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In many species, sex-related differences in crossover (CO) rates have been described at chromosomal and regional
levels. In this study, we determined the CO distribution along the entire Arabidopsis thaliana Chromosome 4 (18 Mb) in
male and female meiosis, using high density genetic maps built on large backcross populations (44 markers, .1,300
plants). We observed dramatic differences between male and female map lengths that were calculated as 88 cM and 52
cM, respectively. This difference is remarkably parallel to that between the total synaptonemal complex lengths
measured in male and female meiocytes by immunolabeling of ZYP1 (a component of the synaptonemal complex).
Moreover, CO landscapes were clearly different: in particular, at both ends of the map, male CO rates were higher (up
to 4-fold the mean value), whereas female CO rates were equal or even below the chromosomal average. This unique
material gave us the opportunity to perform a detailed analysis of CO interference on Chromosome 4 in male and
female meiosis. The number of COs per chromosome and the distances between them clearly departs from
randomness. Strikingly, the interference level (measured by coincidence) varied significantly along the chromosome in
male meiosis and was correlated to the physical distance between COs. The significance of this finding on the
relevance of current CO interference models is discussed.

Citation: Drouaud J, Mercier R, Chelysheva L, Bérard A, Falque M, et al. (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis
thaliana Chromosome 4. PLoS Genet 3(6): e106. doi:10.1371/journal.pgen.0030106

Introduction

One prominent feature of the eukaryotic life cycle is the
segregation of homologous chromosomes to two different
cells during the first, also known as reductional, meiotic
division. The proper completion of this segregation relies on
the formation of stable physical connections between
homologous chromosomes. In most eukaryotic species, these
connections are mediated by crossovers (COs). These are sites
where large (megabase scale) segments of homologous (non-
sister) chromatids are exchanged. Consequently, COs are
essential to the ploidy reduction process, as well as to play a
role in the creation of allelic combinations.

CO number and distribution along chromosomes differ
between male and female meiosis in many plant and animal
taxa (for review see [1]). This widespread phenomenon is
called heterochiasmy. Both the direction and magnitude of
these differences are highly variable. For example, depending
on the species, CO number may be higher in female (F)
meiosis (most eutherian mammals), or male (M) meiosis (some
metatherian mammals), or there may be no significant
difference between sexes (goat, dog, barley). This difference
may be small or moderate, but sometimes it is huge (e.g.,
teleostean fishes). Even closely related species can exhibit
different M/F CO ratios. In the Brassicaceae, for example, this
ratio reaches 1.2 in Sinapis alba [2], whereas in Brassica oleracea
it is inversed (0.6) [3], and there is no significant difference in
Brassica napus (0.98) [4]. Therefore, the nature of evolutionary
forces driving heterochiasmy is a puzzling issue. In addition,

the underlying molecular and cellular mechanisms are
currently unknown. Yet sex-related differences in CO
number per chromosome are paralleled by sex-related
differences in the length of synaptonemal complex (SC) in
human [5] and mouse [6]. The SC is a proteic structure
scaffolded along synapsed homologous chromosomes at
pachytene stage [7].
COs can be localized along chromosomes by analyzing

genetic recombination data. They can also be visualized
cytologically either as chiasma, or as immunolabeled MLH1
foci that mark most CO sites [8], or as late recombination
nodules [9], which are electron-dense structures located on
SCs [9–11]. COs originate from programmed double-strand
breaks (DSBs) that occur early in prophase of the first meiotic
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division [12]. Only a part of these DSBs give rise to COs; the
remaining DSBs are repaired as ‘‘noncrossovers’’ (NCOs),
without exchange of large DNA segments between homolo-
gous chromosomes.

Numerous studies showed that CO formation is tightly
controlled at both chromosomal and local scales [13,14].
Indeed, COs are not uniformly distributed and inter-CO
distances are not random. The former feature is well
illustrated by numerous datasets in mammals [15–17] and
higher plants [11,18]. Several studies have tried to correlate
CO rates along chromosomes with various sequence features,
such as gene or transposable element density, GC nucleotides
%, CpG ratio, simple repeats, etc. However, even if some
weak correlations were found, it seems that none holds true
in all species [15,16,19–21], suggesting that other constraints
act on CO distribution.

One of these constraints is CO interference. This phenom-
enon was originally described as a lower frequency of double-
COs in disjoint chromosomal segments than expected if they
occur independently of each other [22]. The existence of
interference has been confirmed in most species tested [10].
As a consequence of interference, COs tend to be more
evenly spaced than expected if CO positions were random
[23]. In addition, in many species, which have a limited
number of COs per chromosome, interference tends to
increase physical distances between adjacent COs. This is well
illustrated by recombination nodules or MLH1 foci maps
produced in various species [5,17,24–26].

The mechanisms of interference setup are still poorly
understood. Several models of meiotic CO interference have
been proposed over years (see [14] for a comprehensive
review). The two main contenders are currently the ‘‘count-
ing’’ model [27] and the mechanical stress model [28]. The
basic postulate of the counting model is that the CO
designation process among recombination precursors occurs
in such a way that any two adjacent COs are separated by a
fixed number of NCOs. Alternatively, the mechanical stress
model hypothesizes that COs originate from a mechanical

stress imposed on the chromosome. CO designation would
promote a stress relief that would (i) inhibit CO designation
among nearby recombination intermediates and (ii) attenu-
ate in a distance-dependent manner. Neither of these two
models is presently strongly supported by experimental data.
In a previous study, we produced a high resolution map (at

around the 210-kb scale) of meiotic crossovers on Arabidopsis
thaliana Chromosome 4 [18]. We showed that CO rates vary
greatly along the chromosome from 0 to 20 cM/Mb, and that
COs displayed interference. However, CO rates on this map
were sex-averaged because we used the selfed progeny of F1
hybrids for the mapping population. Given that the existence
of heterochiasmy in A. thaliana had been previously suggested
by several studies [29–32], we decided to investigate the
relative contributions of male and female meiosis in the
distribution of COs on Chromosome 4. We observed
dramatic differences between male and female genetic maps.
Strikingly, we found a good correlation between the sex-ratio
of mean CO number per Chromosome 4 on one hand and the
sex-ratio of total SC length on the other hand. Moreover, we
were able to detect significant variations in interference
strength along Chromosome 4. Stunningly, it turned out that
interference strength covaries with the physical distance
between COs. These results could have important upshots on
the reliability of current interference models.

Materials and Methods

Generation of Backcross Populations and Genomic DNA
Extraction
A. thaliana ‘‘Columbia’’ (Col) and ‘‘Landsberg erecta’’ (Ler)

accessions were crossed to obtain F1 hybrids. Col plants were
then crossed with an F1 hybrid used either as the male (Col3
(Col3Ler)) or as the female ((Col3Ler)3Col) parent. Seeds
from these crosses were sowed in vitro, and then seedlings
were grown in short-day conditions at 21 8C.
After 2 wk, 1,476 whole seedlings of each population were

collected and their DNA was extracted as described pre-
viously [33].

Choice of Markers and Single Nucleotide Polymorphism
Genotyping
In a previous experiment, F2 plants from a Col3 Ler cross

were genotyped with a set of 70 SNP markers spanning A.
thaliana Chromosome 4 [18]. In the present study, 46 SNPs out
of these 70 and two additional SNPs were chosen so that the
mean sex-averaged genetic distance between adjacent
markers was 1.9 cM. SNPs are listed in Table S1.
Genotyping was performed using SNPlex technology

(Applied Biosystems, http://www.appliedbiosystems.com) fol-
lowing the supplier protocols. After quality scoring of
genotyping data, four markers were dismissed from the
whole dataset. In some cases it was not possible to assess the
genotype of remaining markers in some plants so these were
also removed from the dataset. The resulting populations
comprised 1,305 and 1,419 plants for female and male
meiosis, respectively.
The genetic size of intervals was computed as the ratio

between the number of recombined chromosomes and the
number of analyzed meioses, which in the case of a backcross
progeny is equal to the number of analyzed plants. CO rates,
physical and genetic sizes are listed in Table S2.
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Author Summary

Meiotic crossovers between homologous chromosomes ensure their
proper segregation to generate ultimately gametes. They also create
new allelic combinations which contribute to the diversity of traits
among individuals. In all eukaryotes, the number and the local-
ization of crossovers along chromosomes are not random. In
addition, crossovers are not independent of each other: the
occurrence of a crossover lowers the probability that another
crossover arises in its vicinity. The mechanism of this phenomenon,
called ‘‘crossover interference,’’ is one of the most challenging
puzzles that geneticists have been faced with in the last century. In
this paper, we precisely described the distribution of crossovers
along Chromosome 4 of the model plant species Arabidopsis
thaliana, separately in male and female meiosis. Interestingly, we
observed that crossovers are 1.7 more numerous in male than in
female meiosis, and this increase is especially marked at the ends of
the chromosome. Moreover, our results provide the first evidence
that the level of interference along a chromosome is not a constant
and is correlated with the physical distance between crossovers.
These results shed new light on the determinism of crossover
localization and could have important outcomes on the relevance of
current models of crossover interference.



Comparisons of CO Rates
In order to calculate single-interval, sex-averaged CO rates

in the pool of M and F populations, the sex-specific CO rates
were weighted according to the respective population size.

All pair-wise comparisons between CO rates were per-
formed using a chi-square homogeneity test. For multiple
testing, p-values were subsequently corrected using the false
discovery rate procedure [34].

Comparisons of CO Number per Chromosome
Predicted Poisson distributions of CO number per chro-

mosome were calculated using the following formula:
SðkÞ ¼ N e�mmk

k! where S(k) is the number of chromosomes
harboring exactly k CO, e is the neperian logarithm base, m is
the observed mean number of CO per chromosome, and N is
the total number of chromosomes.

Whole comparisons between observed and Poisson distri-
butions were performed using a chi-square goodness-of-fit
test.

Comparisons of Inter-CO Distances
For both M and F datasets, the genetic ‘‘width’’ of inter-CO

distance classes was chosen to be 17.5 cM (6 5%) in order to:
(i) provide distance classes spanning the whole chromosome
genetic length, (ii) ensure a common denominator in both M
and F maps, and (iii) prevent small class sizes, in order to
maintain moderate sampling variances, thus allowing con-
clusive statistical testing.

The continuous probability distribution function of inter-
CO distances on chromosomes with exactly a independent
COs is: PðdÞ ¼ a ðL�dÞ

a�1

La , where L is the genetic size of the
chromosome and d is the distance between successive COs.
The derivation of this formula is as follows:

a independent CO points are randomly placed on a
chromosome of length L. Then a CO point is added at one
end to bring the chromosome to the shape of a ring. a þ 1
points are thus randomly and independently positioned on
the circle of perimeter L. The statistics of distances between
successive COs is the same for all pairs; to compute this for
the first pair, we need to find the distribution of the smallest
of a random variables, representing the positions of COs
along the interval, which are uniformly distributed in [0, L]
(the remaining point is by definition at position zero). The
probability that this smallest value, which is the distance
between the last and the first CO, is greater or equal to X is (1
� X/L)a. The minus derivative of this cumulated distribution
then gives the desired probability distribution.

The following formula, which is easily deduced from the
formula above, allows convenient calculation of discrete
distributions of inter-CO distances on finite-size chromo-
somes with exactly two independent COs: SðkÞ ¼ ð2�ðn�kÞþ1Þ�Nn2 ,
where n is the number of classes, k is the rank of the class
(increasing with distance), N is the population size, and S(k) is
the size of the kth9 class.

Whole comparisons between observed and calculated
distributions were performed using a chi-square goodness-
of-fit test.

Coincidence Analyses
For both M and F datasets, the genetic size of intervals used

for coincidence analyses was chosen to be the same as the
genetic ‘‘width’’ of distance classes used for inter-CO distance

comparisons, for the same reasons (see above). Given two
intervals, the coefficient of coincidence between them is
calculated as follows: C ¼ r11

ðr10þr11Þðr01þr11Þ where C is the
coincidence and rij is the chance of i CO across the first
interval and j CO across the second interval. In most cases i
and j values are either 0 or 1; 2 COs were rarely found in one
of the intervals and were considered as no CO, while 3 COs
were considered as 1 only, accordingly to what would have
been observed if the intervals would have not contained
internal markers.
The standard deviation of coincidence was calculated

according to [35].

Testing for Significant Differences between Coincidence
Values
We have developed a procedure which computes the p-

value for the hypothesis H0 that two coefficients of
coincidence cu and cv estimated from quadruplets or triplets
of markers are in fact generated from the same theoretical
coincidence value cth. Under that hypothesis, H0, cu, and cv are
actually not expected to differ from each other. A small p-
value for the difference between cu and cv then indicates that
H0 is unlikely to be true given the genotype data of the
mapping population.
Let a quadruplet have markers A, B, C, and D, assumed to

be in the order in which they appear on the chromosome. If
the quadruplet is instead a triplet, this formalism can be
applied by setting B ¼ C.
In a first phase, we compute cth by the maximum likelihood

method. Consider the first quadruplet: the probability (like-
lihood) that N gametes lead to a measured coincidence value
of cu is

LðcuÞ ¼ pnrrrr p
nrn
rn p

nnr
nr p

nnn
nn

N !

nrrnrnnnrnnn

where nnn, nrn, nnr, nrr are the number of gametes that are
respectively recombinant between (i) neither A and B nor C
and D, (ii) A and B but not C and D, (iii) C and D but not A
and B, (iv) both A and B and C and D. N is the total number of
gametes with valid data at the four markers, namely nnnþ nrnþ
nnrþ nrr. The dependence on cth is through the probabilities:

Prr ¼ rABrCDcth

Pnr ¼ ð1� cthrABÞrCD

Prn ¼ rAB:ð1� cthrCDÞ

Pnn ¼ ð1� rABÞð1� rCDÞ � rAB:rCDð1� CthÞ

where rAB and rCD are recombination fractions between A and
B and B and C, respectively.
Next, we consider the two quadruplets of interest. L(cv) is

calculated as for L(cu). The joint likelihood of both observa-
tions is the product L(cu) 3 L(cv), and we numerically
determine the cth which maximizes this joint likelihood. The
result is a cth lying somewhere between cu and cv.
In a second phase, we compute a p-value for the hypothesis

H0 given cth. We do this by determining the probability that
j cu� cv j is at least as large as measured from the experimental
data. But if cu and cv are estimated using shared gametes, the
recombination events in the four intervals are a priori
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correlated. Thus, when measuring cu and cv we need to use
independent sets of gametes by using half (N/2) of the gametes
for cu and the other half for cv. So that the value j cu� cv j is not
dependent on the data order, j cu � cv j is computed for 105

random order combinations and the median value taken.
The p-value is obtained by simulating interference events

within H0 given cth: we generate N/2 realizations of gametes
for each quadruplet; for each realization, we choose among
the four possibilities of recombinants or not in each interval
according to the probabilities prr, prn, pnr, pnn. For this set of N
gametes, we extract the two associated coincidence coeffi-
cients cu9 and cv9. Repeating this 105 times, we get a
probability distribution for j cu9 � cv9 j; the desired p-value is
then the frequency with which j cu9 � cv9 j is larger than the
experimental value.

Cytological Observations
Cytological observations were carried out on Col 3 Ler F1

plants.
The anti-ASY1 polyclonal antibody has been described

elsewhere [36]. It was used at a dilution of 1:500. The anti-
ZYP1 polyclonal antibody was described by [37]. It was used at
a dilution of 1:500.
Preparation of prophase stage spreads for immunocytology

was performed according to [36] with the modifications
described in [38].
All observations were made using a Leica (http://www.leica.

com) DM RXA2 microscope; photographs were taken using a
CoolSNAP HQ (Roper, http://www.roperscientific.com) cam-
era driven by Open LAB 4.0.4 software; all images were
further processed with Open LAB 4.0.4 or AdobePhotoshop
7.0 (http://www.adobe.com). SC length measurement was
performed using Optimas (Bioscan Incorporated, http://
www.bioscan.com) software.

Results

Plants from a Col 3 Ler F1 population were backcrossed
with Col plants using the F1, either as the male or the female
parent, in order to create two populations subsequently
referred to as M and F, in which the observed recombination
events occurred either in male or female meiosis of the
parental F1 hybrid. 1,419 M plants and 1,305 F plants were
genotyped with 44 SNP markers spanning Chromosome 4 at a
density of 1.9 cM (calculated from sex-averaged data, see
Materials and Methods). Given that interval sizes are small, we
calculated genetic distances simply by dividing the number of
recombinant chromosomes by the total number of plants
analyzed.

The CO Landscape on Chromosome 4 Does Not Differ
between an F2 Population and Pooled Backcross
Populations
We first compared CO rates in the F2 population

previously described to those in pooled M and F populations,
in each of the same 43 intervals spanning Chromosome 4
(Figure 1A). As expected, the ‘‘averaged’’ (see Materials and
Methods) CO rates observed in the pool of the M and F
backcross progenies (corresponding respectively to male and
female meiosis) were not significantly different from those
observed in the F2 progeny (resulting half from male meiosis,
half from female meiosis) generated from the same parental
accessions (lowest p-value is 0.35; Figure 1A).
This implies that there is no significant variation in meiotic

recombination over time for a given genetic background,
thus enabling direct comparisons of data.

The CO Landscape on Chromosome 4 Differs in Male and
Female Meiosis
At first glance, the difference between male and female

recombination rates is obvious when comparing total genetic
size of both maps (Figure 1B). The M map is 87.9 cM long and
the F map is 52.3 cM long. This indicates that a Chromosome
4 bivalent experiences on average 1.76 CO in male meiosis,
but only 1.05 CO in female meiosis (M/F ratio 1.68). This M/F
difference is highly significant (v2 p-value , 0.001)
Next, we compared recombination rates in male and

female meiosis interval-by-interval (Figure 1C). For a majority

Figure 1. Variation of CO Rates along A. thaliana Chromosome 4

(A) CO rates in F2 population (green) and the pool of male and female
backcross populations (red).
(B) Alignment of physical map (center) and both male (top) and female
(bottom) genetic maps.
(C) CO rates in male (blue) and female (pink) populations.
Orange stars mark the intervals that are significantly different between
both populations (p-values , 0.02). A schematic representation of
Chromosome 4 is aligned with the physical map and each CO plot, which
includes 5-Mb scale coordinates, centromere (diamond), heterochro-
matic knob (gray box), nucleolar organizer region (NOR, black box).
doi:10.1371/journal.pgen.0030106.g001
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of intervals (36/43) the M/F ratio was above 1, with the most
notable differences in the last telomeric third of the long arm.
However, only the distal interval on the short arm and the five
distal intervals on the long arm were highly significantly
different in male and female (mean M/F ratio for these six
intervals is 6.1, v2 p-value , 0.05). The remaining central
intervals were not significantly different in male and female,
when compared one-by-one. However, if these were grouped
and considered as a single interval, there was still a significant
difference between male and female (M/F ratio 1.37, v2 p-
value , 0.001).

In summary, male and female meiotic CO landscapes along
Chromosome 4 are strikingly different. The difference is high
close to the telomere on the long arm and to the nucleolar
organizer region on the short arm and modest in the median
region of the chromosome (see Figure 1B and 1C).

Total SC Length Differs in Male and Female Meiosis
Meiotic chromosomes at pachytene stage were immunola-

beled with antibodies against ZYP1. This protein is a major
component of the central element of the SC, which ties
homologous chromosomes together. We used ASY1 immu-
nolabeling to visualize the axial element, which is a proteina-
ceous axis formed along pairs of sister chromatids [39]
(Figure 2). At pachytene stage, ZYP1 labeling extends
continuously along the entire SC, hence allowing total SC
length measurement. We found that SC length in male
meiocytes is 166 6 24 lm (n¼ 22) compared to only 98 6 20
lm (n ¼ 25) in female. Our estimate of male SC length is in
good agreement with that obtained in a previous study (147
6 28 lm; n ¼ 19) using electron microscopy [40]. The value
we obtained for the M/F ratio of total SC lengths is very close
to that for the M/F ratio of mean CO numbers per
chromosome (1.70 versus 1.76). This suggests that sex-related
differences in CO number and total SC length are correlated.

Distributions of CO Number per Chromosome in Male and
Female Meiosis Do Not Fit Poisson Distributions.

We next looked at the distribution of CO number per
Chromosome 4 in the M and F populations (Figure 3).
According to the hypothesis that CO placements are random

and independent events, the distribution of CO number per
chromosome should fit a Poisson distribution. Thus, we
calculated the Poisson distributions expected for the
observed average number of COs per Chromosome 4 and
compared these to the observed ones (see Figure 3A and 3B).
In the F population, about half of chromosomes had no CO

or only one CO, while very few had two COs or more (Figure
3B). This distribution is highly significantly different (p-value
, 0.001) from the theoretical Poisson distribution, in which
the ‘‘0 CO’’ group was the main class (59%) and multiple CO
classes accounted for 10%. Hence, in female meiosis almost
all bivalents experienced only the ‘‘obligate CO’’ required for
the proper segregation of homologous chromosomes at
anaphase I.
In the M population, only one third of chromosomes had

no CO and about half had one CO (Figure 3A). Consequently,
chromosomes with multiple COs were more frequent than in
the F population. Conversely, in the corresponding Poisson
distribution ‘‘0 CO’’ and ‘‘1 CO’’ chromosomes were
represented at 42% and 36%, respectively. Observed and
expected distributions were clearly different from each other
(p-value , 0.001).

Distances between Adjacent COs Are Greater than
Expected
As a consequence of interference, inter-CO distances are

less variable and greater (when CO number is limited) than
expected under the assumption that COs are distributed

Figure 3. Distributions of CO Number per Chromosome 4

Bars represent the frequency of chromatids with 0, 1, 2, or 3 COs.
(A) Observed (blue) and Poisson (purple) distributions in M population.
(B) Observed (blue) and Poisson (purple) distributions in F population.
Corresponding number of chromatids is indicated above each bar.
doi:10.1371/journal.pgen.0030106.g003

Figure 2. Coimmunolocalization of ASY1 (Red) and ZYP1 (Green) in Male

and Female Meiocytes at Pachytene Stage

Bar¼ 10 lm.
doi:10.1371/journal.pgen.0030106.g002
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randomly and independently. Positions of double-COs (on
chromosomes with exactly two COs) were represented in two-
dimensional plots in Figure 4. x and y axis coordinates
correspond to the positions of the first and second CO on the
genetic map, respectively. Under the assumption of no
interference, points should be uniformly distributed over
the triangle. For both M and F double-CO populations, the
observed points were clearly heterogeneously distributed:
they were underrepresented next to the diagonal line, which
corresponds to low inter-CO distances.

In order to test this deviation from independence between
COs, inter-CO distances on chromosomes with two COs only
(see Materials and Methods) were grouped into size classes,
and the observed distributions were compared to the
‘‘random’’ (no CO interference) distributions (Figure 5). For
both M and F datasets, the genetic length (17.5 cM 6 5%) of
the intervals was chosen to optimize the number of double-

COs per interval, in order to avoid high sampling variance
and thus allow statistically significant differences to be
detected.
In the F population, we found opposing observed and

expected distributions: for the expected distribution the
minor class was 35–52.5 cM and the major class 0–17.5 cM,
whereas in the observed distribution the majority of inter-CO
distances were long, and short distances were the minority
(Figure 5A). This difference was highly significant (p-value ,

0.001).
The observed M distribution was rather symmetrical, with

the mode between 35 and 53 cM. It was strikingly different
from the theoretical distribution, in which the class size
decreased with increasing genetic length (p-value , 0.001;
Figure 5B).
For both M and F distributions the mean observed inter-

CO distance, respectively 51% and 63% of the total map size,
exceeded the expected one, which is exactly one third of the
total map size.
Therefore, in male and female meiosis, widely spaced COs

were overrepresented, whereas closely spaced COs were
underrepresented. This difference between expected and
observed distributions of distances between COs is fully
consistent with interference.

Figure 5. Distributions of Inter-CO Distances on Chromosome 4

Observed (blue) and random (purple) distributions of inter-CO distances
in (A) F and (B) M populations.
doi:10.1371/journal.pgen.0030106.g005

Figure 4. Double-CO Locations on (A) Male and (B) Female Chromo-

some 4

All double-COs on chromosomes harboring exactly two COs were
plotted in two-dimensional graphs. The x and y axis values indicate the
genetic position (relative to the nucleolar organizing region) of the first
and the second CO, respectively. The diagonal line and the upper left
corner correspond to minimal (null) and maximal (chromosome-wide)
inter-COs distances, respectively.
doi:10.1371/journal.pgen.0030106.g004
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Three-Point Coefficient of Coincidence Varies along
Chromosome 4

Besides altered inter-CO distances, another expected
consequence of interference is a lowered chance of finding
close double-COs than expected from randomness. More
precisely speaking, given two intervals, double-COs (one CO
in each interval) will occur at a lower frequency than two
independent COs (one CO in the first or in the second
interval, both being not exclusive). This departure is called
coincidence and can be calculated as follows: c ¼ r11

ðr10þr11Þðr01þr11Þ

where rij is the chance of i CO across the first interval and j
CO across the second interval. The value of C is 1 if there is
no interference and 0 if interference is absolute (meaning
that double-COs are completely absent). Coincidence is
widely used as a measure of interference from genetic data.
Moreover, most mathematical models of CO interference
assume a covariation between coincidence at a given genetic
distance and the level of interference (see for example [27],
reviewed in [14] ).
Hence, plotting coincidence for pairs of adjacent intervals

(three-point coincidence: C3; [27]) all along a chromosome
gives access to local variations of interference level, provided
that the genetic size of intervals remains constant. We thus
performed all coincidence analyses on every possible pairs of
17.5 cM (6 5%) adjacent intervals (30 and 21 pairs fit these
requirements in M and F datasets, respectively). This means
that we ‘‘moved’’ a 2 3 17.5-cM window along the genetic
map. The interference level measured by C3 was clearly
variable across Chromosome 4 for both maps. In male
meiosis, starting from the short-arm end, interference
strength was high until ;30 cM (C3 , 0.1), then it decreased
from ;30 cM to ;45 cM (C3 ;0.3), to reach a minimum at
;52 cM (C3 ;0.75), and finally increased again from ;65 cM
to the end of the map (C3 ;0.3; Figure 6A). Most of these
variations in C3 were found to be significant (see Figure 6,
Table 1, and Materials and Methods). We can thus conclude
that local interference level varied significantly along
Chromosome 4 in male meiosis. In the F plot, all observed
C3 values are very low (�0.1). We could not observe any
significant variation in coincidence among the few points of
the plot (Figure 6 and Table 1). Given the very small number
of double-COs, it seems likely that many more plants would
be needed to detect any possible coincidence variation.

Four-Point Coefficient of Coincidence Increases with
Genetic Distance
Another way of analyzing interference is to plot coinci-

dence between one fixed interval and a series of increasingly
distant intervals (four-point coincidence: C4; [27]). This
means that we fixed a 17.5 cM (6 5%) window and moved a
second 17.5 cM (6 5%) window all along the chromosome.
This method provides a global description of interference
depending on genetic distance (see Materials and Methods).
For each M and F population, two different C4 plots were
made, using either the terminal interval of the short arm
(Figures 7A and 8A) or the telomeric interval of the long arm
as the fixed interval (Figures 7B and 8B). For the M
population, regardless of whether the fixed interval was
located at the end of the long or short arm, plots had globally
the same shape. This kind of shape has been consistently
observed in various species (for review see [41]), showing that
interference decreases with genetic distance. Nevertheless, C4
values from the short-arm end were systematically lower
(from 0.05 to 1.11) than those from the long-arm end (from
0.3 to 1.23). This confirms that the strength of interference is
weaker at the distal region of the long arm than on the short
arm. In both plots, coincidence increased up to 1 at ;45–50
cM, peaked above 1 at ;55–60 cM, and then decreased
toward 1. The shape of the C4 plots was determined by two
factors: (i) the genetic distance between intervals and (ii)
fluctuations of interference strength as described above. The
occurrence of a peak of coincidence above 1 means that at

Figure 6. C3 Coincidence Plots along the (A) Male or (B) Female

Chromosome 4

All possible pairs of adjacent intervals (each being 17.5 cM 6 5%) were
used for calculation of coefficient of coincidence, defined as the
frequency of double-COs divided by the frequencies of COs in both
intervals (see Materials and Methods). These C3 coincidence values were
plotted against the genetic position of the junction between the two
adjacent intervals.
Blue and pink dots represent, respectively, M and F datasets. Numbered
green dots mark the pairs of intervals used for statistical comparison of
C3 coincidence values. Error bar for these dots correspond to the
standard deviation of coincidence calculated according to [35]. Each plot
is aligned with the corresponding genetic map, the physical map, and a
schematic representation of the chromosome, which includes 5-Mb scale
coordinates, centromere (diamond), heterochromatic knob (gray box),
nucleolar organizer region (NOR, black box).
doi:10.1371/journal.pgen.0030106.g006
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some genetic distances, double-COs are more frequent than
expected if COs were randomly placed: this corresponds to
what is called negative interference. At short distances from
the terminal short-arm interval (which includes the centro-
mere) coincidence was very low. Interestingly, this shows that
the presence of the centromere did not block interference.

Regarding the F population (Figure 8), because the F map
was very short (52.4 cM) and double-COs were rare, C4 plots
were less informative. From both ends, coincidence increased
up to ;0.4 at ;35 cM. Strikingly, C never reached 1, showing
that in female meiosis interference acted across the whole
chromosome.

Level of Interference Covaries with Physical Size
Given that significant variations of interference level along

Chromosome 4 were detected in male meiosis, we addressed
the issue of possible correlations between interference level
and physical distance. We thus calculated the physical size of
the pairs of intervals considered for the C3 coincidence
analysis described above, which have all the same genetic size
(2 3 17.5 cM). The coincidence values were next plotted
against these sizes (see Figure 9A). We could clearly observe
two scatters of points. The smallest one contains all pairs of
intervals encompassing the heterochromatic knob located on
the small arm and the centromere, while the largest scatter
comprises all the pairs of intervals located on the long arm
only. For the large scatter, we could note a striking positive
correlation between the C3 coincidence and the physical size
(r2 ¼ 0.91 6 0.04).

The small scatter was shifted by about 4.5 Mb relative to the
large scatter. This is a direct consequence of the presence of a
large CO-free region, which does not contribute to the
genetic size of the considered pairs of intervals, but hugely
increases their physical size. Indeed, when subtracting the
cumulated size of the knob and the centromere (4.7 Mb) from
the size of the pairs of intervals encompassing these
chromosome parts and making a new plot (see Figure 9B),
the two scatters of Figure 9A grouped into a single scatter
that showed this time a chromosome-wide tight correlation
between C3 coincidence and physical size (r2 ¼ 0.93 6 0.04).

It means that interference level—measured by coincidence
analysis on adjacent intervals of constant genetic size—
decreases as the physical size increases. In other words, for a
given genetic size (i.e., a given CO frequency), a greater
physical size enhances the opportunity for double-COs to
occur.

Discussion

In this study, we compared male and female meiotic CO
distributions along A. thaliana Chromosome 4. We depicted
strong sex-related differences in CO distribution (hetero-
chiasmy) and unequivocal variations in CO interference level
along the male chromosome.
One major finding in this study was that the genetic sizes of

male and female maps were strikingly different (M map 88
cM, F map 52 cM). This means that Chromosome 4 harbors an
average of 1.8 CO in male meiosis, but only 1 in female
meiosis. Noticeably, the size of our male map was very close to
that previously reported for the Col accession [42] (87.9
versus 83.6 cM). Moreover, we described a marked difference
in total SC length between sexes. Remarkably, this difference
was very close to the M/F CO ratio observed for Chromosome
4. By using a high density of markers, as well as a large-sized
population, we could describe the sex-specific fine scale
distribution of COs for the first time in A. thaliana. Thus, we
could detect highly significant variations of M/F CO ratio
along the chromosome. We observed large differences (up to
18.7-fold) at both ends of the genetic map and less
pronounced—though significant—differences on the median
part of the chromosome (from 5 Mb to 13 Mb, see Figure 1C).
In this median region both curves presented the same overall
pattern of ‘‘peaks’’ and ‘‘valleys,’’ even if the local male CO
rate was higher than the female CO rate for most intervals
(30/37). In summary, we detected heterochiasmy, not only at
the whole chromosome level, but also at a regional scale.
Heterochiasmy in A. thaliana has been suggested by several

previous studies. Indeed, chiasma counts showed that COs are
more frequent in male meiosis (9.7) than in female (8.5) [32],
but the result of this count, carried out on only ten meiocytes,
was not highly significant and did not provide any precise
information about CO location. In two other studies, a
comparison of male and female recombination rates on all
five A. thaliana chromosomes was performed [29,31], but in
each case only a few markers were scored, covering only part
of the genome. Nevertheless, these results also suggested that
recombination is higher in male than female meiosis and that
there are variations in the M/F CO ratio along chromosomes.
At the whole genome scale, heterochiasmy is widespread
(reviewed in [1]), but this observation remains largely
unexplained from an evolutionary point of view. Never-
theless, SC length was shown to differ significantly between
male and female meiocytes in human [5] and mouse [6],
paralleling variations in MLH1 foci number. Similar results

Table 1. Comparison between C3 Values Obtained at Different Positions along Chromosome 4 in M and F Meiosis

M Population F Population

Point number (C3 value) 2(0.179) 3(0.755) 4(0.321) Point number (C3 value) 2(0.096)

1 (0.047) 0.185 ,10�4 0.034 1 (0.072) 0.540

2 (0.179) — 0.002 0.328

3 (0.755) — — 0.039

C3 values at evenly spaced positions (numbered from 1 to 4 on the M plot, 1 and 2 on the F plot) along each plot (green dots in Figure 6) were compared using a simulation-based
approach (see Materials and Methods). For each pair-wise comparison, p-values (in red) given in the table correspond to the H0 hypothesis that the intensity of interference is actually the
same at both positions. For each point (in bold), C3 value is indicated between parentheses.
doi:10.1371/journal.pgen.0030106.t001
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were reported in other species, such as zebrafish [43,44],
Dendrocoelum lacteum [45], and others (reviewed in [46]). This
statement can now be extended to higher plants, since we
obtained comparable results in A. thaliana. Such correlated
variations in SC length and CO number were also reported
among chromosomes in one sex only, among individuals in
the same species, and even among meiocytes in a single

organism [5,17,47–50]. However, based on current knowledge
it is difficult to claim that SC length determines CO number,
if the reverse is true, or even if another unidentified factor
determines both.
Besides global differences, there is also compelling evi-

dence that the distribution of COs along chromosomes is
contrasted in both sexes. Similarly to what we observe in A.

Figure 8. C4 Coincidence Plots along the Female Chromosome 4

All possible combinations between a fixed and a nonoverlapping interval
(each being 17.5 cM 6 5%) were used for calculation of coefficient of
coincidence, defined as the frequency of double-COs divided by the
frequencies of COs in both intervals (see Materials and Methods). These
C4 coincidence values were plotted against the genetic distance
between the centers of the intervals. The fixed interval is located at
the end of either (A) the short arm or (B) the long arm. Each plot is
aligned with the corresponding genetic map, the physical map, and a
schematic representation of the chromosome, which includes 5-Mb scale
coordinates, centromere (diamond), heterochromatic knob (gray box),
nucleolar organizer region (NOR, black box). For both plots, abscissa
values indicate the genetic distance between the centers of the fixed and
the ‘‘moving’’ interval. The red two-headed arrow indicates the fixed
interval position.
doi:10.1371/journal.pgen.0030106.g008

Figure 7. C4 Coincidence Plots along the Male Chromosome 4

All possible combinations between a fixed and a nonoverlapping interval
(each being 17.5 cM 6 5%) were used for calculation of coefficient of
coincidence, defined as the frequency of double-COs divided by the
frequencies of COs in both intervals (see Materials and Methods). These
C4 coincidence values were plotted against the genetic distance
between the centers of the intervals. The fixed interval is located at
the end of either (A) the short arm or (B) the long arm. Each plot is
aligned with the corresponding genetic map, the physical map, and a
schematic representation of the chromosome, which includes 5-Mb scale
coordinates, centromere (diamond), heterochromatic knob (gray box),
nucleolar organizer region (NOR, black box). For both plots, abscissa
values indicate the genetic distance between the centers of the fixed and
the ‘‘moving’’ intervals. The red two-headed arrow indicates the fixed
interval position.
doi:10.1371/journal.pgen.0030106.g007
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thaliana, enhancement of the M/F ratio close to telomeres was
reported in other Brassicaceae species [2,3]. In vertebrates,
such a conservation in heterochiasmy patterns along chro-
mosomes was also observed: in mouse, human, and several
teleostean fishes, the M/F ratio decreases around the
centromeres and tends to increase close to the telomeres
[15,16,43,51].

At the present time, the molecular and cellular bases of
regional heterochiasmy remain elusive. And, generally speak-
ing, the mechanisms ruling CO distribution along chromo-
somes are also poorly characterized. Data from various model
organisms show that CO distribution results from the
integration of several levels of control [14]: (i) the density of
meiotic DSBs initiating recombination between homologous
chromosomes varies along chromosomes; (ii) the propensity
of a DSB to be repaired as a CO or a NCO probably varies;
(iii) interference shapes the final CO distribution; (iv) only a
part (variable among species) of COs are sensitive to
interference (type I CO), the remaining are insensitive (type
II CO). Each of these layers of control could act on observed
heterochiasmy patterns along chromosomes. The DSB dis-
tribution, CO/NCO ratio, interference strength/interference
strength variations, and the proportion of type II COs could

vary between male and female meiosis, even if no exper-
imental data presently support these hypotheses.
Other factors were also suggested to effect differences

between CO distributions in male and female meiosis.
Several studies suggested that in human, parental imprinting
in a few regions could explain at least part of local
heterochiasmy [52,53]. Additionally, it was proposed that
synapsis initiation sites colocalize with COs [54]. For
example, in human, synapsis initiation occurs in sub-
telomeric regions in male [55] whereas it is rather interstitial
in female (reviewed in [56]), which seems compatible with the
observed pattern of heterochiasmy. Due to the availability of
whole genome sequences, correlations between CO rates
along chromosomes and various genomic features could be
examined [15,16,19–21], but all the resulting correlations
were weak. This could be explained by the fact that only sex-
averaged recombination rates were used in these studies. A
priori, there is no evidence that genomic features correlated
to CO rates have the same weight in male and female meiosis.
Thus, when possible, correlation analyses should be done
separately on data from both sexes. Presumably, this could
disclose previously unidentified relationships or reinforce
existing ones and reveal differences in correlations between
sexes.
Altogether, it is likely that multiple constraints act

synergistically to shape CO distribution along male and
female chromosomes in meiosis, some of which remain to be
elucidated.
In this paper, we have presented the first detailed study on

the effect of interference on CO distribution along a whole
chromosome in male and female meiosis of A. thaliana. Both
CO number per chromosome and inter-CO distances clearly
show that COs are not independent of each other. Interest-
ingly, we unequivocally show that the centromere is not a
barrier to interference, in accordance with previous reports
[18,57–59]. The coincidence plots also clearly show the
existence of negative interference at some genetic distance
(55–60 cM), which corresponds to a greater chance of another
CO than expected from random. This phenomenon has been
repeatedly observed from various genetic datasets (see, for
instance, [58]) and is also predicted by various models of CO
interference [27,28]. Furthermore, we provide unambiguous
evidence that interference strength varies significantly along
A. thaliana Chromosome 4 in male meiosis.
It has recently been shown that in most eukaryotes, a part

of meiotic COs arising from a distinct pathway are not
sensitive to interference [60]. Such COs account for about
15% of the total in A. thaliana [37,61]. Thus, the observed
variation of interference level, measured on the whole
population of COs, can be explained by two nonexclusive
hypotheses: (i) the interference level between interfering COs
is actually variable, or (ii) this interference level is constant,
but the relative proportions of the two kinds of COs are
variable along chromosome, so that locally, a high density of
noninterfering COs leads to a decrease of the interference
level that is measured on the whole population of COs.
In female meiosis, observed variations are not significant

because double-COs are rare, hence sampling variance is
high, causing an increase in p-values from statistical testing.
Such variations in interference strength along chromo-

somes were previously suggested from analysis of human
pedigree data [62]. Moreover, the level of interference was

Figure 9. Scatter Plot between C3 Coincidence Value and Physical Size

for Male Chromosome 4

Violet dots correspond to pairs of intervals encompassing the hetero-
chromatic knob and the centromere, while orange dots correspond to
the remaining pairs of intervals (all located on the long arm). Numbered
green dots represent the same pairs of intervals than those represented
in Figure 6A and used for the comparisons of C3 coincidence values.
(A) Physical sizes were calculated from genome sequence data (Build 6
version 0), adding if necessary 1.5 Mb to take account for the
centromere.
(B) Cumulated centromere and knob size (4.7 Mb) was subtracted from
the size of the relevant pairs of intervals.
doi:10.1371/journal.pgen.0030106.g009
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reported to vary among chromosomes in humans in several
studies [17,62–64]. Sex-linked variations of interference have
also been reported along human Chromosome 21 [64]. Even
fluctuations of interference level among human individuals
have been described [17,26].

The molecular bases of these variations are currently
poorly documented. Our results provide clear evidence that
across a chromosome segment displaying a given CO
frequency, a greater physical size enhances the opportunity
for double-COs to occur. In other words, interference level
between COs separated by a fixed genetic distance is a
function of physical distance. Interestingly, cytogenetic data
collected in humans demonstrate a negative correlation
among chromosomes between SC length and the global
(chromosomal) level of interference [17]. At the present
time, the molecular bases of these variations are totally
unknown.

The mechanisms of interference itself are still elusive.
Several models have been proposed, but no experimental
data directly support them. One of the most widely used is the
‘‘counting’’ model. Its basic postulate is that a fixed number
of NCOs occurs between any two adjacent COs. As a
consequence, interference strength is supposed to be
constant at the chromosome scale [27,65]. Our data and
those cited above strongly argue against such constancy and
also call into question the concept of an unchanging ‘‘count’’
itself. Moreover, a recent study in yeast showed that CO
number is maintained at the expense of NCOs when the DSB
number is reduced, without affecting interference [66]. Other
models propose that an interference signal results either
from the progressive polymerization of a hypothetical
structure along the chromosome [67], or from a mechanical
stress imposed on the chromosome axis [28]. Our data are
compatible with these two models, in which the interference

level is not explicitly intended to be constant and an
interference signal propagates along the chromosomes.
However, as data in the field of meiotic recombination
continue to accumulate exponentially, it is likely that new CO
interference models supported by experimental evidences
will emerge in the near future.
Our study provides the first detailed analysis of hetero-

chiasmy and CO interference at the whole chromosome scale
in a plant species. It provides the basis for future inves-
tigations on the determinism of CO distribution at the whole
genome scale in A. thaliana and other species.
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