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The scientific presentations at the First International
Brachypodium Conference (abstracts available at http://
www.brachy2013.unimore.it) are evidence of the wide-
spread adoption of Brachypodium distachyon as a model
system. Furthermore, the wide range of topics presented
(genome evolution, roots, abiotic and biotic stress, com-
parative genomics, natural diversity, and cell walls)
demonstrates that the Brachypodium research communi-
ty has achieved a critical mass of tools andhas transitioned
from resource development to addressing biological
questions, particularly those unique to grasses.

A model for grass genome organization
This report highlights recent advances made in Brachypo-
dium research, focusing on the use of B. distachyon and
related species to understand biological processes. Its ex-
perimental and genomic tractability allow B. distachyon to
act as a functional genomic test-bed to accelerate the im-
provement of grain, forage, and biomass crops. Its strengths
as a model plant (e.g., short generation time, efficient
Agrobacterium-mediated transformation, and availability
of mutant collections) are described in [1] and other reviews
published in the past 5 years. The main web portal for

Brachypodium (http://www.brachypodium.org) contains a
genome browser and links to community resources. In addi-
tion, two project-specific websites (http://brachypodium.
pw.usda.gov/ and http://www-urgv.versailles.inra.fr/tilling/
brachypodium.htm) provide access to T-DNA and Tilling
resources, respectively.

The compact nature of the fully sequenced [2] Brachy-
podium distachyon genome is a major reason for the suc-
cess of B. distachyon as a model system, and provides
unique opportunities to study various aspects of grass
genome organization and evolution. Moreover, as a mono-
cot reference, it permits comparisons of genomic landscape
dynamics with the dicot model Arabidopsis thaliana. Thus,
B. distachyon has become an appealing target for plant
molecular cytogenetics.

One of the most informative cytomolecular tools is
chromosome painting (CP), which enables unique and
unambiguous visualization of individual chromosomes or
large segments, both during cell division and even at
interphase, using fluorescence in situ hybridization with
specific DNA probes. CP was initially applied to vertebrate
systems. Whole-genome sequencing (WGS) and large-
insert genomic DNA libraries allow its application to
small-genome plants such as A. thaliana. The sequencing
of the B. distachyon genome [2] combined with its low
(5) chromosome number and a well-developed cytogenetic
infrastructure has allowed the CP of several Brachypodium
species [3], a pioneering application of CP in monocots.

The chromosomes of B. distachyon can be selectively
painted to address important questions about grass genome
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structure and evolution (in Figure 1 we demonstrate how
they are arranged at interphase). CP of B. distachyon chro-
mosome 2 (Bd2) in the nuclei of root cells revealed that Bd2
homologous chromosome territories can assume four differ-
ent configurations that are observed at different frequencies
(Figure 1A). This is one example where research in Brachy-
podium could lead the wayin determining whether and how
nuclear structure is linked to cell differentiation and tissue-
specific gene expression.

A tractable model for inter- and intraspecific diversity
The genus Brachypodium contains 15–18 species with
unusually variable chromosome numbers and ploidy
levels. This diversity was a subject of interest long before
B. distachyon became a model grass. WGS of B. distachyon

[2], together with the advent of inexpensive next-
generation sequencing (NGS) technologies, set the stage
for high-resolution investigation of the genomic diversity
and evolutionary relationships in the genus.

It was recently demonstrated that ‘B. distachyon’ is a
complex of three separate species: two diploids (B. distach-
yon, B. stacei) and their derived allotetraploid (B. hybri-
dum) ([4] and Figure 1B). The genomes of B. stacei and
B. hybridum are being sequenced, and gene expression is
being compared between all three species, to serve as a
model for speciation through adaptation and polyploidiza-
tion. To develop further this trio of species as a model for
plant polyploidy, allopolyploids are being developed
through interspecific hybridization between B. distachyon
and B. stacei with the aim of reproducing B. hybridum
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Figure 1. (A) Different arrangements of the Bd2 homologous chromosome territories (CTs) and the observed frequencies (%) of their occurrence in interphase nuclei of

roots of B. distachyon: (i) complete association; (ii) top (green fluorescence) and (iii) bottom (red fluorescence), arm-only association; (iv) complete separation. Chromatin

stained with DAPI (40,6-diamidino-2-phenylindole; blue fluorescence). Scale bars: 5 mm. For better visualization the respective arrangements of CTs have been schematically

shown on the diagrams next to photomicrographs. Documentation courtesy of Ewa Breda (University of Silesia in Katowice, Poland). (B) Evolution of the three

B. distachyon-complex species. Summarized low-copy nuclear GIGANTEA (GI) gene tree showing the phylogenetic reconstruction of B. stacei, B. distachyon, and

B. hybridum [B. hybridum shows GI copies from both stacei-type (BsBs genome) and distachyon-type (BdBd genome) parents, coinherited from bidirectional crosses].

(C) Fusarium head blight symptoms on Bd21 spikes following point inoculation (red arrow) with Fusarium graminearum strain FgUK1 at 6 days after inoculation. An

asymptomatic spike (green arrow) is shown for comparison. Scale bar, 1 cm. Photograph courtesy of Paul Nicholson and Antoine Peraldi (John Innes Centre, UK).
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(Vinh Ha Dinh Thi and B.C., unpublished). This system
offers experimental advantages (compact genomes with
little repetitive DNA, small and easily grown plants that
can be transformed efficiently) that will facilitate investi-
gating the role of polyploidy in speciation and adaptation, a
topic of great interest to cereal breeders.

The analysis of intraspecific diversity in B. distachyon is
also underway through NGS resequencing of 54 diverse
natural accessions. High polymorphism rates of up to one
single-nucleotide polymorphism (SNP) per 200 bp have
been detected (J.P.V., unpublished). Because the B. dis-
tachyon accessions display considerable phenotypic varia-
tion in a plethora of economically important traits
(e.g., seed size, biomass, cell wall composition, flowering
time), knowledge of genome sequence variation will facili-
tate genome-wide association mapping and positional clon-
ing of economically important genes. In addition, several
mutant populations have been established [1] that will
greatly increase the utility of these new sequence resources.

A model for abiotic stress
B. distachyon, B. stacei, and B. hybridum all grow in a wide
range of habitats under marked environmental gradients.
Distinct genotypes are thus subject to different abiotic
stresses which might have exerted, from speciation until
present, different selective pressures on stress tolerance-
related traits.

Detection of adaptive variation of stress-tolerance traits
in response to abiotic conditions requires the following: (i)
significant genetic variation in the trait of interest, (ii) a
match between adaptive genetic variation and environ-
mental variation (e.g., local adaptation across the gradi-
ent), and (iii) positive selection for these traits in genotypes
growing under abiotic stress. Progress has been made in
screening for natural variation in stress tolerance among
B. distachyon accessions (reviewed in [1]), the first step
towards determining the heritability of adaptive traits.
However, full understanding of the adaptive significance
of tolerance trait variation awaits experimental evaluation
of the effects of such variation on fitness in natural popula-
tions.

Progress toward understanding abiotic stress adapta-
tion at a molecular level is being made. Promising results
come from the recent characterization of a microRNA
(miRNA) network controlling cell division during stress,
part of a search for epigenomic regulatory mechanisms
underlying drought stress [5]. Further, evidence of ancient
adaptive evolution of temperate Pooideae species was
inferred from nucleotide substitution rates and signatures
of positive selection in genes induced by low temperature
[6]. Finally, adapted genotypes of B. distachyon and
B. hybridum may reveal how genomic changes such as
whole-genome duplication influence ecological tolerances
to abiotic stress. In fact,differential tolerance to water stress
between B. distachyon and B. hybridum seems to drive the
ecogeographical differentiation of these species [7].

A model pathosystem for multiple cereal diseases
Pests and pathogens are major contributors to global food
insecurity. Shifting climate patterns are altering disease
ranges and facilitating the emergence of virulent strains.

Thus, we need a better understanding of plant–pathogen
interactions to develop rapidly new and preferably durable
sources of disease resistance. B. distachyon has emerged as
a powerful tool to elucidate defense responses in the Poa-
ceae. A major advance has been the demonstration that
B. distachyon serves as a host for many pathogens
that cause diseases such as rice blast, Fusarium head
blight (FHB; Figure 1C), and barley stripe mosaic virus
(BSMV) (reviewed by [4]). Studies are now exploiting the
genetic and functional genomic resources available for
B. distachyon to elucidate host responses to pathogens.
An elegant example is the characterization of B. distachyon
UDP-glycosyltransferases that can detoxify the mycotoxin
deoxynivalenol produced by Fusarium graminearum, the
casual pathogen of FHB [8]. As such studies progress they
may identify commonalties in host responses to pathogens
which could represent key defense nodes that are potential
sources of durable resistance to many pathogens. Transla-
tion of this knowledge into improved crop varieties will
involve identifying orthologous genes or linked molecular
markers in crop germplasm. Such a strategy contributed to
the targeting of Pch1 eyespot resistance in wheat (Triticum
aestivum) [9]. However, the absence of an ortholog of the
wheat Lr34 leaf rust resistance gene in B. distachyon [10]
indicates that successful transfer of information between
B. distachyon and grass crops is not guaranteed. Another
powerful means of increasing crop resistance is the direct
transfer of genes from B. distachyon into elite cereal germ-
plasm through transformation. The success of this ap-
proach is enhanced by the close relationship between
B. distachyon and the cereals.

A model for the grass cell wall and biomass
accumulation
Similarly to other grasses, B. distachyon has a type II wall
that differs markedly from the type I walls found in dicots.
Until now, few studies have focused on characterizing
B. distachyon cell wall polysaccharides and their biosyn-
thetic enzymes. Detailed biochemical characterization of
these polysaccharides, their distribution in different tis-
sues and organs, and their roles during development need
to be investigated. Characterization of mixed linkage glu-
cans (a polymer unique to grasses) in B. distachyon seeds
showed surprising enrichment in (1!3) linkages and that
arabinoxylans were more substituted compared to wheat,
barley (Hordeum vulgare), or oat (Avena sativa).

In comparison with polysaccharides, B. distachyon lignin
has been studied in greater detail by genetic and biochemi-
cal characterization of some of the enzymes required for
lignin biosynthesis. The enzymes are encoded by gene
families, but each gene has a distinct function, and are thus
good targets for mutagenesis or introgression [11]. As an
elegant example of the potential of the model grass, muta-
tion of the cinnamyl alcohol dehydrogenase (CAD1) gene has
been shown to lead to a 25% decrease in lignin content,
resulting in improved saccharification [12]. These results,
taken together with the possibility to increase biomass by
modifying polysaccharide-related metabolism, demonstrate
that B. distachyon is an excellent modelforidentifying genes
important for developing biomass crops with improved con-
version into bioenergy or new materials (Box 1) Q3.
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Taken together, these advances demonstrate the wide
applicability of Brachypodium as a model system and
underscore the maturity of the system.
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Box 1. Brachypodium distachyon root and rhizosphere for underground discoveries

Plant roots provide a multitude of essential functions like mechanical

support, water and nutrient uptake, defense against soil pathogens

and toxins. Compared to shoots, roots have been understudied, and

offer important opportunities to increase global food production, and

save water, land, and fossil fuels. Most molecular root research has

been conducted on Arabidopsis, but its dicotyledonous root system

has a different morphology, architecture, anatomy, and biochemistry

from cereals such as wheat or barley. Thus, B. distachyon now has

many of the tools available for A. thaliana but a root system similar to

that of temperate cereals (Figure I).

B. distachyon root system is composed of three root types (Figure I). A

single primary seminal root (PSR) emerges at germination; this is

followed approximately 2 weeks later by one or two coleoptile nodal

roots (CNR) from the coleoptile node located on the mesocotyl, about

half way between the seed and the leaf nodes, and, finally, 3–4 weeks

after germination, leaf nodal roots (LNR) start to emerge from the leaf

nodes [13]. In B. distachyon the number of nodal roots, but not the

seminal primary root, varies genetically and in response to water,

opening the possibility of selecting root systems for specific soil

conditions (V.C., unpublished). B. distachyon root variation can be

studied in much smaller volumes of soil than maize or rice, permitting

the characterization of the role of mature root systems during flowering

and seed development [13]. Flowering and seed development are highly

susceptible to drought, and knowledge of root genes at these stages can

be applied to crop improvement throughmarker-assisted breeding.

Since the emergence of B. distachyon as a molecular model it has

been applied in several fields relevant to roots, including root system

architecture of cereals, response to biotic (pathogens such as

Fusarium, Rhizoctonia) and abiotic (nutrient levels, drought) stresses,

auxin homeostasis [14], and symbiotic root–microbe interactions

such as arbuscular mycorrhizal fungi [15]. B. distachyon is an exciting

new model for root research, opening the way to understanding

monocotyledon root biology, and eventually leading to the improve-

ment of major temperate crops.

Tap root

Branch roots

Branch roots

PR

SNR

CNR

LNR

Seed

T. aes�vum B. distachyon A. thaliana
Cotyledons

Soil

TRENDS in Plant Science 

Figure I. Comparison of wheat (T. aestivum), Brachypodium distachyon, and A. thaliana root systems. Horizontal line, soil level. Abbreviations: CNR, coleoptile node

axile root; LNR, leaf node axile root; PR, primary axile root; SNR, scutellar node axile root.
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