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Abstract

In biological systems, functions and spatial organizations are closely related. Spatial data in biology frequently consist of, or
can be assimilated to, sets of points. An important goal in the quantitative analysis of such data is the evaluation and
localization of differences in spatial distributions between groups. Because of experimental replications, achieving this goal
requires comparing collections of point sets, a noticeably challenging issue for which no method has been proposed to
date. We introduce a strategy to address this problem, based on the comparison of point intensities throughout space. Our
method is based on a statistical test that determines whether local point intensities, estimated using replicated data, are
significantly different or not. Repeating this test at different positions provides an intensity comparison map and reveals
domains showing significant intensity differences. Simulated data were used to characterize and validate this approach. The
method was then applied to two different neuroanatomical systems to evaluate its ability to reveal spatial differences in
biological data sets. Applied to two distinct neuronal populations within the rat spinal cord, the method generated an
objective representation of the spatial segregation established previously on a subjective visual basis. The method was also
applied to analyze the spatial distribution of locus coeruleus neurons in control and mutant mice. The results objectively
consolidated previous conclusions obtained from visual comparisons. Remarkably, they also provided new insights into the
maturation of the locus coeruleus in mutant and control animals. Overall, the method introduced here is a new
contribution to the quantitative analysis of biological organizations that provides meaningful spatial representations which
are easy to understand and to interpret. Finally, because our approach is generic and punctual structures are widespread at
the cellular and histological scales, it is potentially useful for a large spectrum of applications for the analysis of biological
systems.
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Introduction

It is a remarkable fact in biology that functions are closely linked

to specific spatial architectures in both the plant and animal

kingdoms, and at different spatial scales. Many molecular,

histological and imaging techniques can be used and combined

to reveal how biological structures are organized in three

dimensions (3D) for a large range of resolutions [1]. However,

the lack of objective and quantitative methods devoted to the

analysis of the images produced is a recurrent problem reported in

the scientific community, and these data are still widely

qualitatively analyzed through visual inspection [2,3]. This is

particularly the case when addressing the specific question of

spatial organizations. At the cellular scale, for example, Duong

et al. [4] noted that few statistical approaches are designed to

assess intracellular organizations. At the histological scale, Da

Silva-Buttkus et al. [5] emphasized that biological patterns are

widely compared on the basis of visual similarity/dissimilarity, and

regretted the lack of statistical tests to determine whether observed

differences are significant or not. In general, the development of

reliable methods for the statistical analysis of spatial organizations

in biological images remains an important ongoing challenge.

In this context, we more specifically addressed the question of

the statistical comparison of two spatial organizations in 3D. In

this paper, we focus on data that can be assimilated to sets of

points in a finite volume, e.g., positions of endosomes in a cell or of

cells in a neuronal population. Inferring the way in which points in

a punctual pattern are distributed in 3D is not a simple issue. The

most commonly used approaches at this time involve the

construction of point intensity maps (i.e., of the number of points

per unit volume). This is equivalent to assuming that each point

pattern is generated by an unknown point process (i.e., a stochastic

process that produces sets of points), which is assessed by

evaluating intensity variations in space. Based on 3D histograms

of cell counts [6–9] or kernel density estimates [10], most of the

proposed methods were designed to process single point patterns

only.

To take inter-individual and experimental variability into

account, biological data are replicated, resulting in a set of point

patterns, which constitutes a sample from the same unknown point

process. Although the consideration of replicated data is required

to perform further statistical analysis, few studies in the literature

deal with repetitions to assess a point distribution. In our opinion,
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one major obstacle that may explain the scarcity of proposed

methods is the need for a spatial normalization procedure capable

of placing repeated data in a common spatial framework. Actually,

this step consists in removing the part of variability attached to the

spatial domain containing the data (e.g., the size and shape of

brains or of cells in different individuals). In a recent paper that

addressed the spatial organization of endosomes in mammalian

cells [11], this problem was circumvented by limiting itself to a

pre-determined shape for cells, using micro-patterning techniques

[12,13]. Point patterns were then superimposed so as to be

reduced to the simple case of a single pattern. Note that, as a

consequence, individual specificity is lost and a bias may be

introduced due, for example, to the dominance of patterns

composed of a high number of points. Generally speaking, it is not

possible to experimentally impose a standardized shape for cells,

tissues or organs to be analyzed. We therefore took advantage of a

spatial normalization method adapted to biological structures

[14,15], freely available in Free-D software [16]. All biological

data considered in this paper were normalized beforehand using

this procedure so that point coordinates in all sample patterns were

expressed within the same 3D coordinate frame.

Within this standardized coordinate system, the number of

points and their positions vary across patterns. The punctual

nature of the data, with no point-to-point correspondence, is an

obstacle to the integration of data based on averaging, as can be

done for example in human functional neuroimaging studies (see

[17] and [18] for a review of related techniques). To compute

statistical maps of point intensity (i.e., number of points per unit

volume) from a point pattern sample, we proposed in [19] an

approach based on the theory of spatial point processes [20,21], a

statistical framework for the analysis of point patterns [22–28].

Our solution was based on a local point intensity estimator

computed from the distances to the kth nearest neighbors. By

repeating estimations over a spatial grid, we were able to build a

statistical map of intensity variations. By superimposing iso-

intensity surfaces extracted from different maps, it was possible to

visually compare spatial organizations in 3D. This strategy was

successfully applied to unmask differences in the spatial organiza-

tion of neuronal populations [29,30].

Although informative, such visual comparisons have remained

qualitative. Few strategies have been proposed in the literature to

assess whether or not two point processes defined over a finite

volume differ. Available statistical methods determine whether two

point pattern samples may have been generated by the same point

process or not [4,31]. Although this could provide deep insights

into the biological functions that are involved, to our knowledge,

no approach exists that would allow us to reveal local domains that

show significant differences between two point processes based on

repeated data. Kelsall and Diggle [32] proposed a non-parametric

approach to map the relative risk of two diseases based on 2D

point intensity ratios, but this approach was limited to the

comparison of single patterns. We introduce here a method to

compare point processes based on repeated point patterns. We

take advantage of the parametric framework established in [19] for

intensity estimation and we introduce a test to compare local point

intensities. By systematically repeating this statistical test in space,

comparison maps are computed in order to reveal spatial domains

where local intensities differ. Simulated data were used to analyze

and characterize the method. Its application to the comparison of

neuronal populations demonstrated its ability to objectively

localize differences between punctual biological structures.

Methods

A stochastic mechanism whose realizations are point patterns in

Rd is referred to as a spatial point process. We develop our strategy

in the case where d~3, but it can be generalized to other

dimensions. We assume that we are given two samples of point

patterns, and we aim at comparing the spatial organizations of the

two point processes that generated them. To do this, we propose

comparing local point intensities.

Our approach is based on the point intensity estimator derived

in [19] as follows. In the neighborhood of any position u[R3, we

approximate the local point distribution by a homogeneous

Poisson process, a reference model that corresponds to the

complete spatial randomness (CSR). The sole parameter of this

model is the point intensity l. Under the local CSR assumption,

the probability density function of the distance Xik between u and

its kth nearest point in the ith point set of the sample is:

f (xik)~
(4lp)k

3k{1(k{1)!
x3k{1

ik exp {
4lp

3
x3

ik

� �
ð1Þ

Based on the maximum likelihood method, the following

unbiased estimator of l at position u was obtained:

l̂lk(u)~
nk{1

4p

3

Xn

i~1
x3

ik

ð2Þ

where n is the sample size [19]. Note that the only parameter of

this estimator is the neighbor rank k. Then, given a spatial position

u and two samples generated by unknown point processes, we

propose a statistical test to compare point intensities at u. Under

the CSR hypothesis, considering Equation 1, the probability

density function of yik~8lpx3
ik=3 is

1

2k (k)
yk{1

ik exp {
yik

2

� �

where denotes the gamma function. Then yik is distributed

according to a x2 distribution with 2k degrees of freedom.

Considering the expression of yik and Equation 2, the quantity

Qk(u)~2nkl(u)=l̂lk(u) follows a x2 distribution with 2nk degrees

of freedom.

Let us consider two point processes, and l(1)(u) and l(2)(u)
denote point intensities at u in the first and second processes,

respectively. Let l̂lk1
(u) and l̂lk2

(u) be the estimates of l(1)(u) and

l(2)(u), respectively. By definition, the ratio:

Qk1
(u)=(2n1k1)

Qk2
(u)=(2n2k2)

~
l(1)(u)l̂lk2

(u)

l(2)(u)l̂lk1
(u)

ð3Þ

follows a Fisher-Snedecor (FS) distribution with parameters 2n1k1

and 2n2k2, where n1 and n2 are the sizes of the first and second

samples, respectively (see [33] for an introduction to the FS

distribution). Testing the null hypothesis, H0: l(1)(u)~l(2)(u), is

then reduced to the analysis of:

Rk1,k2
(u)~l̂lk2

(u)=l̂lk1
(u) ð4Þ
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relative to the distribution FS(2n k1 1,2n k2 2). Therefore, under the

local CSR assumption, given a fixed risk a, corresponding limit

values R
a=2
k1,k2

(u) and R
1{a=2
k1,k2

(u) define the following intervals for

Rk1,k2
(u):

Rk1,k2
(u)vR

a=2
k1,k2

(u) : l(1)(u)vl(2)(u),

R
a=2
k1,k2

(u)ƒRk1,k2
(u)ƒR

1{a=2
k1,k2

(u) : H0 is not rejected,

R
1{a=2
k1,k2

(u)vRk1,k2
(u) : l(1)(u)wl(2)(u):

8>>><
>>>:

The ratio Rk1,k2
is evaluated at each node of a 3D grid covering

the domain of interest, and p-values corresponding to the

distribution FS(2n k1 1,2n k2 2) are determined (see Fig. 1). The

resulting spatial map of p-values is referred to as a p-map. By

converting p-values into gray values, it is possible to visualize the

spatial regions that exhibit the most significant differences.

Isosurfaces obtained by thresholding the p-map at a=2 and

1{a=2 are an effective way to visualize domains in 3D where

intensities statistically differ at the risk a.

Results

Application to Simulated Data
The comparison method was evaluated using synthetic data for

which the exact intensity at any given position was known. First,

point patterns were simulated according to homogeneous Poisson

processes with various intensities, so that the CSR assumption was

satisfied. To evaluate the robustness of the method to departure

from the CSR condition, samples were also simulated using

heterogeneous Poisson processes, so that the intensity varied

according to the position. For this, x,y and z point coordinates

were drawn from Gaussian distributions with standard deviations

sx, sy and sz, respectively.

In the following, intensities were compared using equal

neighbor ranks, k1~k2~k, with k ranging from 2 to 16. In each

case, first and second samples contained n~10 patterns each, with

an average of m1 and m2 points per pattern, respectively. In the

homogeneous case, points were generated over the centered unit

cube, with m1~1000 and m2~c|m1 points, and c[Rz?. In the

heterogeneous case, we fixed sx~100, sy~200 and sz~300

units, and we generated an average of m1~m2~1000 points per

pattern, and centers of Gaussian distributions were possibly

shifted.

Comparing local intensities at selected positions. To

validate the local intensity comparison, the empirical distribution

functions of Rk,k values were computed over 1000 repetitions, at

selected positions ui, and compared to the expected distribution

functions of FS(2nk,2nk) under the CSR assumption.

Results obtained for homogeneous point processes are shown in

Fig. 2. For m1~m2 (c~1), we observed the same global scheme,

regardless of the value of k considered (Figs. 2A–D). First, at the

central position u0, empirical and theoretical distribution functions

coincided. This result was expected since the CSR assumption was

true and H0 was satisfied. Concerning position u1, expected

theoretical distances to the k-th nearest neighbor (0.074, 0.122 and

0.155 units for k~2, 8 and 16, respectively) exceeded the minimal

distance from u1 to the cubic domain border (0.05 units). Thus,

regardless of the k value, the local CSR assumption was no longer

valid. Interestingly, empirical and theoretical functions at u1

remained very close (Kolmogorov-Smirnov test, p-values of 0:71,

0:05, and 0:12 for k~2, 8 and 16, respectively). As for positions u2

and u3, where the true intensity is null, Rk,k values tended to

concentrate toward the medial value of the distribution function.

Thus, the variability of Rk,k diminished, whereas the probability of

not rejecting the null hypothesis increased. This was even more

pronounced as the position moved further away from the points.

This can be explained by the fact that in regions devoid of data,

the estimator l̂l(u) has a small variance and mainly reflects a

systematic positive bias [19]. When intensities m1 and m2 differed

(see Figs. 2E, c~1:2), empirical functions at u0 and u1 were

translated toward greater values (see Figs. 2F–H), so that the

probability to reject H0 to the benefit of l2wl1 increased. Since

Rk,k represents the ratio between intensity estimates, the

magnitude of the gap for all k values tested logically reflected

the ratio of intensities: it resulted in a shift of empirical values of

approximately 0:2 units toward greater values, which is consistent

with the value of c. More precisely, on the basis of Equation 3,

empirical ratios at u0 divided by c are distributed according to

FS (2nk,2nk). Concerning u2 and u3, the variability of Rk,k

decreased as the evaluation position moved away from the point

domain, which was similar to the case m1~m2 and for the same

reason.

Figure 1. Comparison mapping method. Top: two samples of sizes n1~3 (left, red sample) and n2~4 (right, green sample). Bottom: comparison
map built from the samples. Values of ratio Rk1,k2

(see Formula 4) and corresponding p-values are evaluated at each node of a grid superimposed
over the data, based on distances to the k-th nearest neighbors in Sample 1 (red segments) and in Sample 2 (green segments) (k~k1~k2~2).
doi:10.1371/journal.pone.0087759.g001
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The same analyses were performed for heterogeneous processes.

Results are shown in Fig. 3. Interestingly, when m1~m2 and with

no shift between the two distributions (Fig. 3A), results were similar

to the ones obtained in the case of identical homogeneous

processes (see Figs. 3B–D). Within high intensity regions,

theoretical and empirical distribution functions coincided for all

of the k values tested (Kolmogorov-Smirnov test, p-values of 0:29,

0:87, and 0:33 at u0, and p-values of 0:98, 0:84, and 0:19 at u1, for

k~2, 8 and 16, respectively). In lower intensity regions, in

particular at u3, Rk,k values tended to narrow toward the medial

value of the distribution. In the case of shifted distributions

(Fig. 3E), true intensities were equal at u0 and differed at u1, u2 and

u3, with l2wl1. Accordingly, empirical and theoretical curves

coincided only at u0 (Kolmogorov-Smirnov test, p-values of 0:77,

0:48, and 0:39 for k~2, 8 and 16, respectively), and we otherwise

observed a shift of empirical curves toward smaller values, so that,

as expected, the probability to reject H0 to the benefit of l2wl1

increased (Figs. 3F–H). Note that, as in the homogeneous case, if

the CSR hypothesis is acceptable at a position u, corresponding

intensity ratios divided by c, where c~l(2)(u)=l(1)(u), are

distributed according to FS(2nk,2nk). Moreover, Rk,k values

were once again concentrated when positions moved away from

Figure 2. Local intensity comparison: homogeneous Poisson processes. Cumulative empirical functions of ratio Rk1,k2
computed from pairs

of simulated point pattern samples (R~1000 repetitions). A: typical patterns of Sample 1 (green) and Sample 2 (purple) simulated over the centered
unit cube. Sample sizes n1~n2~n~10, true intensity m1~m2~1000 points/unit volume. Black dots: positions at u0~(0,0,0), u1~(0,0,0:45),
u2~(0,0,0:55) and u3~(0,0,1). B–D: corresponding empirical functions computed at positions ui , i[f0,1,2,3g, with k1~k2~k and k~2 (B), k~8 (C)
and k~16 (D). Thick gray line: cumulative distribution function of FS(2nk,2nk). E–H: same as A–D, but with m2~1200 points/unit volume.
doi:10.1371/journal.pone.0087759.g002
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high intensity domains. Finally, although point distributions are

heterogeneous, we globally obtained results very similar to the

ones in the homogeneous case.

Overall, our method of local intensity comparison is not unduly

sensitive to departure from the CSR condition. Consequently, for

our local intensity comparison method, the approximation of local

point distributions in heterogeneous point processes by a Poisson

homogeneous model seems to be an acceptable assumption. Thus,

our approach may be reasonably applied to compare intensities in

unknown point processes.

Systematically mapping intensity comparisons. To illus-

trate how it can reveal regions with intensity differences in space,

our method was applied to compare either homogeneous or

heterogeneous point processes. We used k1~k2~k~8 in both

cases.

For homogeneous Poisson processes, comparison maps were

calculated over the centered cubic domain of side length 2, using a

regular cubic grid of resolution 100|100|100. Typical results

are shown in Fig. 4. When m1~m2 (Fig. 4A), the null hypothesis

H0 was true at any position. Accordingly, within the central cubic

region containing generated points (central region in Fig. 4D), no

marked organization emerged in the p-map. Given a risk a~10%,

values of less than 0:05 (related to l2wl1) and greater than 0:95
(related to l1wl2) concerned only 6:3% and 5:7% of the p-map

positions, respectively. These numbers are consistent with

expected proportions of 5%. Outside the central unit cube, where

the variability of Rk,k decreased and the probability of not

Figure 3. Local intensity comparison: heterogeneous Poisson processes. Simulated empirical functions of ratio Rk1,k2
computed from pairs

of simulated point pattern samples (R~1000 repetitions). A: typical patterns of Sample 1 (green) and Sample 2 (purple) drawn from identical
centered Gaussian distributions of standard deviations sx~100, sy~200 and sz~300 units. Sample sizes n1~n2~n~10, m1~m2~1000 points per
pattern in average. Black dots: positions at u0~(0,0,0), u1~(100,0,0), u2~(200,0,0) and u3~(300,0,0). B–D: corresponding empirical functions
computed at positions ui , i[f0,1,2,3g, with k1~k2~k and k~2 (B), k~8 (C) and k~16 (D). Thick gray line: cumulative distribution function of
FS(2nk,2nk). E–H: same as A–D, but centers of Gaussian processes generating Sample 1 and Sample 2 are ({5,{5,0) and (5,5,0), respectively.
doi:10.1371/journal.pone.0087759.g003
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rejecting the null hypothesis increased (see previous Section), the

p-map accordingly exhibited a smoother aspect and was domi-

nated by mid-gray values (see lateral domains in the grid in

Fig. 4D). To visualize these results in 3D, isosurfaces were

computed from the p-map for a~10% (purple and green surfaces

in Fig. 4G, respectively). Unorganized patterns in the p-map 2D

section appeared as highly intermingled and scattered patterns in

3D, mainly located within the central unit cube. As m2 increased

(Figs. 4B and 4C), the number of low p-values associated with the

hypothesis l2wl1 grew accordingly: 29:2% and 82:4% of grid

positions within the central unit cube showed a p-value of less than

0:05 for c~1:2 and c~1:5, respectively. Conversely, only 0:3%
and 0% of these positions showed a p-value greater than 0:95,

respectively. Such values were expected since, as mentioned

above, values of Rk,k=c are distributed according to FS(2nk,2nk).

Thus, under the CSR assumption at position u and a given c,

proportions of ratio values less than R
a=2
k,k (u) and greater than

R
1{a=2
k,k (u) can be evaluated and are equal to 31% and 81:9% for

c~1:2 and 1:5, and to 0:3% and 1:5|10{5% for c~1:2 and 1:5,

respectively. Finally, corresponding isosurfaces well illustrated the

dominance of low p-values in the central domain (Figs. 4HI).

For heterogeneous Poisson processes, comparison maps were

calculated over a centered rectangular domain using a regular grid

of dimensions 50|100|150 along the x, y and z axes,

respectively. Typical results are shown in Fig. 5. Since the true

point distribution has an unbounded support, we used spatial

regions of interest (ROI) to concentrate analyses on high intensity

regions. To do this, the domain including higher intensities and

containing a given percentage of the underlying distribution

function was determined for each process to be compared. The

ROI was then defined as the union of the two domains. In this

case, ROIs corresponding to 90% of the spatial point distributions

were used (see typical patterns and ROI envelopes in Figs. 5A–F).

For identical Gaussian processes (no shift between point distribu-

tion centers, first column in Fig. 4), results were analogous to the

ones obtained in the case of identical homogeneous processes.

First, within the ROI, the p-map exhibited unorganized patterns

(central ovoid region in Fig. 5J). Second, for a risk a~10%,

percentages of ROI positions presenting p-values of less than to

0:05 and greater than 0:95 were accordingly equal to 7:4% and

4%, respectively. In contrast, outside the ROI, the map showed a

smoother aspect and was dominated by medial values. This

reflected the lower variability of Rk,k and the increased probability

to not reject the null hypothesis in regions of low intensity. In

Figure 4. Spatial comparison of homogeneous Poisson point processes. Each column displays data corresponding to a given sample pair
(n1~n2~10). A–C: typical patterns of Sample 1 (green) and Sample 2 (purple), with an average of m1~1000 points per pattern, and an average of
m2~c|m1 points per pattern, with c~1 (A), c~1:2 (B), and c~1:5 (C). D–F: mid-sections of p-maps computed from Sample 1 and Sample 2, using
k1~k2~8. G–I: isosurfaces computed from p-maps for thresholds equal to 0:05 (purple) and 0:95 (green) (a~10%). Yellow dotted square in D–I:
outline of the unit cube containing generated points.
doi:10.1371/journal.pone.0087759.g004
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accordance with these observations, isosurfaces extracted from the

p-map exhibited rather scattered patterns mainly concentrated in

the central region. As for shifted processes (Figs. 5BE and 5CF),

differences in spatial organizations clearly appeared in both

comparison maps (Figs. 5K and 5L) and superimposed isosurfaces

(Figs. 5NQ and 5OR). However, first and second gaps were small

when compared to the size of the underlying Gaussian distribu-

tions (in the X direction: 20% and 50%, and in the Y direction:

10% and 25% of the standard deviations of the distribution, for the

first and second gaps, respectively). Separations between dark and

light values in comparison maps related to l2wl1 and l1wl2

hypotheses, respectively, fitted well with the limit that appeared in

true difference maps (Figs. 5H and 5I). For a shift of 20 units in

both the X and Y axes and at risk a~10%, 16% and 17:4% of

ROI positions presented a p-value of less than 0:05 and greater

than 0:95, respectively. The percentages reached 33:9% and

36:7% for a shift of 50 units in both the X and Y axes, clearly

confirming the gap between processes. The integration of local

expected proportions for a~10% computed at all ROI positions

based on true intensity ratios yielded global theoretical proportions

of 21:3% and 38:1% for the first and second shifts, respectively, for

both lower (v0:05) and higher (w0:95) values (proportions are

identical due to the symmetry of comparison maps). Empirical

values were slightly less than the theoretical ones. This was mainly

due to the bias effect observed in low intensity regions, since ROIs

encompassed large regions that were poor in data near their

borders. Finally, combined with the clear bipolar aspect of p-maps,

these measures supported the fact that the compared processes

were shifted along the direction orthogonal to the transition limit

between low and high p-values. Isosurfaces clearly revealed how

each process was positioned relative to the other in 3D.

Application to Neuroanatomical Data
The comparison mapping was applied on two neuroanatomical

systems to illustrate the method. First, in the rat, the functional

organization of a cerebral structure, the sacral parasympathetic

nucleus, was analyzed by describing the relative spatial localiza-

tions of two neuronal populations. Next, in the mouse, the effect

induced by a mutation over the spatial organization of a neuronal

population, the locus coeruleus, was analyzed by comparing data

either from control or mutant individuals.

Spatial organization of the sacral parasympathetic

nucleus. In the rat, the uro-genital reflex motor activity is

controlled by neurons of the sacral parasympathetic nucleus (SPN)

within the spinal cord. Banrezes and coworkers previously

examined the functional organization of the rat SPN by recording

positions of neurons innervating either the bladder (BLD) or the

corpus cavernosum of the penis (CCV) [34]. These neurons were

retrogradely identified after the injection of a pseudorabies virus in

either the penis or the bladder. Spinal cords were then cut into

serial sections (30mm thick) at the level of the SPN and the sections

were digitized under light microscopy. Labeled neurons were

manually segmented and 3D models of neuronal populations were

computed using Free-D software [16]. All experimental proce-

dures are detailed in [34]. By superimposing spatially normalized

positions of BLD and CCV neurons (n~3 animals per group), a

segregation of the two populations along the rostro-caudal axis was

observed. The same data were used here to objectively examine

previous conclusions and to illustrate our approach on a simple

model. Results are presented in Fig. 6. Neuron intensity maps

were computed for both groups over a spatial grid superimposed

on the data. The grid dimensions were 112|23|20 in rostro-

caudal, medio-lateral and ventro-dorsal axes, and this correspond-

ed to a grid resolution of 40mm. We used the same neighbor rank

for both groups, k1~k2~3. We then restricted our analyses to the

region of interest (ROI) of high cell intensities. Since true point

distributions were unknown, the ROI corresponded to high

intensity domains containing a majority of cells, in this case 80% of

either BLD or CCV neurons (dark envelope in Figs. 6A and 6C). It

corresponded to 2961 of the grid positions (5:7% of the total). A

medial section through the comparison map is shown in Fig. 6B

(the ROI limit is indicated by a yellow contour). Within the ROI,

44:3% and 28:3% of the positions presented a p-value of less than

to 0:05 (predominance of CCV neurons) or greater than 0:95
(predominance of BLD neurons), respectively (a~10%). This

quantitatively demonstrated the very strong population segrega-

tion reported previously [34]. This further revealed that the

transition along the rostro-caudal axis between regions dominated

by either one or the other population was rather abrupt, as shown

by the rapid change between high and low gray values in the p-

map (Fig. 6B), and by the proximity of opposite comparison

isosurfaces that clearly divided the ROI into two distinct regions

(Fig. 6C). It is important to note that this rapid transition was

unnoticeable when visualizing the simple superimposition of

neurons.

Locus coeruleus. The locus coeruleus (LC) is a cerebral

structure located on both sides of the fourth ventricle. In the

mouse, the quaking mutation is known to affect the post-natal

maturation of the LC. In particular, between postnatal day 30

(P30) and 90 (P90), the significant decrease of the LC neuron

numbers in control mice is not observed in mutants [35]. In this

previous study, mouse brains were cut into coronal serial sections

(10mm thick) at the level of the LC, and sections were processed for

tyrosine hydroxylase immunohistochemistry to identify LC neu-

rons. Sections were digitized under light microscopy, and labeled

neurons were manually indicated on images using Free-D

software. These same data were used in [29] to analyze the effect

of the mutation on the spatial organization of the LC. To do this,

3D models of LC populations were built and spatially normalized,

and neuron intensity maps were computed using the intensity

estimator l̂l, in either control or quaking mice, at P30 and P90

(n~3 in each group). Then, based on these maps, 3D distributions

of LC neurons were visually compared to identify spatial

differences during the LC maturation in control and quaking

mice. In the present study, comparison maps were built using these

intensity maps and were examined in light of previous findings.

Results are presented in Fig. 7. ROIs were defined as high

intensity domains including 95% of neurons (meshes encompass-

ing neurons in Fig. 7A–C and yellow contours in Fig. 7M–O).

Isosurfaces were generated from p-maps using thresholds equal to

0:05 and 0:95 (a~10%).

The maturation process was first assessed by comparing LC

distributions between P30 and P90, in both control and mutant

mice (first and second column in Fig. 7, respectively).

In control mice, a remarkable right/left symmetry appeared

within the p-map (Fig. 7M) and in 3D representations (Fig. 7DG).

Regions showing a predominance of P30 cells (light pixels in the p-

map and surfaces colored in brown) corresponded to ventral and

lateral parts of the LC, and involved 56% of ROI positions. This is

consistent with previous results showing that the decrease in cell

number between P30 and P90 mostly concerns these regions.

Moreover, we observed that a medial region of the LC,

corresponding to 19% of ROI positions, was dominated by P90

neurons (dark pixels in the p-map and surfaces colored in orange).

This could not be established beforehand because of the proximity

of medial limits in superimposed LC distributions. Thus, based on

quantitative arguments, our results show that the LC reorganiza-

tion between P30 and P90 is not limited to a cell regression in the
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ventro-lateral parts, but involves a cell increase in the medial

regions as well.

In quaking mice, regions corresponding to a dominance in

either P30 or P90 cells contained 19% and 34% of ROI positions,

respectively. These proportions were very different and reversed

compared to those obtained for control mice. The comparison

map was dominated by dark pixels (Fig. 7N) that reflected the

excess of LC cells in P90 mutants. It has been previously shown

that the LC maturation between P30 and P90 involves a slight

lateral cell regression together with a shift toward the rostral

Figure 5. Spatial comparison of heterogeneous point processes. Each column displays data corresponding to a given sample pair
(n1~n2~10). Spatial dimensions corresponding to 3D representations and maps are 1000, 2000 and 3000 units on the x, y and z axes, respectively.
A–F: typical patterns of Sample 1 (green) and of Sample 2 (purple), with an average of m1~m2~1000 points per pattern. Point coordinates are drawn
from Gaussian distributions (same standard deviations as in Fig. 3). Gaussian distribution centers of the two processes are either identical (AD) or
shifted by a vector equal to (20,20,0) (BE) or to (50,50,0) (CF). Meshes: limits of the regions of interest. Patterns are observed either along the x axis
(A–C) or the z axis (D–F). G–I: mid-section (xy plane) in maps of true intensity differences between first and second point processes. J–L: same section
as in G–I in p-maps computed from Sample 1 and Sample 2, using k1~k2~8. M–R: isosurfaces computed from the p-maps for thresholds equal to
0:05 (purple) and 0:95 (green) (a~10%). M–O: same viewpoint as in (D–F). P–R: same viewpoint as in (A–C).
doi:10.1371/journal.pone.0087759.g005
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direction, and no change in the dorso-ventral direction [29].

Accordingly, we first observed a quantitative dominance of P30

cells in the lateral parts (light pixels in the p-map and surfaces

colored in dark blue). Next, P30 cells were more numerous than

P90 ones in the caudal region, while the reverse was true in the

rostral part (Fig. 7K). Finally, no obvious difference was found in

the dorso-ventral direction (Figs. 7E and 7K). As in control mice,

we also found a significant dominance of P90 cells in mutants in

the medial region (dark pixels in the p-map and surfaces colored in

light blue). Altogether, these results show that the decrease in the

number of LC neurons in the lateral parts is counterbalanced by

an increase not only in the rostral, but also in the medial regions.

The comparison of control and mutant mice at P90 made it

possible to reveal in adult mice spatial differences that result from

the two distinct LC maturation processes (third column in Fig. 7).

It was previously shown that at P90, LC cells in quaking mice

extend almost everywhere beyond LC cells in control ones, more

especially in the rostral and ventral regions [29]. This conclusion

was quantitatively corroborated in our study. First, regions

corresponding to an excess of LC cells in mutant animals (dark

pixels in the p-map, surfaces colored in light blue) corresponded to

47% of ROI positions, and generally concerned the ventral and

rostral regions (Figs. 7FIL). An excess of LC cells in mutants was

also observed in the lateral regions (see lateral parts dominated by

Figure 6. Comparison of functional populations in the rat sacral parasympathetic nucleus (SPN). A: positions of neurons in the SPN
innervating either the bladder (BLD, green dots) or the corpus cavernosum (CCV, red dots). Large gray mesh: lumbo-sacral spinal cord envelope. Black
mesh: region of interest (ROI) encompassing a majority of neurons. B: mid-section in the p-map (lateral plane), with ROI outline in yellow. Scale bar:
200mm. C: surfaces encompassing regions where cell intensities are significantly different between the two sub-populations (a~10%, same viewpoint
as in A). Surfaces are colored according to the intensity-dominant population.
doi:10.1371/journal.pone.0087759.g006
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dark pixels in Fig. 7O). This lateral excess could not be detected in

the previous study. Conversely, only 7% of ROI positions showed

a predominance of LC cells in control mice (light pixels in the p-

map, surfaces colored in orange), mainly in the medial region.

Several observations suggested that this corresponded to non

significant effects. In fact, in this region, map and isosurfaces

displayed unorganized patterns that were reminiscent of those

observed with simulated data in the absence of intensity difference

(Figs. 4DG and 5JMP). We also observed a lack of right/left

symmetry (Figs. 7FI). Eventually, the small number of corre-

sponding ROI positions was consistent with the threshold of 0:05.

In conclusion, in P90 mice, our results suggested that LC cells

extend further in the ventral, lateral and rostral directions in

mutants, whereas the medial region is little affected.

Figure 7. Comparison of locus coeruleus (LC) distributions in control and mutant mice. LC populations at post-natal day 30 (P30) and 90
(P90) for control mice (first column) and quaking mice (second column), and at P90 for control and quaking mice (third column). A–L: the central gray
mesh represents the contour of a portion of the fourth ventricle. A–C: superimposed neuron positions (three mice in each group) for control mice at
P30 (brown dots) and P90 (orange dots), and for quaking mice at P30 (dark blue dots) and P90 (light blue dots); black meshes: contours of the regions
of interest (ROIs). D–L: comparison surfaces including positions where cell intensities were statistically greater in one group (a~10%), shown from the
caudal (D–F), dorsal (G–I) and lateral (J–L) points of view; colors indicate the intensity-dominant group within the surface (same color code as for
cells). M–O: coronal mid-sections through p-maps, with ROI outlines in yellow. MN: lighter and darker gray levels correspond to positions with either
an excess in P30 or in P90 cells, in control (M) or in mutant (N) mice, respectively. O: lighter or darker gray levels correspond to positions with either
an excess in control or quaking cells, respectively. Scale bars: 400mm.
doi:10.1371/journal.pone.0087759.g007
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Discussion

We introduced a new approach for the comparison of the

spatial organization of two point processes, based on replicated

data. Using our method, spatial comparison maps are built that

contain p-values of local intensity comparisons. These maps can be

explored through 2D sections or 3D isosurfaces that encompass

positions with significant intensity differences. The main advan-

tage of our strategy is to reveal regions where significant

differences occur in terms of point intensity. By contrast, existing

statistical approaches only allow to test whether the underlying

point processes are globally the same or not (see, e.g., [4,31]). The

method introduced here is an important breakthrough since when

comparing experimental groups (e.g., control vs. mutant, young vs.

old, or healthy vs. pathological), the localization of 3D regions that

show differences is crucial for the understanding of the biological

mechanisms affected. Moreover, the fact that comparison results

can be analyzed through simple, meaningful spatial representa-

tions facilitates biological interpretations. Indeed, the spatial

analysis and the objective comparison of punctual structures in

3D is a difficult question. The application of the mapping

procedure on simulated data showed that our approach can detect

small differences in point distributions (see heterogeneous process

comparisons), thus confirming that our method should be a

sensitive and powerful tool to unravel complex architectures.

The rank k of the nearest neighbor is the only parameter for the

intensity comparison. In most cases, the same k value could be

used for both samples to be compared. In the case of intensity

estimation, k acts as a smoothing parameter [19] and, conse-

quently, has the same effect in the comparison procedure. The

choice of k should then depend on the scale at which differences

are considered to be relevant. It is interesting to note that we have

experimentally shown that the distribution of the ratio Rk,k

compared to the expected distribution under the null hypothesis

remains globally unchanged as k varies. This indicates that results

are not too sensitive to the choice of k. It has been previously

experimentally shown that in point intensity mapping, a value of k
that minimizes the root mean square estimation error exists [19].

This optimal value increases as the true intensity grows, so that k
should be chosen according to the mean number of points in

pattern samples. High k values should be used with precaution:

when enlarging the neighborhood taken into account for intensity

estimations, the local CSR assumption may no longer be

acceptable, especially in low intensity regions. However, simula-

tions done on heterogeneous point processes showed that our

method is robust to departure from this working assumption, thus

opening the way for its use in biological applications. For a given

intensity and a given grid resolution, intensity estimates at adjacent

grid nodes are all the more likely to rely on same points that k is

large, thus implying local correlations between tests. For a given k
value, correlations are much lower in areas of high intensity, since

in this case distances to kth nearest neighbors are reduced.

Altogether, using reasonably low values for k and restricting

analyses to the regions containing the majority of the points helps

to prevent or minimize correlations.

Using our method for point process comparison, many

hypothesis tests are conducted in parallel to build comparison

maps. Thus, multiple comparison correction could be considered

using, e.g., Bonferroni-like procedures [36] or the false discovery

rate controlling procedure [37]. In the present approach, the

examination of the proportion of extreme p-values resulting from

comparison tests is crucial to determine if actual differences exist

between two point processes. Indeed, using simulated data, we

showed that this proportion is consistent with the risk a when there

is no intensity difference, and that it dramatically increases

otherwise. Moreover, simulations illustrated that the structure and

the localization of patterns emerging in comparison maps are very

informative. We believe that interpreting comparison maps in

their entirety for interpretation in biological applications effectively

makes up for the absence of correction for multiple testing.

Our method was illustrated on two neurobiological systems.

This made it possible to demonstrate the value of the comparison

of spatial distributions of punctual data in neuroanatomy. The

application of the comparison method to the study of the

functional organization within the sacral parasympathetic nucleus

provided a precise vision of the relative positioning of two

functional populations. Although the spatial organization of this

cerebral structure is rather simple, our method revealed in the

comparison map a narrow transition area that was undetectable

on raw data, since populations were highly intermingled in this

region. The spatial architecture of the locus coeruleus (LC)

constituted a more complex model to be investigated. The LC is

heterogeneous with respect to its projection sites [38–40], and its

maturation selectively affects specific sub-regions [41,42]. The

effect of the quaking mutation on the spatial LC maturation was

analyzed using our comparison method. Our results corroborated

those previously obtained by visually comparing neuron distribu-

tions based on intensity maps [29]. Moreover, we also pointed out

differences that were impossible to establish by comparing point

distributions without considering intensities: in both lineages, we

showed that the number of neurons between P30 and P90

increases in the medial region of the LC. This illustrated that, by

comparing point intensities instead of point distributions, subtle

differences can be detected and supported by statistical arguments.

We also showed that, in adult mice, an excess of cells in mutants

occurs everywhere in the LC except in the medial LC domain.

This suggests that this region may not be affected by the quaking

mutation. These observations are of importance in the study of

biological mechanisms that are impacted by the quaking mutation.

In particular, the convulsive phenotype induced by the quaking

mutation is directly associated with the excess of LC neurons in the

mutant, as demonstrated by the anticonvulsant effect of electro-

lytic coagulation of the LC [43]. Since specific regions affected by

the mutation were revealed in our study, the analysis of their

different efferent targets should help to reveal brain regions

involved in the convulsive phenotype.

More generally, since cerebral structures are organized into

functional areas, the constitution of atlases is a major consideration

in human [44] and animal [45,46] brain research. However, since

limits of punctual structures are not easy to define, placing

neuronal populations in such atlases is not an easy task. Thus,

combined with statistical functional data obtained in neuroimag-

ing, the possibility to determine anatomical regions dominated by

specific cell populations defined by functional, physiological or

morphological properties, for example, could constitute a major

contribution to the development of statistical neuroanatomical

atlases.

Finally, our comparison strategy is generic and may be applied

to various biological systems and at different scales. It offers

statistical and comprehensive spatial representations of differences

in point patterns. Consequently, we think that our method meets

the need for more quantitative tools devoted to the analysis of

spatial organizations, and that it constitutes a novel, efficient and

practical tool for the study of biological systems.
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