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Haute Alsace, Colmar, France, 3 Institut de Biologie Moléculaire des Plantes, UPR2357, CNRS, Strasbourg, France, 4 Institut Jean-Pierre Bourgin, UMR1318, INRA-

AgroParisTech, Versailles, France

Abstract

RNA silencing is a natural defence mechanism against viruses in plants, and transgenes expressing viral RNA-derived
sequences were previously shown to confer silencing-based enhanced resistance against the cognate virus in several
species. However, RNA silencing was shown to dysfunction at low temperatures in several species, questioning the
relevance of this strategy in perennial plants such as grapevines, which are often exposed to low temperatures during the
winter season. Here, we show that inverted-repeat (IR) constructs trigger a highly efficient silencing reaction in all somatic
tissues in grapevines. Similarly to other plant species, IR-derived siRNAs trigger production of secondary transitive siRNAs.
However, and in sharp contrast to other species tested to date where RNA silencing is hindered at low temperature, this
process remained active in grapevine cultivated at 4uC. Consistently, siRNA levels remained steady in grapevines cultivated
between 26uC and 4uC, whereas they are severely decreased in Arabidopsis grown at 15uC and almost undetectable at 4uC.
Altogether, these results demonstrate that RNA silencing operates in grapevine in a conserved manner but is resistant to far
lower temperatures than ever described in other species.
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Introduction

Grapevine is cultivated worldwide on 8 M ha. Almost all

acreage consists in vinifera scions, which give rise to qualitative

grapes for food or wines, grafted on rootstocks. These rootstocks

are complex hybrids between wild Vitis species and Vitis vinifera,

which were mostly selected for resistance to phylloxera, but also

adaptive criteria to specific soil composition. For example, the

champagne is produced from bunches of V. vinifera cv. Pinot Noir,

Pinot Meunier and Chardonnay, which are highly heterozygous

accessions vegetatively propagated since centuries [1,2]. These

scions are grafted on the few rootstocks adapted to the

characteristic limestone soils of the Champagne areas, the 41B

and SO4, mainly. Vineyards and wild species, in their natural

habitat, are hosting a wide collection of different viruses, among

which the Grapevine fanleaf virus (GFLV) and Grapevine leafroll-

associated virus (GLRaV) series are the most damaging [3].

Therefore, grape breeders thought that combining highly valuable

rootstocks with virus-resistance would help improving grapevine

culture. However, the quest for natural resistance to these viruses

has failed until now.

RNA silencing is a natural defence mechanism against invading

viruses in plants, and entails the production, from double-stranded

(ds)RNA precursors, of virus-derived small interfering RNAs

(siRNAs) by DICER-LIKE enzymes. Upon their incorporation

into specific Argonaute (AGO)-containing effector complexes,

these siRNAs guide post-transcriptional gene silencing (PTGS) of

the viral genomes through RNA cleavage [4]. In plants, RNA

silencing can be experimentally induced by transgene loci

expressing inverted-repeat constructs (IR-PTGS) [5], or by highly

transcribed sense transgenes (S-PTGS) [6,7]. In this latter case, the

dsRNA precursors are produced through the action of the

endogenous RNA-DEPENDENT RNA POLYMERASE6

(RDR6), which converts single-stranded RNA into dsRNA.

Importantly, if the transgene that undergoes PTGS carries viral

sequences, the plant becomes resistant to infection by the

homologous virus because both transgene mRNA and viral

RNA are targeted by the transgene-derived siRNA. This strategy

initially coined pathogen-derived resistance, was shown to confer

resistance in a large number of species [8,9]. With respect to

grape, generating silencing-based virus-resistant transgenic root-

stock seems a particularly adapted strategy. Indeed, given that

RNA silencing in plants functions in a non-cell autonomous

manner and has the potential to propagate from rootstocks to

scions [10,11], this approach would preserve the genetic
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complexity of the scion material which gives rise to bunches while

conferring them enhanced resistance.

However, analyses of the effect of temperature changes

previously revealed that RNA silencing is inhibited at low

temperatures in Arabidopsis, N. Benthamiana, potato, N. Tabacum,

soybean and petunia [12–15], questioning the relevance of the

pathogen-derived resistance strategy in perennial plants such as

grapevines, which are often exposed to low temperatures during

the winter season. Therefore, as a first step towards implementing

a strategy to obtain virus-resistant transgenic grapevines, we

addressed the efficiency of IR-PTGS against a transgene in

grapevines exposed to low temperatures. To do so, we developed

an efficient transformation procedure on the sequenced PN40024

accession, which derived from a near homozygous inbreeded Pinot

Noir line obtained by successive selfings [16]. By generating

several stable transgenic Vitis lines, expressing GFP either alone or

in combination with an IR construct, we show that IR-PTGS in

grapevine, like previously observed in other plant species, triggers

a very efficient silencing of the targeted mRNA in most somatic

tissues, but is impaired in meristematic cells. IR-derived dsRNA in

grapevine is processed into 21 nt- and 24 nt-long siRNAs, which

trigger the degradation of the targeted GFP mRNAs and the

subsequent production of 21 nt-long secondary siRNAs, most

likely through the action of RDR6. Interestingly, and in sharp

contrast with all plant species tested so far where RNA silencing is

strongly impaired when temperature is lower than 15uC [12], the

efficiency of IR-PTGS and the production of secondary siRNAs

remain steady in grapevine cultivated at temperatures as low as

4uC, whereas they are severely decreased in Arabidopsis plants

grown at 15uC and almost undetectable at 4uC. Altogether, these

results demonstrate the efficiency of IR-PTGS in grapevine and

show that, in this species, RNA silencing is resistant to far lower

temperatures than ever described.

Materials and Methods

Plant Material, Initiation of Embryogenic Callus and Plant
Regeneration

Pinot-derived line 40024 plants are growing in the field, in our

repository. Collection of immature inflorescences and all steps

from embryogenic callus (EC) induction to plant regeneration

were conducted following described protocols [17,18]. After 3

weeks on B medium, however, EC from the line 40024 were

cultured on modified WPM (BAP 0.25 mg/l and 2.4D 1 mg/l and

activated charcoal 3 g/l) for one month, and then transferred onto

modified MPM1 (BAP 0.05 mg/l, 2.4 D 0.3 mg/l) for two 3-

weeks periods. MPM01 medium [17] was used for EC long term

maintenance. Control and transgenic grape plantlets were grown

in vitro on WPM [26] at 26uC60.5uC, 80%RH (Relative

humidity), 16 h light at 2500 lux (Osram, Biolux) and 8 h dark

at 25uC60.5uC. Arabidopsis seeds (Col0) and GFFG/GFP line

[19] were germinated on modified MS medium [20] in the same

growth conditions than grapevine until cotyledon-first leaf

developmental stage and then, transferred to the different

temperatures regimes with the grape plantlets.

Agrobacterium-mediated Transformation
Friable EC were sub-cultured at three-week intervals on

MPM01 medium. Transformation with Agrobacterium strain

C58pMP90 was performed two days after EC transfer onto fresh

medium. Agrobacterium used harboured either the pBIN19-GFP

(which confers kanamycin resistance) or the pFGC5941-GFFG

(which confers BASTA resistance) binary vectors, and were

previously described (24).The Agrobacterium was maintained on

YEB (Yeast extract broth) solid medium supplemented with

rifampicin (50 mg/l), kanamycin (50 mg/l), gentamycin (20 mg/l).

A single colony was pre-cultured for 2 days in 3 ml YEB

supplemented with antibiotics. A 20 ml aliquot was transferred into

10 ml YEB liquid medium containing antibiotics supplemented

with 750 ml PCV (Packed Cell Volume) of 2-week old fresh EC of

Thomson Seedless. The culture was grown overnight on an orbital

shaker at 28uC and 200 rpm. When optical density (OD600)

reached 0.8, the culture was centrifuged at 3500 g for 10 min and

the pellet was re-suspended in MPM01 liquid medium, pH 5.2 to

final OD600 0.3 and mixed with 10–15 calli (2–3 week-old) of

50 ml PCV in 2 ml-Eppendorf tubes. After 10 min on a gyratory

shaker (at 20–22uC), EC were collected by blotting on filter paper,

transferred (as 50 ml PCV aliquots) onto solid MPM01 supple-

mented with acetosyringone 100 mM and vacuum infiltrated

(700 mbars, 5 min, twice). After 4 days culture at 20uC in the

dark, EC were washed three times with MPM01 liquid medium

supplemented with cefotaxim 600 mg/l, blotted dry and placed (as

50 ml PCV aliquots) onto MPM01 medium containing cefotaxim

600 mg/l. Plates were incubated in the dark, at 28uC, 80% RH.

Selection and Regeneration of Transgenic Grape Plants
After 1–2 weeks culture, EC were transferred onto MPM1

medium supplemented with kanamycin 25 mg/l for GFP

construction and BASTAH (50 mg/l) for GF-FG hairpin con-

struction. EC treated the same way, without bacteria, were used as

controls. EC were sub-cultured at three-week intervals onto fresh

medium until GFP-fluorescent isolated sectors resistant to

kanamycin or/and to BASTAH emerged. These sectors were

picked and transferred onto fresh medium and plants were

regenerated following the step-wise MPM series [17,18], however

with media supplemented with Cefotaxime 600 mg.l21. Trans-

genic plants were maintained as cuttings on WPM supplemented

with active charcoal (3 g/l) and Cefotaxime (300 mg.l21).

Figure 1. Efficient RNA silencing triggered by inverted-repeat
constructs in grapevines. (A) Northern analysis of ‘GF’ siRNA (@GF)
and miRNA (@159) accumulation in transgenic grapevines (PN40024
accession) expressing an inverted-repeat (IR) construct and in a GF-FG/
N. Benthamiana line as control. (B) Northern analysis of ‘GF’ siRNA, ‘P’
secondary siRNA (@P) and miRNA (@159) accumulation in transgenic
grapevines (PN40024 accession) expressing GFP either alone (GFP) or
together with the GFFG IR construct.
doi:10.1371/journal.pone.0082652.g001
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RNA Analysis
Total RNA was extracted from Grapevine and Arabidopsis tissues

using the Tri-Reagent (Sigma, St Louis, MO) according to the

manufacturer’s instructions. RNA gel blot analysis of low-

molecular-weight RNA was performed using 15 mg of total

RNA, as described previously [21]. Ethidium bromide staining

of total RNA before transfer was used to confirm equal loading.

Radio-labeled probes @GF and @P were made by random

priming reactions in the presence of a-32P-dCTP (22). miR159, a

stable, abundant and conserved miRNA in plants is used as

loading control. Complementary DNA oligonucleotides were end-

labelled with c-32P-ATP using T4 PNK (New England Biolabs,

Beverly, MA). After probing, the membranes were exposed to X-

ray films.

The cDNA synthesis used the InvitrogenH kit, oligodT primers

and 100–500 ng total RNAs out of which the equivalent of 20 ng

cDNAs were used for qRT-PCR with 10 ml SsoFastTM Eva-

GreenH Supermix and 300 nM of each primer, V.v UBQ s

GTGGTATTATTGAGCCATCCTT; V.v UBQ r AACCTC-

CAATCCAGTCATCTAC; for grapevine and; A.t ExP s

GAGCTGAAGTGGCTTCCATGAC; A.t ExP r GGTCCGA-

CATACCCATGATCC; A.t GAPDH 600b s AGGTGGAA-

GAGCTGCTTCCTTC; A.t GAPDH 600b r GCAA-

CACTTTCCCAACAGCCT, for Arabidopsis. These reactions

(95uC, 30 sec, 40 cycles 95uC, 5 sec and 60uC, 5 sec and finally

75uC, 10 sec for data acquisition with Arabidopsis and 80uC for

grapevine) were performed in 96-well plates with CFX96TM

Real-Time System C1000 Touch Thermal Cycler using Sso-

FastTM EvaGreenH Supermix. Data were analyzed using the

BioRad Manager Software. For GFP transcript analysis, GFP s

CAC-AAC-GTA-TAC-ATC-ATG-GCA-GAC, GFP r GAT-

TGT-GTG-GAC-AGG-TAA-TGG-TTG-TC (95uC, 5 mn, 35

cycles 95uC, 30 sec and 60uC, 3 sec, 72uC 50 sec and finally 78uC,

10 sec for data acquisition) conditions were used. Relative

transcript levels were calculated using the reference UBQ gene

for grapevine and ExP (AT5G12240) or GAPDH600b

(AT1G13440) for Arabidopsis according to Paffl [22]. Mean and

deviations were calculated with data from three full experimental

repetitions.

Microscopy and Image Processing
Green-fluorescent-protein-derived expression in calli, embryos

and developing plantlets were observed under a Nikon SMZ 1500

microscope (Nikon Corp., Tokyo, Japan) equipped with illumina-

tion from a Nikon UV lamp passed through a Nikon filter set with

a 465–495 nm band pass excitation filter, a 505 nm dichroic

mirror and a 510 or 535 nm band pass barrier filter. Photographs

were taken with a Nikon 4.1 mega pixel digital camera attached to

Figure 2. GFP silencing in grapevine tissues. (A) Silencing of the GFP is efficient in somatic tissues of GFFG+GFP transgenic grapevines but is
impaired in meristematic tissues such as apical bud or occasional root apex and suppressed in calli. (B) Semi-quantitative analysis of the fluorescence
in the tissues depicted in A. Fluorescence intensity is represented as grey level intensity/pixel. Means and standard deviations are calculated from at
least 3 experimental repetitions of 5 different plants.
doi:10.1371/journal.pone.0082652.g002
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the microscope. To allow comparison, the magnification and

acquisition characteristics were kept constant for the embryogenic

calli, buds and the same stands true for the first leaf of all samples.

Images were analyzed with ImageJ software version 1.46 (http://

rsbweb.nih.gov/ij/). This consisted in measuring total intensities in

green channel of acquired color images. Occasional pixels showing

saturated values were excluded from the measurement area by

thresholding. Intensities were normalized against measured area,

yielding a mean grey value, and allowing comparison across

different samples. Deviations were calculated from data obtained

in 3 independent repetitions with 5–10 plants for each experiment.

The data obtained are shown using value for the GFP line and the

silenced line grown at 26uC as references.

Figure 3. Silencing of the GFP is maintained in grapevines grown at low temperatures. (A) Silencing of the GFP is maintained in somatic
tissues of GFFG+GFP transgenic grapevines grown at 4uC. (B) Quantitative real-time PCR of the GFP mRNA in GFP expressing or GFP-silenced
grapevines grown at 26uC, 15uC or 4uC. mRNA levels were normalized to that of the reference ubiquitin gene for grapevine. (C) Semi-quantitative
analysis of the fluorescence in GFFG+GFP transgenic grapevines or GFFG/GFP Arabidopsis grown at 26uC, 15uC, 10uC or 4uC. Fluorescence intensity is
represented as grey level intensity/pixel. Means and standard deviations are calculated from at least 3 experimental repetitions of 5 different plants.
doi:10.1371/journal.pone.0082652.g003

Figure 4. siRNA levels are not altered in low-temperature grown grapevines. Northern analysis of ‘GF’ siRNA (@GF), ‘P’ secondary siRNA
(@P) and miRNA (@159) accumulation in GFFG+GFP transgenic grapevines (A) or GFFG/GFP Arabidopsis (B) grown at various temperatures.
doi:10.1371/journal.pone.0082652.g004

Cold Resistance of RNA Silencing in Grapevine
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Results

Transgenic Vines Carrying a GFFG Inverted-repeat
Construct Produce GF siRNAs

As a first step towards implementing the best strategy to obtain

virus-resistant transgenic grapevines, we first addressed whether

transgenic vines undergo the first step of IR-PTGS, i.e. if they

produce siRNAs from an inverted-repeat construct. To do so, we

developed an efficient transformation procedure on the sequenced

PN40024 accession, which derived from a near homozygous

inbreeded Pinot Noir line obtained by successive selfings of the

cultivated Pinot Noir (clone 162) [16]. The Embryogenic calli (EC)

were initiated from somatic cells after anther filament cultures with

an efficiency of 4.0961.25% EC/anther plated (data not shown)

and these EC lines could be maintained in vitro using established

protocols [17,18]. The friable EC were then transformed,

following the improved procedure (see Material and Methods),

to introduce an IR-construct expressing the 59 part (‘GF’) of a GFP

transgene, as an inverted-repeat, linked to a selectable marker

conferring resistance to BASTA [23]. Six to eight months after the

initial transformation, several BASTA-resistant transgenic true-to-

type plants were regenerated, indicating that the PN40024 line is

amenable to embryogenic callus induction and to stable transfor-

mation. Northern analysis of six independent GFFG transgenic

grape lines showed that they all accumulated, although to various

levels, both 21-nt and 24-nt siRNA corresponding to the ‘GF’

sequence (Figure 1A), indicating that dsRNA is similarly processed

in Vitis than in the other plant species tested to date.

GF siRNAs Induce IR-PTGS on a GFP Target Transgene
and Transitive Production of P-derived Secondary siRNAs

The EC line GFFG#4, which accumulates the highest level of

GF siRNAs (Figure 1A), was selected for a second round of

transformation with a GFP transgene linked to a selectable marker

conferring resistance to kanamycin. Double transgenic lines,

hereafter referred to as GFFG/GFP, were selected based on their

resistance to kanamycin. In parallel, wild-type EC were directly

co-transformed with GFFG and GFP transgenes. Double trans-

genic plants, hereafter referred to as GFFG+GFP, were selected

based on their resistance to both kanamycin and BASTAH Two

independent GFFG/GFP lines and two independent GFFG+GFP

lines were kept for further analysis.

Northern analysis revealed that all four selected lines accumu-

lated both 21-nt and 24-nt siRNA corresponding to the ‘GF’

sequence (Figure 1B), as observed in the initial GFFG material

(Figure 1A). Beside these so-called primary siRNAs, that are

directly processed from the IR-construct, GFFG/GFP and

GFFG+GFP lines also produced 21-nt, but not 24-nt, siRNAs

from the GFP mRNA. This process coined ‘transitivity’, is

involved in the amplification of the RNA silencing response

through the activity of RDR6 on RNA fragments resulting from

the cleavage of the GFP target mRNA by siRNAs derived from the

GFFG construct [23]. The transitivity can be measured by the

relative accumulation of secondary siRNAs with sequence of the

non-overlapping 39 part of the GFP transgene (‘P’) [19]. These

secondary ‘P’ siRNAs were readily detectable in all GFFG/GFP

and GFFG+GFP transgenic lines tested indicating the function-

ality of IR-PTGS in grapevine (Figure 1B). Of note, the levels of

secondary siRNAs were lower in the GFFG/GFP plants compared

with the GFFG+GFP transgenic lines. This most likely results from

the very high amount of primary IR-derived siRNAs in the former

that trigger an efficient clearance of the GFP mRNAs that are

normally used as substrates by RDR6 to prompt production of

secondary siRNAs.

IR-PTGS is more Efficient in Somatic Tissues than in
Actively Dividing Cells

Observation under UV light revealed that EC from

GFFG+GFP lines were as fluorescent as our control transgenic

Vitis line expressing only the GFP transgene (Figure 2A). This

observation is in agreement with previous results showing that cell

dedifferentiation and proliferation induced by exogenous hormone

treatments was shown to be sufficient to suppress GFP silencing in

the growing calli [21]. However, upon regeneration of the

GFFG+GFP grape lines, very low to undetectable levels of GFP

were observed in all somatic tissues examined such as leaves, stems

and main as well as axillary roots. In contrast, all tissues of

transgenic GFP grape lines remained bright green fluorescent

(Figure 2A). This was confirmed by quantification of the

fluorescence signal (Figure 2B) which showed a 5-fold decrease

of flurorescence in stem, leaf and root tissues of the silenced lines,

when compared to GFP line. This plant material, either

maintained by in vitro cuttings or transferred to soil kept all its

characteristics. Similar observations were obtained when analyz-

ing 8 independent GFFG+GFP or GFFG/GFP transgenic grape

lines over a 1.5 year period (data not shown). Of note, a faint, but

visible, GFP expression level was observed in the apical meristems,

in axillary buds and, on occasions, in the tip of some rootlets of the

GFFG/GFP or GFFG+GFP lines (Figure 2A and data not shown).

Thus, as previously observed in other plant species, IR-constructs

trigger in Vitis a potent RNA silencing reaction in somatic tissues

resulting from dsRNA processing and transitivity but is, somehow,

less efficient in actively dividing cells [21,24].

IR-PTGS is Functional in Grape, but not Arabidopsis,
Plants Grown at Low Temperatures

RNA silencing in Arabidopsis thaliana, Nicotiana benthamiana and

Solanum tuberosum was previously shown to function at 20–26uC but

Table 1.

Genotype Constructs

Number of
experiments/EC
inoculated

Mass of EC
inoculated in g

Number of transgenic
EC obtained

Transformation
efficiency

PN40024 GFP 3/30 3 .300 100

PN40024 GF-FG 2/15 1.5 9 6

PN40024 GF-FG+GFP 2/13 1.3 13 10

GF-FG lines GFP 5/47 4.7 142 30.21

Transformation efficiency = number of transgenic EC/gram of Embryogenic Callus according to Bouquet et al. [27]. 1 embryogenic callus of 100 ml PCV.
doi:10.1371/journal.pone.0082652.t001

Cold Resistance of RNA Silencing in Grapevine
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not at 15uC [12,13]. In contrast to these herbaceous species,

perennial cultivated grapevines and wild Vitis species are often

exposed in vineyards, or in their natural habitat, to far lower

temperatures than this 15uC breaking-point. Therefore, to assess if

the IR-PTGS approach can be implemented in the field to trigger

efficient virus resistance in Vitis, we next assessed the temperature-

sensitivity of RNA silencing in this species. To do so, after a 3–4

weeks growth period at 26uC, untransformed (WT) and transgenic

GFFG+GFP, GFFG/GFP and GFP grape plantlets were trans-

ferred for another 4–8 weeks cultivation period at 26uC, 15uC,

10uC or 4uC. Similar experiments were also conducted with a

transgenic Arabidopsis expressing the same GFP and GF-IR

transgenes [21]. Although these low temperatures slowed down

the growth of both Arabidopsis and Vitis, plants continued to

develop and initiate new leaves. In Arabidopsis, we observed a

gradual increase of the fluorescence, notably in roots, and finally in

newly formed leaves, reaching a 5-fold increase of fluorescence as

shown by quantification of the fluorescence intensities in plant

grown at 4uC (Figure 3C).

Interestingly, in the newly formed leaves of GFFG/GFP and

GFFG+GFP Vitis transgenic lines, GFP silencing was maintained,

even at temperatures as low as 4uC (Figure 3A). These

observations were confirmed by quantitative RT-PCR of the

GFP mRNA (Figure 3B). We ruled out that the low GFP level was

due to an inhibition of the 35S-driven GFP transgene transcription

rate, in response to cold treatment, as both GFP fluorescence and

mRNA steady-state levels were high in the GFP-expressing

transgenic grape lines and remained steady from 26uC to 4uC
(Figure 3A–C). Northern analysis revealed that neither the ‘GF’

nor the ‘P’ siRNA accumulation were altered by low temperatures

in the silenced GFFG/GFP and GFFG+GFP Vitis transgenic lines,

further supporting that RNA silencing, at least when triggered by

IR constructs, operates efficiently in Vitis at temperatures as low as

4uC (Figure 4A). By contrast, GFP silencing in Arabidopsis,

triggered by the same IR-construct, was released at

4uC(Figure 3C) and this inhibition was correlated with a strong

decrease in both ‘GF’ and ‘P’ siRNA accumulation at this

temperature (Figure 4B). Remarkably, IR-PTGS and siRNA

production do not seem to be affected in Arabidopsis grown at 15uC
or even at 10uC (Figure 3C and 4B), suggesting that, as opposed to

S-PTGS which was already hindered at these temperatures

[12,13], IR-PTGS is more resistant to low temperature, in

agreement with previous observations [29].

Discussion

IR-PTGS, which is triggered by constructs directly expressing

dsRNA, is more efficient than S-PTGS, which is triggered by

constructs expressing aberrant single-stranded RNA that first need

to be converted to dsRNA [25]. As a result, IR-PTGS has already

been successfully used to elicit strong antiviral defence in many

plant species [23,26]. To determine if IR-PTGS functions in a

conserved manner in grapevines, we transformed the sole inbred

grapevine whose genomic sequence is accessible. Despite consid-

erable and long-lasting efforts, it is well-known that the grape

genus remains rather recalcitrant to stable transformation, with

the exception of few accessions for which the best transformation

efficiencies to be expected range from 1–33 transgenic plant/g of

embryogenic callus (EC) treated [27]. Even though Pinot Noir is

reputed for being refractory to in vitro culture [17,18,27], the

transformation procedure developed here on the PN40024 line

allowed us to routinely produce between 10–100 independent

transgenic plant/g of EC (Table 1 and data collected by our open-

to-all transformation platform over a three-year period;

plateforme-transfovigne@colmar.inra.fr).

The efficient transformation procedure developed here (Table 1)

and the efficiency of IR-PTGS observed in the transformants, not

only open this species to ‘‘fast’’ reverse genetic studies for basic or

applied research but also pave the way towards implementing the

best strategy to generate silencing-based virus-resistant Vitis.

Indeed, our results collectively indicate that IR-constructs trigger

a potent and low temperature-resistant RNA silencing reaction in

this species. This unaltered RNA silencing activity at low

temperatures in grapevine probably helps this perennial plant,

which undergo cold stress every winter, but also during spring

time, when green arms develop from the latent buds, to cope with

pathogens all along the year. Efficient IR-PTGS relies on the

activity of several different RNA silencing factors. These include

DCL4 for production of both primary and secondary siRNAs,

AGO1 for their action and RDR6 for their amplification.

Therefore, the observed sensitivity of IR-PTGS to low tempera-

ture in Arabidopsis or tobacco suggests that, in these later, as

opposed to Vitis, one or several of these factors is/are somehow

impaired [12]. This will certainly deserves careful examination in

the future.

Altogether, our data suggest that the breaking point of silencing

is below 4uC for grapevine, in contrast to 15uC for Arabidopsis, N.

benthamiana, potato, N. tabacum, soybean and petunia [12,13,14,15].

Remarkably, other kingdoms also exhibit a temperature-depen-

dent breaking point of silencing: 22uC in drosophila [28] and 27uC
in mammalian cells [29], suggesting that RNA silencing has

adapted to the environment of each species. Whether other

perennial plants, such as poplar or fruit trees, exhibit similar

unaltered RNA silencing activity at low temperature remains to be

addressed.

Despite the efficiency of IR-PTGS in most grapevine tissues, it

should be noted that occasional GFP fluorescence was observed in

the apical region of some rootlets (Figure 2A). Interestingly, the

Xiphinema index nematodes, which are specific vectors of GFLV,

perforate the grape roots at this particular 1–2 mm rootlet region.

After a first attack, such feeding zones become then attractive to

other nematodes where they feed and reproduce [30]. Therefore,

we cannot yet fully exclude that, upon feeding, X. index can inject

GFLV particles into those scarce and silencing-defective rootlet

tissues where it could replicate and thus build up a reservoir for

possible disease spread in the entire plant, being in a way Achilles’

heel of vine.
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