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How is the extensibility of growing plant cell walls regulated? In the past, most studies have
focused on the role of the cellulose/xyloglucan network and the enigmatic wall-loosening
agents expansins. Here we review first how in the closest relatives of the land plants, the
Charophycean algae, cell wall synthesis is coupled to cell wall extensibility by a chemical
Ca2+-exchange mechanism between Ca2+–pectate complexes. We next discuss evidence
for the existence in terrestrial plants of a similar “primitive” Ca2+–pectate-based growth
control mechanism in parallel to the more recent, land plant-specific, expansin-dependent
process.
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Plant cell growth reflects the balance between the extensibility of
the cell wall and the forces exerted on the wall by the turgor pres-
sure. Although growth in principle can be controlled by changing
either parameter, in most documented cases growth changes reflect
changes in cell wall extensibility (Cosgrove, 2005). The paradoxical
properties of cell walls, which combine extensibility with extreme
strength, can be easily understood by keeping in mind that wall
strength is determined by the number and strength of load-bearing
bonds and by assuming that a wall relaxation mechanism exists
that can break these bonds and transfer the load to new bonds
(Figure 1). Wall relaxation and cell expansion can occur, in prin-
ciple, with or without a change in wall strength, depending on
whether or not this chemorheological process causes a net change
in the number or strength of the load-bearing bonds.

THE NATURE OF THE LOAD-BEARING BONDS IN
PRIMARY CELL WALLS
Typical primary cell walls (i.e., the walls of growing cells) con-
sist of strong cellulose microfibrils, hemicelluloses [primarily
xyloglucans (XGs) in non-Commelinoid species], pectins, and
structural proteins. The current “textbook view” of the control
of cell wall extensibility (Carpita and McCann, 2000) is largely
based on a series of seminal extensometer experiments, which
showed that acid-promoted wall extension under a constant ten-
sion, also referred to as creep, can be reproduced on isolated
walls. These studies led to the purification of a creep-promoting
agent, called expansin (McQueen-Mason et al., 1992). Expansins
are encoded by large gene families, the expression of whose mem-
bers is frequently correlated with growth. All attempts so far
have failed to detect enzymatic activity for expansins. Interest-
ingly, the proteins can also promote creep of paper, essentially
pure cellulose, without detectable cellulose hydrolysis. From

this it was concluded that expansins have a “lubricating” activ-
ity perhaps by severing hydrogen bonds between glucan chains
(cellulose and/or XG; Cosgrove, 2000). XG chains strongly bind to
microfibrils and in principle are long enough to bridge microfib-
rils in the wall. Cross-links have been observed in certain cell
wall preparations (McCann et al., 1993). This led to the so
called “tethered network” model in which the main load-bearing
network consists of cellulose–XGs, the extensibility of which
is controlled by expansin and perhaps wall-bound XG endo-
transglycosylase (XET) activity (Fry et al., 1992). The latter can
stitch XG fragments together and, if a transfer from load-bearing
to relaxed XG chains occurs, this process also has the potential to
promote creep.

Within this view, pectins form a matrix around the cellulose–
XG network but are thought not to have a major load-bearing
role (Cosgrove, 1999). Pectins are block co-polymers; homogalac-
turonan (HG), a main pectic polymer, consists of a-1,4-linked
galacturonic acids. HG is secreted in a highly methylesterified
form and selectively de-methylesterified by pectin methylesterases
(PME; Pelloux et al., 2007). After de-methylesterification, pec-
tate can form Ca2+–pectate cross-linked complexes, referred to
as “eggboxes” (Figure 2B; Grant et al., 1973). These cross-links,
together with rhamnogalacturonan II (RGII)-boron diester bonds,
are thought to indirectly affect the cellulose–XG network by influ-
encing the wall porosity and hence the accessibility of primary wall
relaxation proteins to their substrate (Cosgrove, 1999). The more
Ca2+–pectate present, the denser the gel and the more inextensible
the cell wall is expected to be.

Recent observations necessitate a reconsideration of the “teth-
ered network” model. Firstly, 3D-solid state nuclear magnetic
resonance (NMR) studies suggest that at best only a small pro-
portion of the XG is bound to cellulose (Dick-Perez et al., 2011).
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FIGURE 1 | Chemorheological control of wall extensibility. (A) Principle:
microfibrils (brown), which in most cases form parallel arrays, are cross-linked
by load-bearing (violet) and relaxed (light blue) bonds. The number and
strength of the load-bearing bonds determines cell wall strength. Wall
extensibility is controlled by chemorheological mechanisms that remove
load-bearing bonds. The cell wall relaxes and undergoes turgor-driven

mechanical deformation until previously relaxed bonds become load-bearing.
(B) Cartoon of cell wall architecture showing microfibrils (brown) and XG
chains (green). A small portion of the XG is intertwined or complexed with
cellulose, thus sticking the microfibrils together at these points. The
endoglucanase Cel12A as well as expansin may act on these relatively
inaccessible XG–cellulose interaction domains.

Secondly, extensometer assays on isolated cucumber cell walls
show that creep is promoted by a specific class of dual-specificity
β-1,4-endo-glucanases (EGases) and not by XG- or cellulose-
specific EGases (Park and Cosgrove, 2012). Based on these
studies, the authors propose a model for the cell wall architecture
(Figure 1B), in which minor and relatively inaccessible XG frac-
tions are intertwined or complexed with cellulose and thus form a
small number of load-bearing connections between microfibrils.
The authors propose that these connections also may be the tar-
get not only of the dual-specificity EGases but also of expansins.
Why would there be so few cellulose–XG interaction sites, given
the high affinity of XG for cellulose (Hanus and Mazeau, 2006)?

An interesting possibility is that pectin competes with XG for inter-
action with nascent cellulose chains, perhaps through the binding
of the arabinan and galactan side chains to the cellulose (Zykwin-
ska et al., 2005). In this case the secreted pectin/XG ratio as well as
the pectin structure (the density and length of side chains) would
determine the extent of the cellulose–XG interactions. Thirdly, a
double mutant (xylosyltransferase1/2 or xt1xt2) without detectable
XG (Cavalier et al., 2008) shows a surprisingly subtle phenotype:
mutant plants are slightly smaller than the wild type, but otherwise
nearly normal in their development. Stress–strain assays on cell
walls from petioles showed a 53% higher elastic compliance and a
164% higher plastic compliance for XG-less walls as compared to
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FIGURE 2 | Cartoon summarizing Ca2+–pectate-dependent growth

control in the alga Chara corallina. (A) In this species, cellulose
microfibrils are parallel and oriented transversely to the elongation axis.
Ca2+ (red ovals)-pectate complexes are load-bearing. One stretched and
two relaxed Ca2+–pectate complexes are shown. Newly deposited

pectate will chelate Ca2+ preferentially out of the stretched complexes,
thus leading to wall relaxation and turgor-driven mechanical deformation
until other complexes become load-bearing. (B) Cartoon of an “eggbox”
consisting of two antiparallel poly-galacturonic acid chains complexed
by Ca2+.

wild type walls, confirming that XGs have a wall-strengthening role
(Park and Cosgrove, 2011). In contrast, xt1xt2 cell walls showed
strongly reduced acid-promoted/expansin-dependent creep, con-
sistent with a reduced effectiveness of expansin in the absence
of XG. Surprisingly, treatments that specifically act on pectate or
xylans promoted creep more strongly in the mutant than in the
wild type, showing that Ca2+–pectate and, to a lesser extent, xylans
are load-bearing in the mutant (Park and Cosgrove, 2011). These
findings are reminiscent of the results on tomato cell cultures con-
tinually exposed to the cellulose inhibitor dichlorobenil (DCB);
the walls of DCB habituated cells strikingly lacked cellulose and
XG, and were held together by a strong pectate network, reinforced
by phenolic ester and/or phenolic ether bonds (Shedletzky et al.,
1990). In conclusion, in the absence of the cellulose–XG network,
pectate cross-links play a major load-bearing role.

Another set of recent observations on the Arabidopsis shoot api-
cal meristem underscore the importance of pectin metabolism in
the control of wall extensibility also during normal development
(Peaucelle et al., 2008, 2011). Microindentation using atomic force
microscopy (AFM) showed that the appearance of organ primor-
dia at the periphery of the meristem was preceded by an increased
elastic compliance of the cell walls at that position. This could be
attributed to the de-methylesterification of HG. Indeed, inhibi-
tion of PME activity by the ectopic expression of a PME inhibitor
(PMEI) led to a global stiffening of the walls throughout the meris-
tem and totally prevented the formation of primordia, whereas
ectopic PME expression reduced the cell wall stiffness and caused
the formation of ectopic primordia (Peaucelle et al., 2008).

This raises the following questions: (1) To what extent do
pectin cross-links also have a load-bearing role in normal cell
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walls? (2) How can we explain the association of HG de-
methylesterification with a decrease in cell wall stiffness rather than
the expected increase in stiffness? and more in general (3) What is
the relevance of the changes in cell wall stiffness for the observed
growth changes?

AN EVOLUTIONARY PERSPECTIVE ON GROWTH CONTROL
To provide an answer to these questions it is worthwhile to con-
sider the growth mechanisms revealed in freshwater algae of the
Charophyceae family, the closest relatives of land plants. Chara
corallina, with its giant cells of up to several centimeters long, is
ideally suited for the study of cell expansion. Chara cells can be eas-
ily impaled with a pipette, allowing the composition of the cytosol
and the turgor pressure to be controlled. In addition, the cyto-
plasm can be removed entirely to study the expansion behavior of
isolated walls (Proseus et al., 2000). The cell wall of Chara has a
composition similar to that of higher plants with cellulose, pectin
(primarily non-methyl-esterified HG), and minor amounts of XG
(Sorensen et al., 2011). The results of a series of imaginative exper-
iments on this species by the Boyer laboratory yielded an elegant
model for wall expansion (Figure 2; for a recent review, see Boyer,
2009). Ca2+–pectate cross-links are the main load-bearing bonds,
and wall relaxation is coupled to pectate deposition through a sim-
ple non-enzymatic mechanism: Newly deposited pectate chelates
Ca2+ away from existing Ca2+–pectate, preferentially from the
load-bearing bonds that are distorted by the wall tension. The loss
of these Ca2+–pectate bonds causes the cell wall to relax and irre-
versible wall extension occurs. The new Ca2+–pectate then binds
to the wall and the extension decelerates. New pectate is deposited
and the cycle repeats itself.

A similar coupling mechanism may underlie growth control
in tip-growing cells of land plants as shown by the mathemat-
ical modeling of growing pollen tubes (Rojas et al., 2011). An
elegant model was developed based on the idea, similar to that pro-
posed for Chara, that newly generated pectate causes turnover of
load-bearing Ca2+–pectate cross-links, thereby facilitating turgor-
driven mechanical deformation. In this model, pectate production
is the resultant of the deposition and de-methylesterification of
pectin. Interestingly, the validity of the model was supported by its
ability to precisely reproduce the morphologies of pollen tubes; to
predict the growth oscillations observed in rapidly growing pollen
tubes and the observed phase relationships between variables such
as wall thickness, cell morphology, and growth rate in oscillatory
cells (Rojas et al., 2011).

WHAT ABOUT DIFFUSELY GROWING CELLS IN
LAND PLANTS?
A number of older studies have also provided evidence for a role
of pectin cross-links in growth control of non-tip-growing cells of
land plants: high concentrations of Ca2+ inhibit growth and acid-
promoted extensibility of isolated cell wall preparations (Tagawa
and Bonner, 1957), whereas chelation of Ca2+ strongly promotes
cell wall extensibility and growth (Weinstein et al., 1956). It was
concluded that, like in Chara, Ca2+–pectate cross-links have a
load-bearing role and that the exchange of pectate-bound Ca2+ for
H+ may explain at least in part the acid-promoted increase in cell
wall extensibility (Virk and Cleland, 1988). An elegant study based

on stress–strain experiments on glycerinated hollow cylinders pre-
pared from elongating regions of soybean hypocotyls addressed
this issue in more detail (Nakahori et al., 1991; Ezaki et al., 2005).
It was shown that a pH shift in the physiological range from 6
to 5 simultaneously caused a strong increase in the extensibility,
and a decrease in the yield threshold of the cell wall. Interestingly,
high Ca2+ concentrations reverted this increase in extensibility
but did not affect the yield threshold. A Ca2+ chelator perfectly
mimicked at pH 6 the acid-induced increase in wall extensibility
(Ezaki et al., 2005). The reduction in the yield threshold in the
pH 6–5 range was almost entirely due to a heat-sensitive compo-
nent (possibly the protein “yieldin”; Okamoto-Nakazato, 2002).
Instead, the acid-induced extensibility increase was comprised
of a heat-sensitive (presumably expansin) and a heat-insensitive,
Ca2+–pectate-dependent component. Pectin can also play a load-
bearing role in mature cells after growth cessation as shown in
cucumber hypocotyls (Zhao et al., 2008). Indeed, during mat-
uration these cells lose the ability to grow and to respond to
expansin. Interestingly, expansin-dependent extension could be
restored in heat-inactivated walls of non-growing hypocotyl cells
upon treatment with fungal pectinases or chelation of Ca2+
(Zhao et al., 2008).

Together these experiments can be interpreted as follows:
the cell walls of the land plants studied have at least two
integrated load-bearing components, Ca2+–pectate and cellulose–
XG. Growth control involves an “ancient” process elaborated
upon the Ca2+–pectate exchange mechanism, inherited from
the Charophycean ancestors, combined with a more “recent”
land plant-specific, expansin-based process, which “amplifies” the
Ca2+–pectate mechanism and allows faster growth. In this context
it is interesting to note that the cell expansion rate of land plants
can be 5–20× faster than that of Chara (Boyer, 2009).

The Ca-pectate growth-controlling mechanism is a system that,
in the absence of appropriate compensation mechanisms, would
be very sensitive to environmental fluctuations in Ca2+ or other
divalent or monovalent cations. The latter would compete with
Ca2+ for pectate binding and hence potentially interfere with cell
wall integrity. The large amounts of HG (e.g., 23% of the cell
walls in Arabidopsis leaves), combined with a precise regulation of
the degree of methylesterification provides an important buffer-
ing capacity to compensate for changes in cation concentrations
for instance during salt or drought stress. Growth control would
require that the amount of pectate is precisely tuned, for instance
through a mechanism that detects the presence of pectate in the
cell wall and that controls the deposition of pectin, PME activ-
ity and/or pectate turnover. Pectate-binding receptor-like kinases,
such as wall-associated kinases (WAKs; Kohorn, 2001) might play
such a sensing role.

PERSPECTIVES
The combination of recent developments in live-cell imaging,
spectroscopy, the mechanical measurement of cell walls, math-
ematical modeling, and the use of biomimetic systems should
open the way for the study of a number of previously intractable
processes involved in growth control in plants: (1) The study of the
deposition, de-methylesterification, and turnover of pectin in vivo.
A promising new tool based on the in vivo fluorescent labeling of
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polysaccharides using click chemistry has been developed recently.
The technique already allowed pectin deposition and turnover to
be visualized in living root cells (Anderson et al., 2012). (2) The
quantification at different growth stages of wall-bound Ca2+ in dif-
ferent layers of the cell wall. A promising technique is secondary
ion mass spectroscopy (SIMS; Follet-Gueye et al., 1998). (3) The
study of the cell wall architecture and the interactions between poly-
mers. This can be done on intact cell walls using 3D-solid state
NMR (Dick-Perez et al., 2011) or on reconstructed polymer com-
posites with a large panel of physical techniques (Cerclier et al.,
2010; Valentin et al., 2010). (4) The dissection of feedback signaling
pathways involved in the mechanical homeostasis of the cell wall.
This can be addressed using forward genetics combined with the
identification and functional analysis of pectate-binding plasma
membrane receptors. (5) The study of growth-associated changes in
wall mechanics of individual cells using micro- or nano-indentation
methods. For instance, high time-resolution microindentation
studies on pollen tubes with oscillating growth patterns showed
that increases in cell wall elasticity (presumably corresponding
to cell wall relaxation cycles) preceded increases in growth rate
(Zerzour et al., 2009). The observation of changes in cell wall
mechanics over longer time scales may or may not be rele-
vant for growth control. For instance, auxin- or brassinosteroid
promoted growth acceleration appears to be initiated by the hydra-
tion of the cell wall (Caesar et al., 2011). This highly relevant

process may simultaneously cause an increase in the elasticity
and the extensibility of the wall. Similarly, oxidative cross-linking
of proteins or phenolics at the end of growth phases or dur-
ing stresses, simultaneously causes wall stiffening and growth
arrest (Monshausen and Gilroy, 2009). On the other hand, the
chemorheological process that causes wall relaxation by replac-
ing existing bonds for bonds at new positions in principle can
occur irrespective of the number and strength of the cross-links
that determine the stiffness of the cell wall. For instance, growth
inhibition by blue light occurred in the absence of detectable
changes in the viscoelastic properties of the cell wall (Cosgrove,
1988). Finally (6) mathematical modeling will be essential to
establish explicit frameworks for the experimental evaluation of
relevant parameters (Rojas et al., 2011; Dyson et al., 2012; Huang
et al., 2012).
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