obtain the final constructs that
- 194 encoded C-terminal mRFP fusions for each of the two CWPs.
- 195 Transient expression of the constructs in tobacco leaf epidermal cells was performed as
- 196 previously described [38]. Transformed A. tumefaciens cultures were resuspended in
- infiltration buffer at OD_{600nm} =0.05. Fluorescence was examined with an inverted Nikon A1
- 198 confocal laser-scanning microscope at 2-3 days after infiltration.
- 199 Cell plasmolysis was performed using infiltrated leaf samples. Samples were placed in a
- solution containing 30% glycerol 5 min before imaging with the confocal microscope.

201 2.6. Semi-quantitative RT-PCR

202 RT-PCR using total RNA samples was carried out as described above; the primers used are

203 described in Supporting Information Table 1. PCR reactions were performed using KOD

204 polymerase (Novagen Inc, Madison, WI, USA) with appropriate buffer, forward and reverse

- primers (1 μ L of 10 μ M solutions), and in a total volume of 25 μ L. PCR products were
- separated on 2% agarose gels by electrophoresis.

207 **3. Results**

208 **3.1. Cell wall fractionation and protein extraction**

209 For the proteomic analysis, *B. distachyon* grains were harvested at 19 DAF. This

210 developmental stage corresponds approximately to the end of the cell differentiation, which 211 occurs immediately before storage accumulation [25]. At 19 DAF, the mass of a single grain is estimated to be approximately 5 mg. The fractionation protocol was derived from Feiz et al. 212 [28], with slight modifications. The protocol was adapted for the limited amount of available 213 material, which was approximately 100 grains per replicate. Approximately 60 mg of 214 215 lyophilized cell wall were obtained for each replicate. Approximately 150 µg of proteins were extracted from each sample using 0.2 M CaCl₂ and 2 M LiCl solutions. The resulting freeze-216 dried extracted proteins (50 µg) were separated by 1D-electrophoresis. The electrophoretic 217 218 profiles of replicates were similar; large number of protein bands was observed between 130 and 20 kDa (Fig. 1). 219

220 To validate the fractionation, an immunoblot was performed using antibodies directed against two known CWPs that belong to the GH1 (Bradilg10930) and GH3 (Bradilg08570) families 221 (Fig. 1). Both target proteins were detected at the expected molecular mass (MM) [27]; two 222 specific bands were detected at 57 and 68 kDa for GH1, and a unique band at 80 kDa was 223 detected for GH3. An immunoblot was performed using a total protein extract from B. 224 225 distachyon grain at 19 DAF using the same antibodies, but no bands were observed (data not shown). This lack of detection may be due to the very low abundance of GH1 and GH3 in the 226 total protein extract. This result confirms that the CWPs are enriched in the cell wall extract. 227

228 **3.2.** Protein identification by MS and bioinformatics

229 CWPs extracted from two independent biological replicates were analyzed by LC-MS/MS
230 after 1D-electrophoresis. All gel slices were analyzed separately. Then, the results obtained

for the gel slices corresponding to the same extract were combined. Only proteins identified 231 232 with at least two peptides present within the same extract were retained. The data were searched against the Uniprot databank using two separated pipelines, both of which were 233 234 based on the same search engine (GPMX!Tandem) with two scoring algorithms. XtandemPipeline works with the X!Ttandem native score. TPP works with the k-score. The 235 use of the XtandemPipeline and TPP pipelines resulted in the identification of 913 and 713 236 237 proteins, respectively; a common subset of 677 proteins was retained to strengthen the identification confidence. Their corresponding sequences were then clustered together 238 according to sequence identity above a threshold of 90% to gather variants of identical 239 240 proteins. The longest sequence within each of these clusters was reported as the representative sequence of the cluster. Altogether, a non-redundant dataset of 606 proteins was deduced 241 from this data analysis and considered for further analyses. 242

243 **3.3 CWPs identified in the grain cell wall proteome**

Predictions of sub-cellular localization and of functional domains were performed using the ProtAnnDB tool [36]. Among the 606 proteins identified, between 48% and 52% were predicted to be secreted. This is consistent with previously reported cell wall proteomic analyses [9, 27]. In this work, depending on the prediction software used, between 10 to 13% of the proteins were predicted to be targeted to the chloroplast, 6 to 11% of the proteins were predicted to be targeted to the mitochondria, and the remaining 28 to 32% had no predicted signal peptide.

For further analyses, we considered proteins to be putative CWPs proteins having a signal
peptide predicted by at least two different bioinformatic programs and lacking an ER retention
signal. A total of 299 proteins met these criteria (Supporting Information Table 2). A list of

these proteins and the corresponding experimental data are available online in the

255 WallProtDB database (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/).

256 CWPs were classified in 8 categories according to their predicted functions, which were

predicted by PROSITE, Pfam and Interpro software [39]. Over a quarter of the proteins (27%)

were predicted to act on carbohydrates, 12% were predicted to be oxido-reductases and 18%

259 were proteins of yet unknown function. The other CWPs were predicted to be proteins related

to lipid metabolism, proteins with interacting domains, proteases, signaling proteins or

261 miscellaneous proteins (Fig. 2). No structural proteins, such as extensin, proline-rich protein,

and glycine-rich protein, were identified.

Among the 299 CWPs identified in our analysis, 146 were newly found in the *B. distachyon* grain cell wall. The remaining proteins, approximately one half, were previously identified in the culm and leaf cell wall proteomes of *B. distachyon* [27].

3.4. Grain CWPs acting on cell wall polysaccharides and oxido-reductases

Eighty-one CWPs acting on cell wall polysaccharides were identified in the B. distachyon 267 grain cell wall proteome. Compared to the culm and leaf cell wall proteomes of *B. distachyon*, 268 269 a greater number of GHs and carbohydrate esterases (CEs) and fewer expansins and oxidoreductases were identified. No carbohydrate lyases (CLs) were found in the grain cell wall 270 proteome, but only one in culm or leaf (Fig. 3A). This subset of proteins consisted mostly of 271 GHs (69), which were sorted into 20 different families (Fig. 3B). GHs are among the largest 272 protein families in plants; many of these proteins are involved in cell wall remodeling [17]. 273 274 The GH families with the greatest number of members in our analysis were GH17, GH3, GH1 and GH28. The other well-represented GH families were GH35, GH51, GH16, GH18 and 275 276 GH19; at least 3 members of each of these families were found. Among the 69 GHs 277 identified, 32 were found only in the grain cell wall proteome and not in the previous

proteomes from *B. distachyon* culms and leaves [27]. GH13, GH51 and GH89 were found
only in the grain cell wall proteome (Fig. 3 B).

Eight CEs were identified in the grain cell wall proteome. Half of these proteins were not
previously found in culms and leaves. These proteins belong to the following two CE
families: CE8, which includes enzymes with pectin methylesterase (PME) activity; and CE16,
which includes proteins with acetylesterase activity. Five expansins were found in grains.
Among them, only two were also found in vegetative organs (Bradi2g53580 and

285 Bradi3g33150).

A total of 35 oxido-reductases (ORs) were identified in the grain cell wall proteome. Of these

proteins, 18 were predicted to be peroxidases (51%), 8 were blue copper binding proteins

288 (23%) and 4 were multicopper oxidases (11%). Although ORs were less represented in the

grain than in culms and leaves (52 ORs), 18 novel ORs were identified in grains. Of these

290 novel ORs, 11 were peroxidases (Fig. 3B; Supporting Information Table 2).

291 **3.5.** Expression pattern of genes corresponding to a subset of CWPs

For some of the CWPs identified in our grain proteomic analysis, we investigated the 292 293 expression of the corresponding genes using total RNA extracted from grains at 19 DAF, culms and leaves of B. distachyon. Semi-quantitative RT-PCR experiments were conducted 294 using primers specific for genes encoding four different CWPs identified in the proteomic 295 296 analysis: a GH3 (Bradi1g08570), a GH18 (Bradi4g09430), a GH19 (Bradi1g29880) and a copper amine oxidase (Bradi5g04070). We used the gene encoding S-adenosylmethionine 297 decarboxylase (SamDC) as a reference; this gene is suitable for normalizing gene expression 298 299 data in *B. distachyon* [40]. As expected, all four genes were expressed in grain (Fig. 3C). This is consistent with the proteomic data. Regarding culms and leaves, there is also correlation 300 between the presence of transcripts and the identification of the protein, except for the copper 301

amine oxidase gene since the protein has not been identified in the cell wall extracts of these
organs [27]. Such discrepancies have already been observed in *A. thaliana* [41, 42].

304 **3.6 Experimental validation of the cell wall localization of GH1 and GH3**

- 305 For further experimental validation of our proteomic data, we used immunolabeling with
- specific polyclonal antibodies to detect two CWPs, GH1 (Bradi1g10930) and GH3
- 307 (Bradi1g08570), in *B. distachyon* grain sections [27]. As observed previously,
- immunoblotting with these two antibodies revealed bands of expected molecular masses with
- the grain CWP extract; in this way, their specificity was confirmed (Fig. 1).
- 310 Grain sections were first subjected to a lichenase pre-treatment to eliminate the large amount
- of β -glucan present in the cell walls of *B*. *distachyon* grains. It was shown that this pre-
- treatment is essential to increase labeling and reveal the antigenic sites [24].

313 Using anti-GH1 antibodies, a significant labeling occurred in the cell wall of the endosperm and external layers of grains (Fig. 4A). Incubation with the corresponding pre-immune serum 314 315 revealed only weak background (Fig. 4B), confirming that the labeling observed with the antibodies was specific. A weak autofluorescence was noticed in the seed coat, the pericarp 316 317 and at the sillon level, even when grain sections were not subjected to immunolabeling (data not shown). This made it difficult to detect a difference between autofluorescence and specific 318 319 labeling in these tissues. In contrast, the fluorescence was doubtless specific in the endosperm 320 and the nucellus epidermis.

Specific immunolabeling was also revealed with anti-GH3 antibodies at the cell wall level in the endosperm and the nucellus epidermis (Fig. 4 C, D). For the same reasons discussed above, it is difficult to differentiate autofluorescence from specific labeling in the other outer layers. However, fluorescent labeling with anti-GH3 or anti-GH1 antibodies appeared to be more intensive in the central endosperm than in the peripheral endosperm.

The immunolabeling experiments confirmed the presence of two CWPs (GH1, Bradi1g10930; 326 GH3, Bradi1g08570) in the cell walls of *B. distachyon* grains and suggested their tissue 327 localization. To go further, we generated C-terminal mRFP fusions of the two proteins under 328 329 the control of the CaMV 35S promoter using an appropriate binary vector. The constructs contained the signal peptide of the corresponding GHs. The mRFP constructs were transiently 330 expressed in N. tabacum leaves via A. tumefaciens infiltration. The sub-cellular localization of 331 the fusion proteins was analyzed by confocal laser scanning microscopy. The fluorescence of 332 GH1-mRFP and GH3-mRFP was detected at the periphery of the cells; this was consistent 333 with localization to the cell wall (Fig. 5 A, C). A plasmolysis of the agro-infiltrated leaf pieces 334 was performed to separate the plasma membranes from the cell walls. A calcofluor labeling of 335 cells allowed for the demarcation of the cell wall. The results indicated that GH1 was present 336 not only in the cell wall, but was also present in the apoplastic compartment (Fig. 5B). A 337 338 similar result was obtained when the exogenous marker Sec-mRFP was used (Fig. 5F). The fluorescence of GH3-mRFP indicated localization of the fusion protein to the apoplast rather 339 340 than to the cell wall (Fig. 5D).

4. Discussion

Although the seed proteome of several monocot species, including rice, wheat and barley, are well characterized, little is known concerning the cell wall proteome of monocot seeds. The cell wall of *B. distachyon* grains has been recently analyzed during all developmental stages, and the composition of its polysaccharides shares similarities with other cereal cell walls. This suggests that *B. distachyon* is a good model for the study of the cell wall of monocots. The proteomic analysis of the cell wall of *B. distachyon* grains performed in this work contributes to the knowledge of the cereal grain cell wall proteome, with a specific focus on the proteins involved in the assembly and remodeling of cell wall polysaccharides.

The protocol, initially developed to purify the cell walls of *A. thaliana* hypocotyls [28] and recently adapted for the culms and leaves of *B. distachyon* [27], was successfully optimized for the fractionation of cell walls from *B. distachyon* grains. The resulting cell wall fraction corresponded approximately to one third of the initial dry mass of the grain. The extraction of the proteins from these cell wall fractions allowed us to obtain a total protein amount sufficient for further work, with a yield of approximately 0.25% (m/m) of the lyophilized cell wall.

It is well documented that the use of different database search engines in proteomics may lead to some differences in protein identification [43]. A key component of search engines is the scoring method [33]. To generate meaningful results, the proteins were identified using two different pipelines. Those having a predicted peptide signal and no ER retention signal were considered to be CWPs. This list of CWPs corresponded to approximately one half of the total identified proteins; this reflects a good efficiency in cell wall fractionation and CWP extraction. Such a proportion of predicted secreted proteins in cell wall proteomes has been reported in the young leaves of *B. distachyon*; this proportion was greater in mature leaves and stems [27].

The CWPs identified in this work were distributed into 8 of the 9 previously defined functional classes [39]. As in the cell walls of the vegetative tissues of *B. distachyon*, no structural proteins were identified in the grain. This supports the idea that structural proteins are much less abundant in the grasses than in dicots, or that these proteins are more difficult to extract [44]. Among the CWPs identified in *B. distachyon* grains, the proteins acting on cell wall polysaccharides were the most highly represented (27%); a significant proportion of these proteins were GHs. These enzymes are involved in diverse processes in plants, including starch metabolism, defense, and cell-wall remodeling. In *B. distachyon*, 356 GH genes were identified, and the corresponding proteins were sorted into 34 GH families [45]. In this work, a total of 69 proteins in 20 GH families were identified. Of these proteins, 32 were not found in other organs analyzed thus far. The most highly represented families were the GH17, GH1 and GH3 protein families, with more than 6 proteins identified for each; this finding was consistent with the high number of genes belonging to each family, which is between 30 to 50 [45].

The GH17 family contains enzymes able to degrade mainly (1-3)- or (1-3)(1-4)- β -glucans. In *B. distachyon* grains, the presence of these enzymes can be correlated with a high abundance of (1-3)(1-4)- β -D-glucan in both the aleurone and endosperm cell walls [24]. The GH1 family members are well represented in both dicots and monocots. Enzymes from the GH1 family share a broad range of activities, such as β -D-glucosidase, β -mannosidase, β -galactosidase, β -xylosidase, β -D-fucosidase and exo- β -1,4-glucanase. The characterization of a GH1 from rice (Os4bglu12) revealed that the protein had high exoglucanase activity; this finding was consistent with a role for the enzyme in cell wall metabolism [46]. GH3 proteins were well represented in our study and in grass cell walls in general. These proteins exhibit broad substrate specificities and act on arabinoxylans and (1-3)(1-4)- β -D glucans, the most highly

represented hemicelluloses in grasses [17]. In both the GH1 and GH3 families, some identified proteins have already been found in the vegetative tissues of *B. distachyon* [27]. The immunolabeling of one GH1 (Bradi1g10930) and one GH3 (Bradi1g08570) revealed their presence mainly in the cell walls of the endosperm of *B. distachyon* grains. The subcellular localization of Bradi1g10930 (GH1) and Bradi1g08570 (GH3) confirmed their secretion into the apoplast. Only Bradi1g10930 was also localized to the cell wall; this finding suggests that GH1 possibly interacts with cell wall polysaccharides or cell wall anchored proteins.

The 32 GHs identified only in the grain belong to 14 GH families. Three of these families (GH13, 51 and 89) have never been found in other organs (either culms or leaves) in B. distachyon. GH13 is a very large family that includes mostly a-amylases, which are abundant in grain. The members identified here are predicted to contain an α -amylase catalytic domain; this suggests that these proteins can be contaminants coming from the intracellular compartment. On the contrary, the GH89 family is poorly represented in monocots. Only one or two GH89 genes have been identified in the rice and *B. distachyon* phylogenomic database of GHs [45, 47]. A unique activity, α -N-acetylglucosaminidase, has been described in this family. The GH51 family was better depicted, with four protein members identified. This family includes α -L-arabinofuranosidases and β -xylosidases. It was demonstrated that enzymes extracted from germinated barley grain belonging to the GH51 family modify the heteroxylan fine structure by removing arabinofuranosyl residues from cell wall arabinoxylans during growth and development in barley [48]. In the cell walls of wheat endosperm, the level of arabinoxylan branching decreases during the grain filling period; this phenomenon highly impacts the physico-chemical properties of grains [49, 50]. Further investigation into the grain-specific GH51 family of B. distachyon should be performed to

determine the precise role of the enzymes in arabinoxylan restructuring during grain development.

In addition to GH proteins, we identified CEs and expansins as proteins acting on cell wall polysaccharides. Only two CE families were found, CE8 and CE16, with a number of proteins slightly higher in the grain compared to the vegetative organs [27]. CE8 are PMEs that remove the methyl group from methyl-esterified galacturonic acid (GalA) residues within pectins in the apoplast [51]. This is a significant biological event in processes such as cell wall turnover, fruit ripening and pathogenesis [52]. In *A. thaliana* seeds, demethylesterification alters the physico-chemical properties of endosperm cell walls and contributes to the emergence of the radicle during germination [53]. The CE16 family includes acetylesterases that are active on pectins and xylans. The acetylation of arabinoxylans was detected in wheat during the early stages of development [54]. It was demonstrated that the modulation of pectin acetylation affects the remodeling and physiochemical properties of cell wall polysaccharides and plays a key role in cell extensibility.

Five expansins were found in the cell wall proteome of *B. distachyon* grains. The mechanism of action of these proteins consists in the disruption of hydrogen bonds between cellulose microfibrils and cross-linking glycans. Expansins induce the extension and loosening of plant cell walls and participate in plant cell growth, cell wall disassembly and cell separation [20]. In the wheat grain, they were also suggested as a potential factor in the final determination of grain size [55].

Among the 31 proteins with unknown function and only identified in grain, six belonging to the cupin superfamily were previously annotated as being 11S and 7S types of seed storage proteins [26], and could be considered as contaminants in a first instance. However, the cupin superfamily is extremely diverse, and may include proteins with other activities than seed

storage [56]. We therefore decided to keep cupin proteins in the CWP list. We also identified two DUF1680 proteins, which have been recently classified in the new GH127 family according to the CAZy database (Bradi1g36027 and Bradi3g07047) [57]. One DUF1680 protein was very recently characterized as a novel β -L-arabinofuranosidase which could play a role in the degradation of cell wall polysaccharides as well as hydroxyproline-rich glycoproteins [58]. Two DUF538 proteins were also found only in grain and not in vegetative organs of *B. distachyon* (Bradi1g25270 and Bradi4g21520). This protein family was recently nominated as the potential structural and functional homologue of the BPI (Bactericidal/Permeability Increasing) protein in plants [59].

In addition to the functional class of proteins that act on cell wall polysaccharides, enzymes belonging to the oxido-reductase superfamily may play an important role in cell wall assembly and remodeling. Eighteen class III peroxidases were identified in our analysis; 11 of these proteins were found only in the grain proteome. Class III peroxidases are involved in cell elongation, cell wall construction, and in the response to various abiotic stresses and biotic plant pathogens [18]. In rice shoot development, an increase in the activity of cell wall-bound peroxidases is correlated with diferulic acid content; this phenomenon suggests that wall-bound peroxidases are involved in the regulation of diferulic acid formation [60]. The high content of ferulic acid esterified to the arabinosyl residues of arabinoxylans in the *B. distachyon* cell wall could explain the large proportion of peroxidases found in the cell wall proteome of grains. Cross-linkages of arabinoxylans by diferulic acid (DFA) creates a rigid network within the cell wall architecture [61]. The level of wall-bound DFA is involved in determining the rigidity of the cell walls of gramineous plants [62]. Peroxidases may also play an important role in seed germination, as the up-regulation of peroxidase genes in barley and rice appears to be conserved [63].

Taken together, this work provides an overview of the proteins that are predicted to be secreted in the cell walls of *B. distachyon* grains harvested at 19 DAF. Combined with previous data obtained from culms and leaves, the global cell wall proteome of *B. distachyon* contains 460 proteins. Currently, this is the best-documented cell wall proteome from a monocot species. Although the precise functions of these proteins remain poorly understood, it is highly probable that many proteins are involved in the construction and remodeling of the cell wall. Further characterization of these CWPs should provide a better understanding of the mechanisms involved in cell wall organization.

Acknowledgements

This work was supported by INRA funding. EJ and CA acknowledge CNRS and the Paul Sabatier University-Toulouse 3 (UPS) for their financial support. The authors wish to thank the following contributors: Axelle Bouder for experimental validation; Camille Alvarado and Brigitte Bouchet for immunolabeling of *B. distachyon* grain sections (INRA, platform BIBS); Séverine Ho-Yue-Kuang for helping with *B. distachyon*; Sébastien Anthelme (INRA, Versailles) and Sabine Delgrange (LBPV, Nantes University) for *B. distachyon* and tobacco plant culture, respectively; Laurent Hoffmann (LRSV, UPS) for his advice concerning cell plasmolysis; and Hélène San Clemente (LRSV, UPS) for adding the data to WallProtDB. The GH1 and GH3 antibodies were obtained in the frame of the CELLWALL

ANR project (Grant Génoplante/PCS-08-KBBE-003/CELL WALL).

References

[1] Wolf, S., Hematy, K., Hofte, H., Growth control and cell wall signaling in plants. *Annu. Rev. Plant Biol.* 2012, *63*, 381-407.

[2] Nookaraju, A., Pandey, S., Bae, H., Joshi, C., Designing Cell Walls for Improved Bioenergy Production. *Mol. Plant* 2013, *6*, 8-10.

[3] Saulnier, L., Sado, P., Branlard, G., Charmet, G., Guillon, F., Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. *J.Cereal Sci.* 2007, *46*, 261-281.

[4] Carpita, N., Structure and biogenesis of the cell walls of grasses. *Annu. Rev.Plant Physiol. Plant Mol. Biol.* 1996, *47*, 445-476.

[5] Obel, N., Porchia, A., Scheller, H., Dynamic changes in cell wall polysaccharides during wheat seedling development. *Phytochemistry* 2002, *60*, 603-610.

[6] Chateigner-Boutin, A. L., Bouchet, B., Alvarado, C., Bakan, B., Guillon, F., The wheat grain contains pectic domains exhibiting specific spatial and development-associated distribution. *PLoS One* 2014, *9*, e89620.

[7] Toole, G. A., Le Gall, G., Colquhoun, I. J., Nemeth, C., *et al.*, Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. *Planta* 2010, *232*, 677-689.

[8] Albenne, C., Canut, H., Hoffmann, L., Jamet, E., Plant cell wall proteins : a large body of data, but what about runaways ? *Proteomes* 2014, *2*, 224-242.

[9] Albenne, C., Canut, H., Jamet, E., Plant cell wall proteomics: the leadership of Arabidopsis thaliana. *Front Plant Sci.* 2013, *4*, 111.

[10] Calderan-Rodrigues, M. J., Jamet, E., Bonassi, M. B., Guidetti-Gonzalez, S., et al., Cell wall proteomics of sugarcane cell suspension cultures. *Proteomics* 2014.

[11] Kim, S. G., Wang, Y., Lee, K. H., Park, Z. Y., *et al.*, In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. *J. Proteomics* 2013, *78*, 58-71.

[12] Song, Y., Zhang, C., Ge, W., Zhang, Y., *et al.*, Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. *J. Proteomics* 2011, *74*, 1045-1067.

[13] Zhou, L., Bokhari, S. A., Dong, C. J., Liu, J. Y., Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. *PLoS One* 2011, *6*, e16723.

[14] Pandey, A., Rajamani, U., Verma, J., Subba, P., *et al.*, Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. *J. Proteome Res.* 2010, *9*, 3443-3464.

[15] Zhu, J., Alvarez, S., Marsh, E. L., Lenoble, M. E., *et al.*, Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. *Plant Physiol*. 2007, *145*, 1533-1548.

[16] Kong, F. J., Oyanagi, A., Komatsu, S., Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. *Biochim. Biophys. Acta* 2010, *1804*, 124-136.

[17] Minic, Z., Physiological roles of plant glycoside hydrolases. *Planta* 2008, *227*, 723-740.

[18] Passardi, F., Penel, C., Dunand, C., Performing the paradoxical: how plant peroxidases modify the cell wall. *Trends Plant Sci.* 2004, *9*, 534-540.

[19] Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., *et al.*, Roles of cell wall peroxidases in plant development. *Phytochemistry* 2014.

[20] Sampedro, J., Cosgrove, D. J., The expansin superfamily. *Genome Biol.* 2005, *6*, 242.

[21] Cosgrove, D., Li, L., Cho, H., Hoffmann-Benning, S., et al., The growing world of expansins. *Plant Cell Physiol*.2002, *43*, 1436-1444.

[22] Genome sequencing and analysis of the model grass Brachypodium distachyon. *Nature* 2010, *463*, 763-768.

[23] Draper, J., Mur, L. A., Jenkins, G., Ghosh-Biswas, G. C., *et al.*, Brachypodium distachyon. A new model system for functional genomics in grasses. *Plant Physiol* 2001, *127*, 1539-1555.

[24] Guillon, F., Bouchet, B., Jamme, F., Robert, P., *et al.*, Brachypodium distachyon grain: characterization of endosperm cell walls. *J.Exp. Bot.* 2011, *62*, 1001-1015.

[25] Guillon, F., Larre, C., Petipas, F., Berger, A., *et al.*, A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. *J.Exp. Bot.* 2012, *63*, 739-755.

[26] Larre, C., Penninck, S., Bouchet, B., Lollier, V., *et al.*, Brachypodium distachyon grain: identification and subcellular localization of storage proteins. *J.Exp. Bot.* 2010, *61*, 1771-1783.

[27] Douche, T., San-Clemente, H., Burlat, V., Roujol, D., *et al.*, Brachypodium distachyon as a model plant toward improved biofuel crops: Search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. *Proteomics* 2013, *13*, 2438-2454.

[28] Feiz, L., Irshad, M., Pont-Lezica, R. F., Canut, H., Jamet, E., Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. *Plant Methods* 2006, *2*, 10.

[29] Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., Jamet, E., A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. *BMC Plant Biol.* 2008, *8*, 94.

[30] Devouge, V., Rogniaux, H., Nesi, N., Tessier, D., *et al.*, Differential proteomic analysis of four near-isogenic Brassica napus varieties bred for their erucic acid and glucosinolate contents. *J.Proteome Res.* 2007, *6*, 1342-1353.

[31] Suliman, M., Chateigner-Boutin, A., Francin-Allami, M., Partier, A., *et al.*, Identification of glycosyltransferases involved in cell wall synthesis of wheat endosperm. *J. Proteomics* 2013, *78*, 508-521.

[32] Craig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. *Bioinformatics* 2004, *20*, 1466-1467.

[33] MacLean, B., Eng, J. K., Beavis, R. C., McIntosh, M., General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. *Bioinformatics* 2006, *22*, 2830-2832.

[34] Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. *Anal. Chem.* 2002, *74*, 5383-5392.

[35] Li, W., Godzik, A., Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 2006, *22*, 1658-1659.

[36] San-Clemente, H. S., Pont-Lezica, R., Jamet, E., Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. *Bioinform. Biol. Insights* 2009, *3*, 15-28.

[37] Karimi, M., De Meyer, B., Hilson, P., Modular cloning in plant cells. *Trends Plant Sci.* 2005, *10*, 103-105.

[38] Sparkes, I. A., Runions, J., Kearns, A., Hawes, C., Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. *Nat. Protoc.* 2006, *1*, 2019-2025.

[39] Jamet, E., Albenne, C., Boudart, G., Irshad, M., *et al.*, Recent advances in plant cell wall proteomics. *Proteomics* 2008, *8*, 893-908.

[40] Hong, S. Y., Seo, P. J., Yang, M. S., Xiang, F., Park, C. M., Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. *BMC Plant Biol.* 2008, *8*, 112.

[41] Jamet, E., Roujol, D., San-Clemente, H., Irshad, M., et al., Cell wall biogenesis of Arabidopsis thaliana elongating cells: transcriptomics complements proteomics. *BMC Genomics* 2009, *10*, 505.

[42] Minic, Z., Jamet, E., San-Clemente, H., Pelletier, S., *et al.*, Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. *BMC Plant Biol.* 2009, *9*, 6.

[43] Shteynberg, D., Nesvizhskii, A. I., Moritz, R. L., Deutsch, E. W., Combining results of multiple search engines in proteomics. *Mol. Cell. Proteomics* 2013, *12*, 2383-2393.

[44] Vogel, J., Unique aspects of the grass cell wall. *Curr. Opin. Plant Biol.* 2008, *11*, 301-307.

[45] Tyler, L., Bragg, J. N., Wu, J., Yang, X., *et al.*, Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. *BMC Genomics* 2010, *11*, 600.

[46] Opassiri, R., Pomthong, B., Onkoksoong, T., Akiyama, T., *et al.*, Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 beta-glucosidase. *BMC Plant Biol.* 2006, *6*, 33.

[47] Sharma, R., Cao, P., Jung, K. H., Sharma, M. K., Ronald, P. C., Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research. *Front. Plant Sci.* 2013, *4*, 330.

[48] Lee, R. C., Burton, R. A., Hrmova, M., Fincher, G. B., Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. *Biochem. J.* 2001, *356*, 181-189.

[49] Saulnier, L., Robert, P., Grintchenko, M., Jamme, F., *et al.*, Wheat endosperm cell walls: Spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. *J. Cereal Sci.* 2009, *50*, 312-317.

[50] Ying, R., Rondeau-Mouro, C., Barron, C., Mabille, F., *et al.*, Hydration and mechanical properties of arabinoxylans and beta-D-glucans films. *Carbohydrate Polymers* 2013, *96*, 31-38.

[51] Harholt, J., Suttangkakul, A., Vibe Scheller, H., Biosynthesis of pectin. *Plant Physiol.* 2010, *153*, 384-395.

[52] Pelloux, J., Rustérucci, C., Mellerowicz, E. J., New insights into pectin methylesterase structure and function. *Trends Plant Sci*. 2007, *12*, 267-277.

[53] Muller, K., Levesque-Tremblay, G., Bartels, S., Weitbrecht, K., *et al.*, Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. *Plant Physiol.* 2013, *161*, 305-316.

[54] Veličković, D., Ropartz, D., Guillon, F., Saulnier, L., Rogniaux, H., New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. *J. Exp. Bot.* 2014, *65*, 2079-2091.

[55] Lizana, X. C., Riegel, R., Gomez, L. D., Herrera, J., *et al.*, Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). *J. Exp. Bot.* 2010, *61*, 1147-1157.

[56] Galperin, M. Y., Koonin, E. V., Divergence and convergence in enzyme evolution. *J. Biol. Chem.* 2012, *287*, 21-28.

[57] Park, B., Karpinets, T., Syed, M., Leuze, M., Uberbacher, E., CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. *Glycobiology* 2010, *20*, 1574-1584.

[58] Fujita, K., Takashi, Y., Obuchi, E., Kitahara, K., Suganuma, T., Characterization of a novel beta-Larabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. *J. Biol. Chem.* 2014, *289*, 5240-5249.

[59] Gholizadeh, A., Kohnehrouz, S. B., DUF538 protein super family is predicted to be the potential homologue of bactericidal/permeability-increasing protein in plant system. *Protein J.* 2013, *32*, 163-171.

[60] Wakabayashi, K., Soga, K., Hoson, T., Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate network in cell walls of developing rice shoots. *J. Plant Physiol.* 2012, *169*, 262-267.

[61] Fry, S., Cross-linking of matrix polymers in the growing cell-walls of angiosperms. *Annu. Rev.Plant Physiol.Plant Mol. Biol.* 1986, *37*, 165-186.

[62] Kamisaka, S., Takeda, S., Takahashi, K., Shibata, K., Diferulic and ferulic acid in the cell-wall of avena coleoptiles - their relationships to mechanical-properties of the cell-wall. *Physiol. Plantarum* 1990, *78*, 1-7.

[63] Lin, L., Tian, S., Kaeppler, S., Liu, Z., An, Y. Q., Conserved transcriptional regulatory programs underlying rice and barley germination. *PLoS One* 2014, *9*, e87261.

Legends to figures

Figure 1. A. 1D-electrophoretic pattern of the *B. distachyon* CWPs extracted from grains harvested at 19 DAF. Ten µg of CWPs were loaded on a 12% polyacrylamide gel and stained with Coomassie brilliant blue. **B.** Immunolabeling of GH1 (Bradi1g10930) and GH3 (Bradi1g08570) using antibodies specific to the respective proteins. **GH1**: theoretical molecular mass: 53.7 kDa; apparent molecular masses: 57 and 68 kDa. **GH3**: theoretical molecular mass: 67.5 kDa; apparent molecular mass: 80 kDa. Molecular mass (MM) markers are indicated in kDa.

Figure 2. Overview of the grain cell wall proteome: distribution of CWPs in functional classes according to predicted functions provided by Pfam and Interpro software programs. **Figure 3.** Comparison of carbohydrate acting proteins and oxido-reductases, and the expression profile of some corresponding genes in the grain and vegetative organs of *B. distachyon* (culms and leaves). **A.** Distribution of CWPs into the oxido-reductase functional class and the different families of proteins acting on carbohydrates. GHs, glycosyl hydrolases; CEs, carbohydrate esterases; CLs, carbohydrate lyases; ORs, oxido-reductases **B.** Distribution of carbohydrates acting proteins, and oxido-reductases identified only or commonly in the cell wall proteomes of grains and of vegetative organs. Arrows indicate the GH families for which members were identified only in the grain proteome. Results are expressed as the numbers of identified proteins. **C.** Expression profile of genes corresponding to a subset of four CWPs identified in the proteomic analysis by semi-quantitative RT-PCR using total RNAs extracted from culms (C), leaves (L) or grain (G).The SamDC gene was used for the normalization of the PCR reactions.

Figure 4. Immunolocalization of Bradi1g10930.1 (GH1) and Bradi1g08570.1 (GH3) in *B. distachyon* grain harvested at 19 DAF. Serial cross-sections have been labeled with immune sera (**A**: anti-GH1; **C**: anti-GH3) or the corresponding PISs (**B**: PIS-GH1; **D**: PIS-GH3) used

as negative controls. For each cross section, higher magnification of an endosperm and external layers region are shown. Scale bars= $50 \mu m$.

Figure 5. Sub-cellular localization of Bradi1g10930.1 (GH1) and Bradi1g08570.1 (GH3) fused to a fluorescent protein in *N. tabacum* leaf epidermal cells. Confocal images showing mRFP (red) fusion proteins in leaf epidermal cells 2–3 days after agro-infiltration. Images of non-plasmolyzed cells expressing GH1-mRFP (**A**), GH3-mRFP (**B**), the apoplastic marker Sec-mRFP (**C**), and plasmolysis cells expressing GH1-mRFP (**B**), GH3-mRFP (**D**), the apoplastic marker Sec-mRFP (**F**) and staining with calcofluor (blue) and merged images. Arrows indicate the apoplastic compartment. Scale bars=10 μm.

Unknown function

