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Mahlet G. Tadessed, Guillaume Cornua, Fidèle Bayae, Fabrice Benedeta,
Vincent Freycona, Sylvie Gourlet-Fleurya and Nicolas Picarda

Understanding how environmental factors could impact population dynamics is of primary importance for species con-
servation. Matrix population models are widely used to predict population dynamics. However, in species-rich ecosystems
with many rare species, the small population sizes hinder a good fit of species-specific models. In addition, classical matrix
models do not take into account environmental variability. We propose a mixture of regression models with variable selec-
tion allowing the simultaneous clustering of species into groups according to vital rate information (recruitment, growth
and mortality) and the identification of group-specific explicative environmental variables. We develop an inference method
coupling the R packages flexmix and glmnet. We first highlight the effectiveness of the method on simulated datasets.
Next, we apply it to data from a tropical rain forest in the Central African Republic. We demonstrate the accuracy of
the inhomogeneous mixture matrix model in successfully reproducing stand dynamics and classifying tree species into
well-differentiated groups with clear ecological interpretations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Understanding how environmental factors could impact population dynamics is of primary importance for animal and
plant species conservation. Mathematical and statistical models are required to understand and predict these dynamics
(Fieberg and Ellner, 2001; Demyanov et al., 2006). Habitat models (Pearson et al., 2002; Hargrove and Hoffman, 2004; García-López and
Allué, 2011) use the spatial distribution of climate variables to predict the spatial range of species. These models are static in space and time
and are conceptually unable to deal with situations where species are not in equilibrium with their environments (Stankowski and Parker,
2010). Ecophysiology-based dynamic global vegetation models (e.g., Scheiter and Higgins, 2009) precisely describe the biological processes
that underlie growth, mortality and recruitment but require a huge amount of information. In species-rich ecosystems, limited information is
available for each species. It is thus intractable to characterize different species with these models; instead, a plant functional type assumed
to be representative of several species is modelled. As a consequence, these methods are more useful to predict biome changes at a conti-
nental scale than forest changes at a regional scale. Gap models (Solomon, 1986; Pastor and Post, 1988; Prentice et al., 1993; Shao, 1996;
Talkkari et al., 1999), while using a simplified description of biological processes when compared with process-based models, still suffer
from the same information limitation and are hardly used for species-rich forest ecosystems (Shugart and West, 1980).

Matrix population models, on the other hand, have been widely used to investigate the dynamics of age-, stage- or size-structured popula-
tions (Caswell, 2001; Stott et al., 2010). They provide a simple way of integrating vital rate information such as birth, recruitment, growth
or ageing and mortality (Crone et al., 2011; Liang, 2010). In forest ecology and forest management, matrix models have been used to study
natural successions, biodiversity dynamics and the impact of natural disturbances. They have also been used to evaluate economic outcomes
and ecological impacts and to optimize management strategies (Buongiorno and Gilless, 2003).

Another challenge with species-rich ecosystems, such as tropical rain forests, tropical marine fish or coral reefs, is their high diversity,
which implies that the sample size for most species is limited. The small sample size hinders development of species-specific models.
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To address this problem, modellers usually cluster species into groups using a variety of methods (Swaine and Whitmore, 1988; Steneck
and Dethier, 1994; Favrichon, 1994; Bellwood and Wainwright, 2001; Gitay and Noble, 1997). Mixture models that cluster based on similar
species responses rather than similar species traits have been proposed in the framework of generalized linear models (GLM) (Dunstan et
al., 2011; Dunstan et al., 2013; Hui et al., 2013; Ouédraogo et al., 2013) and more recently in the context of homogeneous matrix population
models (Mortier et al., 2013).

In this paper, we propose a new class of mixture of inhomogeneous matrix population models that allows the simultaneous clustering of
species based on vital rate processes (recruitment, growth and mortality) and selection of group-specific explicative environmental variables.
The novelty of this method is that it provides the flexibility of selecting cluster-specific covariates in the context of multivariate GLM. It
generalizes previous work for variable selection in multivariate Gaussian regression models (Brown et al., 1998; Monni and Tadesse, 2009;
Ouédraogo et al., 2013) or in univariate GLM (Gupta and Ibrahim, 2007; Khalili and Chen, 2007; Städler et al., 2010).

Section 2.2 is dedicated to the formulation of adaptive lasso regression mixture models and the associated expectation–maximization (EM)
algorithm. Section 3 describes the simulation studies and a real dataset from the M’Baïki tropical rain forest in the Central African Republic,
and Section 4 presents the corresponding results. The simulations demonstrate the effectiveness of the proposed method under various
scenarios, while the real dataset highlights the performance of the mixture of inhomogeneous matrix models to predict stand characteristics
of species-rich ecosystems in contrasted environmental conditions.

2. MODELS
2.1. Usher model

We first focus on a specific population labelled s and discuss the general setting that considers the whole stand in Section 2.2. The Usher
matrix model applies to size-structured populations (Usher, 1966, 1969). It is based on the description of the change in the population size
by a vector Ns.t/ containing the number of individuals in I ordered size classes at a discrete time t W Ns.t/ D .Nsi .t//iD1;:::I , where
Nsi .t/ is the number of trees in the diameter class i at time t . The transitions between t and t C 1 follow the Usher assumption that a tree
can either stay in the same class, move up to the next class or die (moving backwards or moving up by more than one class are not allowed).
The temporal change between times t and t C 1 is defined by the recurrence relation

Ns.t C 1/ D As.t/Ns.t/C Rs.t/ (1)

where As.t/ is the Usher I � I transition matrix for population s,

As.t/ D

0
BBB@

ps1.t/ 0 : : : 0

qs2.t/ ps2.t/ 0

: : :
: : :

0 qsI .t/ psI .t/

1
CCCA (2)

and Rs.t/ is the I -vector of recruitment for population s:

Rs.t/ D

0
BBB@

rs.t/

0
:::

0

1
CCCA (3)

The transition parameters consist of: the stasis rate, psi .t/, which corresponds to the probability of a tree in diameter class i at time t to stay
alive and remain in the same diameter class at time t C 1; the upgrowth rate, qs;iC1.t/, which corresponds to the probability of a tree in
diameter class i at time t to stay alive and to move up to diameter class iC1 at time tC1; and the recruitment flow, rs.t/, which corresponds
to the number of newly recruited trees in the first diameter class at time t . The transition parameters can be reparameterized as

qs;iC1.t/ D q
�
s;iC1.t/ � .1 �msi .t//

psi .t/ D 1 �msi .t/ � qs;iC1.t/
(4)

where qs;IC1.t/ D 0 and q�s;iC1.t/ is the conditional probability for a tree in diameter class i at time t to move up to diameter class
i C 1 given that it stays alive, and msi .t/ is the probability for a tree in diameter class i to die between times t and t C 1. Recruitment is
assumed additive rather than proportional to the number of trees in each diameter class (Buongiorno and Michie, 1980). This means that
the recruitment flow does not follow from the population alone but also involves an external inflow from the surrounding community. This
additive recruitment is suited to the M’Baïki experimental case, where the observed plots are a sample of the whole forest (Caswell, 2001).
A particular aspect of this matrix model is that the transition matrix As.t/ and the recruitment vector Rs.t/ have explicit time dependence
introduced through the linear associations of the demographic processes with time-varying environmental covariates. This contrasts with
standard matrix models that are stationary.
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2.1.1. Predicting growth

The upgrowth transition rate q�s;iC1.t/ is computed from asi .t/, defined as the ‘typical’ diameter at breast height (dbh) growth rate of a tree
in class i at time t . Let ui and uiC1 be the boundaries of class i and let � be the time step of the matrix model. All trees with dbh ranging
from uiC1 � asi .t/ � to uiC1 will grow up to the next class, whereas trees with a diameter ranging from ui to uiC1 � asi .t/ � will remain
in the same class. The proportion of trees that grow up to the next diameter class can thus be computed as

q�s;iC1 D
asi .t/ �

di
(5)

where di D uiC1 � ui is the width of diameter class i . The typical dbh growth rate asi .t/ can be estimated using growth data from class i
only or using a regression model that relates growth and size over the entire size range (Rogers-Bennett and Rogers, 2006). The advantages
and limitations of each estimator have been discussed elsewhere (Picard et al., 2008). Here, we use the regression approach and predict the
typical dbh growth rate as

asi .t/ D X
G
si .t/ˇs (6)

where the ˇs’s are population-specific coefficients to be estimated from the data and XGsi .t/ are a set of known time-varying environmental
covariates associated to the growth process.

2.1.2. Predicting mortality

The probability msi .t/ that a tree in diameter class i dies between times t � 1 and t is computed as

msi .t/ D logit�1
h
XMsi .t/�s

i
� .�=‡/ (7)

where logit�1.x/ D .1 C exp.�x//�1 is the inverse logit function, the �s’s are population-specific coefficients to be estimated from the
data, XMsi .t/ are a set of known time-varying environmental covariates associated to the mortality process, and ‡ is the time step for death
observations. The ratio �=‡ must ensure that msi .t/ < 1, which in practice is satisfied even when � is 10-fold ‡ because of the very small
value of the inverse logit term.

2.1.3. Predicting recruitment

The number of recruits rs.t/ at time t in the first diameter class is computed as

rs.t/ D exp
h
XRs .t/˛s

i
� .�=‡/ (8)

where the ˛s’s are population-specific coefficients to be estimated from the data, XRs .t/ are a set of known time-varying environmental
covariates associated to the recruitment process, and ‡ is the time step for recruitment observations.

2.2. Mixture of regression models and variable selection

So far, we have considered a single population. We now consider the whole stand, with as many populations as there are species. Because
there are a lot of species with very few individuals, the parameters ˛s ; ˇs and �s cannot be estimated for all the species of the stand. Thus,
we aim to group species based on their common behaviour (growth, mortality or recruitment) as well as their similar association patterns
with environmental factors. Species in the same group will share the same estimated parameters.

Species clustering is defined separately for growth, recruitment and mortality processes, and the clustered responses are related to the
predictors defined in Equations (6)–(8). We develop a unified method to simultaneously (i) classify species according to their response to the
predictors, (ii) select the significant predictors and (iii) estimate the parameters ˛s ; ˇs , and �s of Equations (6)-(8) for each species group.
We use a finite mixture of GLM to classify species into groups and estimate the model parameters, and we incorporate an adaptive lasso
penalty to select the predictors for each group (Städler et al., 2010).

Let S be the number of species, T the number of measurement times, nst the number of trees from species s measured at time t (where
s D 1; : : : ; S and t D 1; : : : ; T ), and n D

PS
sD1

PT
tD1 nst the total number of observations in the dataset. The time considered here

is a chronological one used to model annual differences and does not correspond to tree age. Let Y be the random vector of observations
associated with either growth increments or death events. We assume that the growth rate for a tree from species s in dbh class i (conditionally
on the tree staying alive) follows a Gaussian distribution with expectation equal to asi .t/ and variance �2s and that the death event is
distributed as a Bernoulli random variable with probability msi .t/. Using mixture models to group species with similar characteristics, the
log-likelihoods of the growth and mortality processes for the n observations are computed as

`n. jY/ D
SX
sD1

TX
tD1

nstX
jD1

log

2
4
KX
kD1

�k f .Ystj jX; k/

3
5 (9)
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where K is the number of species groups, �k is the mixing proportion of group k; D . 1; : : : ; K/ with  k the model parameters for
group k, and X is the design matrix of explanatory variables. For the growth model, f is the Gaussian density function, Ystj D �Dstj =‡ ,
where �Dstj is the diameter increment between times t and t C ‡ for the j -th tree from species s and ‡ is the time step between succes-
sive observations, and  k D .ˇk ; �k/. For the mortality model, f is the Bernoulli probability mass function, Ystj D Mstj , where Mstj is
a binary indicator of whether the j -th tree from species s died between times t � 1 and t , and  k D �k .

The log-likelihood for the recruitment process is given by

`n. jY/ D
SX
sD1

TX
tD1

log

2
4
KX
kD1

�k f .Yst jX; ˛k/

3
5 (10)

where f is the probability mass function associated to the Poisson distribution with expected value exp.X˛k/; Yst D Rst is the observed
number of recruited trees for species s at time t , and  k D ˛k . It should be noted that the Poisson distribution is restrictive because of
its assumption of equal expectation and variance, which is often not satisfied for ecological count data (Flores et al., 2009). The negative
binomial distribution can be a solution but may not be sufficient to accommodate the large number of zeros often recorded for recruitment
processes. An alternative would be to use zero-inflated distributions (Poisson or negative binomial).

The relevant covariates associated to the different processes may vary from one group to another. We propose using the adaptive lasso
approach to select the group-specific covariates (Zou, 2006; Städler et al., 2010). The estimator O for the model parameters  then
corresponds to the maximum of a penalized log-likelihood:

O D arg max
 
f`n. jY/ � Pn. /g

where Pn is the adaptive lasso penalty:

Pn. / D
KX
kD1

�k�nk

LX
lD1

j kl jˇ̌
ˇ O kl

ˇ̌
ˇ

(11)

with  kl the l th element of  k ;
ˇ̌
ˇ O kl

ˇ̌
ˇ the maximum likelihood estimator of  kl , and �nk a parameter selected using cross-validation.

2.2.1. Expectation–maximization algorithm

Because of the sum within the log in Equations (9) and (10), the penalized log-likelihood cannot be maximized analytically but can be
numerically maximized using the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2008). The EM algorithm is an iterative
procedure that alternates between two steps, the E (or expectation) step and the M (or maximization) step. It starts with a random assignment
of the species to the K groups. This gives the initial values w.0/

stjk
of the posterior probability that the j -th tree from species s at time t

belongs to species group k W w.0/
stjk
D 1 if species s is initially assigned to group k, and 0 otherwise.

In the E-step, the posterior probability that the j -th tree from species s at time t belongs to species group k is computed as

w
.m/
stjk
D

�
.m/
k

QT
t 0D1

Qnst0
j 0D1 f

�
Yst 0j 0 jX; 

.m/
k

�

PK
lD1 �

.m/
l

QT
t 0D1

Qnst0
j 0D1 f

�
Yst 0j 0 jX; 

.m/
l

� (12)

where the superscript m is the iteration index of the algorithm. An important point to notice is that w.m/
stjk

does not depend on t and j . This
is peculiar to situations with replicate measurements for the clustered unit and ensures that when a species is assigned to a group, all its
conspecifics are also assigned to the same group. In other words, posterior group probabilities are computed at the species level rather than
at the individual tree level. We adopt the approximation used in Khalili and Chen (2007) to update the mixing proportions as

�
.mC1/
k

D
1

n

SX
sD1

TX
tD1

nstX
jD1

w
.m/
stjk

An improved update of the mixing proportions is provided in Städler et al. (2010).
In the M-step, the penalized log-likelihood is maximized for each component separately using the posterior probabilities of the

observations as weights. This gives estimates for component k’s parameters at the m-th iteration of the algorithm as

1. For the growth process

Ǒ.m/
k
D arg max

ˇk

8<
:

SX
sD1

TX
tD1

nstX
jD1

w
.m�1/
stjk

logf
�
�Dstj =‡ jX

G
kjˇk ; �

2
k

�
� �

.m�1/
k

�nk
jˇk j

j Ǒk j

9=
; (13)
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where f is the density of the Gaussian distribution.
2. For the death process

O�
.m/
k
D arg max

�k

8<
:

SX
sD1

TX
tD1

nstX
jD1

w
.m�1/
stjk

logf
�
Mstj jX

M
kj �k

�
� �

.m�1/
k

�nk
j�k j

j O�k j

9=
; (14)

where f is the probability mass function associated to the Bernoulli distribution.
3. For the recruitment process

Ǫ
.m/
k
D arg max

˛k

8<
:

SX
sD1

TX
tD1

w
.m�1/
stk

logf
�
Rst jX

R
k ˛k

�
� �

.m�1/
k

�nk
j˛k j

j Ǫk j

9=
; (15)

where f is the probability mass function associated to the Poisson distribution.

2.2.2. Number of components and species allocations

The model fitting described in the previous paragraphs supposes that the number of groups K is known. In order to estimate it, we fit the
finite mixture of GLM for K D 1; 2; 3; : : :, and we select the value of K that minimizes an information criterion. Different criteria have
been used, such as the Akaike information criterion (Akaike, 1974), the Bayesian information criterion (Schwarz, 1978), or the integrated
completed likelihood criterion (ICL) (Biernacki et al., 2000). We adopt the ICL, which has been specifically developed for mixture models
and takes into account the quality of the classification. The ICL penalization is given by

PICL D �K log.n/C 2

SX
sD1

ns

KX
kD1

wsk log.wsk/

where the first term corresponds to the Bayesian information criterion penalization with �K equal to the number of free parameters in the
model with K components, ns D

PT
tD1 nst is the number of tree observations for species s, and wsk is the estimated posterior probability

that species s belongs to group k (Equation 12). The maximum a posteriori estimate is then used to determine each species’ allocation.

2.3. Mixture of inhomogeneous matrix models

The mixture of GLM gives Kg species groups for growth, Kr for recruitment and Km for mortality. Crossing these classifications gives
Kg � Kr � Km combinations of groups. These combinations are named gxrym´, with 1 6 x 6 Kg ; 1 6 y 6 Kr , and 1 6 ´ 6 Km.
Because of the additive recruitment, each of theKr recruitment groups contributes to several combinations of groups. Therefore, the number
of recruits ry.t/ for recruitment group y must be distributed between the combinations gxrym´. The estimated number of recruits for the
combination gxrym´ is computed as 	xy´ ry.t/, where 	xy´ D Nxy´=

P
x0
P
´0 Nx0y´0 is the ratio of the total number of alive trees in

combination gxrym´; Nxy´, over the total number of alive trees in recruitment group y, such that
P
x

P
´ 	xy´ D 1 for all y.

Each species exclusively belongs to one combination of groups. Because the parameters of the growth, mortality and recruitment models
are estimated for each group, the look-up table assigning each species to growth group x, recruitment group y and mortality group ´ defines
a matrix population model for it. Therefore, the combinations of groups define what we call the mixture of inhomogeneous matrix models.

3. APPLICATION
3.1. Simulations

We simulated mixture regression models with the true number of components set to three. We generated 30 species, and within each species,
we sampled the number of trees from a Poisson(30). Within each tree in a given species, the number of repeated measures was sampled from
a Poisson(15). To evaluate the effect of ignoring the time dependence in our model, we considered a first-order autoregressive correlation
structure (AR1.	/) with varying correlation parameters 	 D .0; 0:1; 0:3; 0:5; 0:7; 0:9/; this autoregressive dependence was applied on the
residuals for the Gaussian case and on the linear predictors for the Bernoulli and Poisson cases. The species were randomly assigned to the
three groups with mixing proportions set to � D .0:60; 0:25; 0:15/. A total of five covariates were generated from a multivariate normal
distribution with mean 0 and an AR1(0.7) covariance matrix. We also considered a scenario where the design matrix X has dependence
structure across covariates with correlation of 0.5 in addition to the temporal AR1(0.7) correlation for repeated measures within the same
covariate. The parameters associated to each covariate had a 0.5 probability of being zero, and the nonzero parameters were simulated as
described in Table 1. We generated 50 datasets. For each simulation, aK-component mixture model was fit three times with different starting
points for K D 1; : : : ; 7. We retained the fit and the K value that yield the lowest ICL. The computations were performed using the R
software (R Core Team, 2014) by integrating functionalities of the flexmix (Leisch, 2004; Grün and Leisch 2007, 2008) and the glmnet
(Friedman et al., 2010) packages (see the Supporting information for the complete R code). For the algorithm to converge, it is necessary
to use the same cross-validation partitioning across the EM iterations, that is, the subsamples for cross-validation must be defined at the
beginning using the foldid option in the function FLXMRglmnet (see documentation in glmnet).
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Table 1. Parameters used for simulations

Distribution Intercept Covariates coefficient Variance

Gaussian f�1:5; 0; 1:5g U Œ�2;�1; 1; 2
 1
Bernoulli f�1:5; 0; 1:5g U Œ�2;�1; 1; 2
 —
Poisson f�1; 0; 1g U Œ�1; 1
 —

Intercepts are fixed, one for each group, along a gradient of values
set to �1.5, 0, 1.5 in the Gaussian and Bernoulli cases and equal to
�1, 0, 1 in the Poisson case. The nonzero coefficients associated to
the relevant covariates are randomly drawn from a discrete uniform
distribution U in the set of values given between brackets.

3.2. The M’Baïki forest case study

3.2.1. The experimental site

We applied the method to the M’Baïki species-rich tropical rainforest ecosystem. The M’Baïki experimental site .3ı54’N, 17ı56’E) was
established in a lowland semi-deciduous tropical rain forest of the Central African Republic. The average annual rainfall for the period 1981
– 2008 is 1739 mm with a 4-month dry season and an annual average monthly temperature of 24:9ıC (Ouédraogo et al., 2013). The M’Baïki
experimental site consists of 10 permanent sample plots, each of 4 ha (200 m � 200 m), established in two forests less than 10 km apart
(Figure 1). Two blocks of three plots each were established in the Boukoko forest and one block of four plots in the La Lolé forest (Bedel et
al., 1998). These permanent sample plots have been inventoried every year since 1982 (except in 1997, 1999 and 2001): all trees > 10 cm
dbh have been individually marked and spatially located and have been measured yearly for dbh. All species present have been identified,
and dead trees and newly recruited trees with dbh > 10 cm have been surveyed. The type of soil in all plot, except one, has been mapped.

Figure 1. The M’Baïki forest experimental plots in the Central African Republic
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Seven of the 10 plots across the three blocks were selectively logged between the 1984 and 1985 inventories. Three plots, one from each
block, were left as controls. Logging consisted in harvesting trees with dbh > 80 cm if belonging to one of 16 commercial species. Four
of the seven plots logged (one from each of the Boukoko blocks and two from the La Lolé block) were thinned 2 years after logging to
increase light penetration. Thinning consisted in poison girdling all nontimber trees with dbh > 50 cm. This process was completed by
cutting all lianas in the entire plot. The M’Baïki experimental site thus provides a perfect setting to observe the demographic processes
across a wide range of disturbances, from undisturbed forests (unlogged plots) to highly disturbed forests (logged + thinned plots). Between
1982 and 2012, more than 37 000 trees from 230 genera have been monitored at this site. For this study, years for which complete data on
the demographic processes and environmental variables are available were considered for analysis, resulting in T D 18.

3.2.2. Growth, mortality and recruitment quantification

The observations use an annual time step .‡ D 1/. To quantify the annual tree growth process, we calculated the annual tree diameter
increments using only measurements from living trees that exhibit no trunk anomalies between two successive years. To further elim-
inate measurement errors, we only kept diameter increments between �0:4 cm (corresponding to stem shrinkage during dry seasons)
(Baker et al., 2002) and 4.456 cm, the 99th percentile of observed diameter increments of the fastest growing species Musanga cecropioides
(Ouédraogo et al., 2013).

The data were split into a training and a validation sets. The training dataset is taken to be Block 2 from the Boukoko forest and consists
of three plots with the three different treatments (Figure 1). This block contains 197 species out of the 230 identified across all the M’Baïki
plots and has data on 80 510 growth observations, 118 133 mortality observations and 42 816 recruitment observations. It is used to fit the
growth, mortality and recruitment processes. The validation dataset consists of the other block in Boukoko and the block in La Lolé. It is used
to evaluate the prediction quality of the mixture of inhomogeneous matrix models for plots sampled in contrasted environmental conditions.

To limit the discretization bias that may result from matrix modelling (Shimatani et al., 2007; Picard et al., 2010; Zuidema et al., 2010),
we use very thin dbh classes with a width of dD1 cm. The time interval of the model has to be adjusted to the class width to meet the Usher
assumption. This is achieved with a short time step of � D 0:1 year.

3.2.3. Environmental covariates

Five environmental variables and two variables describing the tree development stage were considered as potential covariates for the growth
and mortality processes. The latter variables are the dbh and log-dbh (Di in cm and log-Di ), which are commonly included in the model
simultaneously to deal with the nonlinear association between dbh and growth (or mortality) (Zeide, 1993; Weiskittel et al., 2011). The five
environmental variables include two plot-level variables assessing competition for resources and three climate variables (see (Ouédraogo
et al., 2013) for details). The two competition indices are stand basal area (m2 per hectares, BAst) and stand density (number of trees per
hectares, Dst), which are computed on 1-ha subplots (100 m � 100 m) obtained as a subdivision of the initial 4-ha plots into four squares.
This spatial unit was used because the environment is more homogeneous at this scale. The three climate variables are drought indices: the
length of the dry season (number of months with rainfall < 100 mm, LDS), the average rainfall during the dry season (RDS in millimetre)
and the annual average soil water content (MSW in millimetre) (Ouédraogo et al., 2013). For the recruitment process, potential predictors
were restricted to BAst;Dst;LDS and RDS.

3.2.4. Adjustment of the method to the M’Baïki forest

The models were fit for each process usingK D 1; : : : ; 10 groups. This was repeated 10 times with different initial random points for eachK,
and the fit with smallest ICL was chosen. The group structures for the growth and mortality processes were successfully identified. However,
because of the large number of zeros in the recruitment, the mixture model did not work as well. We therefore made some adjustments to
adapt the inference for this process. We assumed that the species groups identified for the growth process are nested within the groups of
the recruitment process. This assumption is supported by the well-established positive correlation between species-specific recruitment rates
and growth rates in disturbed forests, which is a direct consequence of the recruitment design that requires passing a 10 cm dbh threshold
(Gourlet-Fleury et al., 2005). Therefore, once we identified the growth groups, the recruitment groups were obtained by fitting a mixture of
Poisson regression models to the number of recruits of the growth groups, instead of the number of recruits of the species.

A second adjustment to the general framework presented earlier was made to deal with species that could not be classified for various
reasons, including situations in which the species were not available in the training data, environmental covariates were missing for the
species, or the species had a single individual measurement. The strategy we adopted is presented in Section 4.

4. RESULTS
4.1. Simulations

The algorithm performs quite well even when the dependence across time is not taken into account. We are able to identify the correct number
of underlying clusters for all the different processes with correlations as high as 0.9 between consecutive repeated measures (Figure 2). We
use two matching indices, I1 and I2 (Mortier et al., 2013), to assess the clustering performance and compare each species group allocation
based on the maximum a posteriori estimate to the true group membership. These indices are based on the K � OK contingency table
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Figure 2. Distribution of the estimated number of groups based on 50 replications of a simulated dataset with three groups, when observations have either
a (a) Gaussian, (b) Poisson or (c) Bernoulli distribution. We considered a first-order autoregressive correlation structure (AR1.�/) with varying correlation

parameters from 0 (light grey) to 0.9 (dark grey)

C D .Cij / with i D 1; : : : ; K and j D 1; : : : ; OK that cross-tabulates the species according to their true and estimated classifications:

I1 D
1

S

KX
iD1

max
n
Ci1; : : : ; Ci OK

o
I2 D

1

S

OKX
jD1

maxfC1j ; : : : ; CKj g

These indices vary between 1=S and 1 with higher values corresponding to better classifications. For OK D K, we obtain 98% of the time
I1 D I2 D 1 . When considering OK D K C 1 (which occurred rarely), we obtain 93% of the time I1 D 1 and the few instances where
I1 < 1 are due to a group being split into two subgroups (I2 is always lower than one by construction).

The algorithm is also effective at selecting the component-specific relevant covariates for all the distribution types (Gaussian, Bernoulli
or Poisson). For example, in the more complex scenario where the design matrix X has both temporal dependence and correlated covariates,
we obtain the following results: in the Gaussian case, out of the 50 simulations, one false positive is included one time; in the Bernoulli case,
one false positive is selected five times, and there is a single instance of two false negatives; in the Poisson case, one, three or four false
positives are selected one time each, and there is a single instance of one false negative.

4.2. The M’Baïki forest case study

4.2.1. Species classification and ecological meaning

Six groups are identified for the growth process, labelled g1 to g6 in order of increasing maximum growth rate, which is used as a proxy
for light requirement. These six groups are nested within four recruitment groups, r1; : : : ; r4 W g2 and g6 correspond to r2; g5 and g4 match
with r1, g3 with r4 and group g1 constitutes r3. We also identify three mortality groups, labelled m1 to m3. The growth ordering does not
parallel the mortality ordering, and no obvious relationship can be found between growth and mortality groups. The ICL curves as well as
parameter estimates are presented in the Supporting information.

Crossing these classifications gives 6 � 4 � 3 D 72 possible combinations of groups, of which only 15 are nonempty. Accordingly, the
mixture of matrix models is composed of 15 transition matrices. The nonempty combinations of groups contain between a single species
up to 24 species (with known regeneration guild, (Bénédet et al., 2014)) and correspond to groupings that are biologically meaningful,
especially in terms of regeneration guild (Table 2). Moreover, the clusters uncovered by the mixture of Usher matrix models group species
according to both their maximum growth rate and their maximum diameter (95th percentile). When plotting species along these two axes, the
combinations of groups are well separated (Figure 3). Because these two axes can be used to order species along a continuum of ecological
strategies (Turner, 2001; Alder et al., 2002), this provides evidence that the mixture of inhomogeneous Usher matrix models is able to cluster
species in a way that is consistent with their autecology (Picard et al., 2012).

4.2.2. Prediction results, correction factors and asymptotic state

Among the 230 tree species at M’Baïki, 12 were not considered for analysis for various reasons (missing covariates and lack of replicate
measurements) and remained unclassified. Out of the 218 tree species retained for analysis, 21 are not present in the training set but are
present in the validation dataset and are classified a posteriori. It is still necessary to account for the 12 unclassified species when computing
the stand basal area .Bast.t// and the stand density .Dst.t// to avoid underestimating these two competition indices. Hence, correction
factors cB and cD are applied to Bast.t/ and Dst.t/, respectively. Factor cB is computed as the ratio of the total stand basal area in
1992 over the cumulated basal area of classified species in 1992: cB D 1:00259 .˙0:00027/. Factor cD is computed as the ratio of the
total number of trees in 1992 over the cumulated number of trees from species that were classified in 1992: cD D 1:000351 .˙0:00011/.
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Table 2. Floristic characteristics of the combinations of growth, recruitment
and mortality groups identified at M’Baïki: number of species in each com-
bination (size), regeneration guild (guild), phenology and dominant species.

Classification characteristics

Group Size Guild Phenology Dominant species

g1r3m3 4 SB Ever Garcinia smeathmannii
g1r3m1 20 NPLD-SB Dec Canarium schweinfurthii
g2r2m1 24 NPLD-SB Dec Entandrophragma candollei
g2r2m2 3 SB Ever Cola altissima
g2r2m3 4 SB Ever Afrostyrax lepidophyllus
g3r4m2 3 SB Dec Monodora myristica
g3r4m1 24 NPLD-SB Dec Entandrophragma utile
g3r4m3 1 P Ind Zanthoxylum lemairei
g4r1m2 1 NPLD Ever Pycnanthus angolensis
g4r1m1 22 NPLD Dec Entandrophragma angolense
g5r1m2 1 P Ind Dictyandra arborescens
g5r1m1 21 NPLD Dec Lovoa trichilioides
g5r1m3 3 NPLD Dec Entandrophragma cylindricum
g6r2m3 2 P Ever Cleistopholis glauca
g6r2m1 11 P Dec Terminalia superba

SB, shade bearer; NPLD, nonpioneer light demander; P, pioneer; Ever, ever-
green; Dec, deciduous; and Ind, unknown phenology.
Regeneration guild is determined for each group based on two aspects: the guild
of the species with the largest number of trees in the group and the guild that
contains the most species in the group. In most cases, the two agree, but when
they are different, we provide both (e.g., NPLD-SB). Dominant species means
that this species has the highest number of trees in the group.
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validation blocks)
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Year 1992 is chosen because information for all processes and environmental variables is available from this time on. The two competition
indices are then computed from the vector of the number of trees as BAst.t/ D cB �

P
s B0Ns.t/ and Dst.t/ D cD �

P
s 10Ns.t/,

where B D
�
�
4D2i

�
iD1:::I

is the vector of mean basal area for each diameter class, 1 is a vector of ones of length I and prime denotes
the transpose operator.

The results of the simulated forest dynamics using the inhomogeneous matrix model over 2000 years starting with the observed forest
stand in 1992 is shown in Figure 4 (see the Supporting information for the complete R code). The predicted asymptotic tree density, basal
area and dbh structure match the observations of the validation data in 2012. In addition, the observed dbh distribution in 2012 at M’Baïki
has an inverse-J shape that is typical of natural rain forests (Figure 4(c)). It could be fit by an exponential distribution with parameter 0.0724
(standard error 0.0047). In comparison, the predicted dbh distribution also presents an inverse-J shape and can be fit by an exponential
distribution with parameter 0.0695.

We also compared the predicted dynamics following a 28-year wait after disturbance of the asymptotic state to the observed dynamics
between 1982 and 2012 in the logged plots of the validation dataset (Figure 5). The simulated disturbance for the asymptotic state consisted
of removing with probability 1/2 trees with dbh greater than 80 cm from the asymptotic dbh distribution. This corresponds to a perturbation
of the same magnitude as the one realized in 1984 at M’Baïki in terms of lost basal area but performed on a wider range of species. The
model successfully predicts the reconstitution rate of the basal area after disturbance (slope of dynamics): the predicted rate is 0.4329, while
the observed rates in the logged plots of the validation data have a mean of 0.4517 and standard error 0.0929.

5. DISCUSSION
The proposed mixture of inhomogeneous matrix models is an original method that simultaneously fits matrix population models for species-
rich ecosystems, clusters species into ecologically meaningful groups and selects relevant environmental covariates. As such, it is an
integrated alternative to classical methods for building matrix population models, for classifying species or for selecting variables in regres-
sion models. The coupling of modern covariate selection methods and mixture model approaches that we have put forward in the mixture
of inhomogeneous matrix models can be straightforwardly incorporated into any model where individual growth is regressed against size
and environmental covariates. In particular, it could also be implemented in individual-based models (Dunstan et al., 2011) or in integral
projection models (Zuidema et al., 2010).

Compared with other modelling approaches, the mixture of inhomogeneous matrix models combines the power of modern and technically
complex statistical methods with the simplicity of matrix modelling. In this paper, we considered a few potential covariates, but the proposed
method has the flexibility to handle a large number of covariates and select the relevant ones to model the dynamics and refine the predictions.
For example, species-specific functional traits, such as the 99th percentile of diameter or wood density, as proposed by Hérault et al. (2011)
could be included as potential covariates. For the front-end user, the model is as simple to use as any other matrix model. We thus expect
the mixture of inhomogeneous matrix models to be useful in all application areas where matrix population models have been found to be
useful decision tools, such as population viability analysis (Morris and Doak, 2002) or the management of wildlife population with harvest
(Jensen, 1996), in particular when operating in a variable environment.

Taking into account environmental variability in matrix models is crucial to better understand and predict consequences of environmental
variations on population dynamics. In the particular case of the M’Baïki tropical rain forest, we demonstrated the model’s ability to reproduce
the stand structure at equilibrium and the dynamics after disturbance. We showed, using simple exploitation rules, that the model could
successfully reproduce post-logging dynamics over a 25-year period. Climate variables were also included in the environmental variables,
thus paving the way for predicting the impact of climate change (Liang et al., 2011), including the change in species composition or the
interaction between disturbance and climate change, caused by the species differentiated responses to climate. The role of climate in forest
dynamics at M’Baïki will be investigated in a future study.

Further work should be pursued to address some issues that were not taken into account in this paper. In particular, (i) explicitly modelling
the time dependence between observations within the same tree, (ii) addressing the zero inflation in the recruitment process and (iii) investi-
gating the impact of imbalanced class distributions on the results of the mixture models. For the first, mixed models offer a flexible method
to handle longitudinal dependence (Bondell et al., 2010; Schelldorfer et al., 2014). Our method can be extended to accommodate this by
considering mixtures of generalized linear mixed models with variable selection. However, this is computationally challenging and requires
the development of efficient algorithms. For the second, zero-inflated distributions provide a general framework to overcome the presence
of a large number of zeros (Flores et al., 2009). However, the challenge of using zero-inflated models in the context of model-based cluster-
ing is the complexity of nesting two levels of mixtures: one corresponding to the mixture of a point mass at zero and a Poisson (or negative
binomial) distribution and the other corresponding to the mixture of distributions used to identify groups of species. For the imbalanced
class distribution issue, which may compromise the performance of clustering, sampling methods, such as random undersampling (Tseng
and Wong, 2005), are commonly used to achieve a more balanced distribution. The integration of such sampling strategies with ensemble
learning methods, such as bagging (Breiman, 1996) and boosting (Friedman, 2000), has been shown to improve the performance of imbal-
anced data classification/clustering (He and Garcia, 2009). However, the problem is more complicated in our context, where the clustering
is performed at the species level and the imbalanced distribution occurs both at the level of the species and the varying number of trees
within species.

Finally, we have fit the growth, mortality and recruitment models separately. This ensures an optimal fit for each dynamic component.
However, because growth, mortality and recruitment are nonlinearly combined into the matrix model, this does not ensure an optimal fit at
the matrix model level. Combining equations estimated separately may induce a prediction bias at the population level. Although scarcely
documented in the scientific literature, this prediction bias is a well-known issue among forest modellers and occurs in different types of
forest dynamic models. The problem is usually addressed by tuning a posteriori some coefficients (Favrichon, 1998). An alternative to deal
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with this problem and a possible extension of our proposed model would be to formulate a unified approach that allows the fit of the three
demographic processes simultaneously using an integrated population model (Abadi et al., 2010). This can be achieved within a Bayesian
hierarchical framework (Cressie et al., 2009) by defining a first level that models the number of trees in a diameter class Ns.t/ conditionally
on the growth, mortality and recruitment processes and a second level that models these demographic processes using mixture models with
variable selection similarly to the method we have proposed here.
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