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The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the
contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts
range from quasi-static velocities proportional to the external loading rate to velocities larger than
the shear wave speed. The way system parameters influence front speed is still poorly understood.
Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of
an extended frictional interface, for various friction laws. With the classical Amontons–Coulomb
friction law, we derive a closed-form expression for the steady-state rupture velocity as a function
of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness
of the interface and show that the softer the interface, the slower the rupture fronts. We provide
an approximate closed form expression for this effect. We finally show that adding a bulk viscosity
on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate
expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our
results provide insights into the qualitative role of various key parameters of a frictional interface on
its rupture dynamics. They will be useful to better understand the many systems in which spring-
block models have proved adequate, from friction to granular matter and earthquake dynamics.

I. INTRODUCTION

Extended frictional interfaces under increasing shear
stress eventually break and enter a macroscopic sliding
regime. They do so through the propagation of a rupture-
like micro-slip front across the whole interface. The prop-
agation speed of such fronts is typically of the order of
the sound speed in the contacting materials, which made
them elusive to measurements until the rise of fast cam-
era monitoring of frictional interfaces in the late 1990s.
It is now well established that a whole continuum of front
propagation speeds vc can be observed along macroscopic
frictional interfaces, from intersonic (between the shear
and compression wave speeds of the materials, cs and ck,
see e.g. [1]) to quasi-static (proportional to the external
loading rate, see e.g. [2, 3]), going through sub-Rayleigh
fronts (vc . cR with cR the Rayleigh wave speed, see e.g.
[4–6]) and slow but still dynamic fronts (vc ∼ 0.010.1cR,
see e.g. [4]). This huge variety in observed speed trig-
gered the natural question of what the physical mecha-
nisms underlying speed selection of micro-slip fronts are.

Experimentally, it has been shown that the larger the
local shear to normal stress ratio τ/p just prior to rupture
nucleation, the faster the local front speed [5]. This re-
sult is consistent with the observation that a larger shear
stress promotes intersonic rather than sub-Rayleigh prop-
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agation [7, 8]. The observed relationship between pre-
stress and front speed has been reproduced in simulations
for both fast [9–11] and slow [11] fronts. On other aspects
of front speed, models are ahead of experiments, with var-
ious predictions still awaiting experimental verification.
Among these are the following: (i) Models with simple
Amontons-Coulomb (AC) friction [9, 11–13] have shown

that front propagation speed is controlled by τ̄ = τ/p−µk

µs−µk
,

with µs and µk the local static and kinematic friction
coefficients, τ̄ thus appearing as a generalisation of the
parameter τ/p used to analyse the experimental data.
(ii) A model with velocity-weakening AC friction [10] has
suggested that front speed is direction-dependent, with
different speeds for fronts propagating with and against
the shear loading direction. (iii) Two-dimensional (2D)
spring-block models [11, 13] and 1D continuous models
[14, 15] have shown that front speed vfront is proportional
to some relevant slip speed vslip, with a relationship of

the type vfront ∼ shear modulus of the interface
stress drop during rupture vslip.

Giving quantitative predictions of front speed is diffi-
cult for at least two reasons. First, any real interface is
heterogeneous at the mesoscopic scales at which stresses
can be defined (scale including enough micro-contacts),
due both to intrinsic heterogeneities of the surfaces and
to heterogeneous loading. Thus, even if the front speed
was selected only locally, i.e. as a function of the lo-
cal stresses and local static friction threshold, the front
speed would still be varying with front position along the
interface. Second, models actually show that front speed
can have long transients [13] (extending over sizes com-
parable to that of the samples used in a number of exper-
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iments), even for carefully prepared homogeneous inter-
faces. This suggests that the instantaneous front speed
does not only depend on local quantities, but rather on
the slip dynamics along all the broken part of the inter-
face and from all times after front nucleation. Here, we
overcome these difficulties by (i) considering fronts prop-
agating along homogeneous interfaces and (ii) focusing
on front speed only in steady state propagation, i.e. af-
ter transients are finished. For the sake of simplicity and
to enable analytical treatment, we use a 1D spring block
model for the shear rupture of extended frictional inter-
faces, introduced in [12] to study the propagation length
of precursors to sliding [9, 16–20]. Whereas the dynam-
ics of multiple successive events in the macroscopic stick-
slip regime of this model was discussed in detail in [12],
here we focus on the steady state propagation of a single
rupture front. We show in the discussion that the main
results obtained using the 1D model still hold in a 2D
extension of the model.

We emphasise that fully dynamic (as opposed to cellu-
lar automata) spring-block (or spring-mass) models have
previously been widely used in the literature to model
not only friction [see e.g. 9, 11, 12, 17, 21, 22] and earth-
quake dynamics [see e.g. 23–25], but also, among others,
self-organized criticality in nonequilibrium systems with
many degrees of freedom [e.g. 26], adsorbed chains at sur-
faces [e.g. 27], fluctuations in dissipative systems [e.g. 28]
or creep in granular materials [29].

Rupture velocities in 1D spring-block models have
been studied previously [30–32] in the framework of the
Burridge-Knopoff (BK) model [23]. In the BK model, a
chain of blocks and springs is loaded uniformly from the
top through an array of springs connected to a rigid rod.
Note that this loading configuration differs from the one
used in the present paper, in which the chain of blocks is
loaded from one edge. In [30], the rupture speed of the
BK model with velocity weakening friction was obtained
in the case of a uniform loading exactly at the local slip-
ping threshold. The model was found to have a range
of possible propagation velocities among which one is se-
lected dynamically. The rupture velocity was also found
to be resolution-dependent. This resolution problem was
solved in [31] by introducing a short-wavelength cutoff,
obtained by adding Kelvin viscosity to the model. Rup-
ture velocities in the BK model with Amontons–Coulomb
friction were studied in Muratov [32], and found to have
a unique solution for any given value of the initial shear
stress at the interface, with a well-defined continuum
limit. We compare our results to those of [30–32] in Sec-
tion IV.

The paper is organised as follows: We first describe our
model and derive its non-dimensional form (Section II).
We then present our results for the velocity of steady-
state front propagation as a function of the pre-stress on
the interface prior to rupture (Section III), for three vari-
ants of the model. We start with a simple AC friction law
and obtain a closed form equation for the front velocity.
We then add either a bulk viscosity or an interfacial stiff-

ness, and provide for each an approximate equation for
front speed. In Section IV, we discuss our results in the
light of a 2D model. Conclusions are in Section V. Four
appendices provide additional mathematical details.

II. MODEL DESCRIPTION

We investigate the propagation of micro-slip fronts in
the 1D spring-block model originally introduced by Mae-
gawa et al. [17] to study the length of precursors to slid-
ing. It has been later improved by us [12] to include
a bulk viscosity and a friction law allowing for a finite
stiffness of the interface. A schematic of this minimalis-
tic model is given in Fig. 1. The slider is modelled as a
chain of blocks with mass m = M/N connected in series
by springs with stiffness k = (N − 1)ES/L, where M is
the total mass of the slider, N is the number of blocks, E
is the Young’s modulus, S is the cross-section area and
L is the length of the slider. The applied normal force
on each block n is given by pn = FN/N , where FN is
the total (uniformly) applied normal force. The tangen-
tial force FT is applied at the trailing edge of the system
through a loading spring with stiffness K. One end of
this spring is attached to the trailing edge block (block
1), while the other end moves at a (small) constant ve-
locity V .

f1 f2 fN

KV

x

p1 p2 pN

k

η

mm m

FIG. 1: Schematic of the model system. The slider is
modelled as N blocks with mass m connected by

springs of stiffness k. The trailing edge block (block 1)
is slowly driven through a loading spring of stiffness K.
Each block n is also submitted to a normal force pn, a

friction force fn and a viscous damping force F ηn , which
is described by the viscous coefficient η

.

The equations of motion are given by

mün = F kn + F ηn + fn, 1 < n ≤ N, (1)

where un = un(t) is the position of block n as a function
of time relative to its equilibrium position (in the absence
of any friction force) and¨denotes the double derivative
with respect to time t. The forces F kn , F ηn and fn are the
total spring force, relative viscous force and the friction
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force on block n, respectively, and are given by

F kn =

 k(u2 − u1) + FT, n = 1
k(un+1 − 2un + un−1), 2 ≤ n ≤ N − 1
k(uN−1 − uN ), n = N,

(2)

F ηn =

 η(u̇2 − u̇1), n = 1
η(u̇n+1 − 2u̇n + u̇n−1), 2 ≤ n ≤ N − 1
η(u̇N−1 − u̇N ), n = N,

(3)

with the tangential load FT given by

FT = K (V t− u1) . (4)

In the following we will simply use the term “viscosity”
to mean the viscous coefficient η. We consider two dif-
ferent functional forms for the friction force fn, one cor-
responding to the rigid-plastic-like Amontons–Coulomb
(AC) friction law, discussed in Section III A, and one to
the elasto-plastic like friction law introduced in Amund-
sen et al. [12] allowing for a finite stiffness of the interface,
discussed in Section III B.

Before solving Eq. (1) it is instructive to rewrite it on a
dimensionless form to derive the combination of param-
eters controlling the behaviour of the system. Here we
derive the dimensionless equations of motion for a generic
friction force fn and will later consider the two special
cases discussed above, (i) AC friction in Section III A
and (ii) with tangential stiffness of the interface in Sec-
tion III B.

We begin by eliminating the initial positions of all
blocks, un(0), from the block positions un(t). Any move-
ment can be described by u′n(t) defined by

un(t) = un(0) + u′n(t), (5a)

u̇n(t) = u̇′n(t), (5b)

ün(t) = ü′n(t), (5c)

i.e. the position of a block is the position it had at t = 0
plus any additional movement u′n(t). The forces F kn , F ηn
and FT then become

F kn =

 k(u′2 − u′1) + τ1 + F ′T, n = 1
k(u′n+1 − 2u′n + u′n−1) + τn, 2 ≤ n ≤ N − 1
k(u′N−1 − u′N ) + τN , n = N,

(6)

F ηn =

 η(u̇′2 − u̇′1), n = 1
η(u̇′n+1 − 2u̇′n + u̇′n−1), 2 ≤ n ≤ N − 1
η(u̇′N−1 − u̇′N ), n = N,

(7)

F ′T = K(V t− u′1), (8)

where we have introduced a new force τn, the initial shear
force, given by

τn =

 k(u2(0)− u1(0))−Ku1(0), n = 1
k(un+1(0)− 2un(0) + un−1(0)), 2 ≤ n ≤ N − 1
k(uN−1(0)− uN (0)), n = N.

(9)

Next, we introduce our dimensionless variables, ūn =
u′n/U for block positions, t̄ = t/T for time, and x̄ = x/X
for horizontal positions. Substituting these back into
Eqs. (1) and (6) to (8), yields our dimensionless equa-
tions of motion. We make the following choices for the
scaling parameters U , T and X:

U =
(µs − µk)pn

k
, T =

√
m/k, X = a, (10)

where µs and µk are the static and kinetic friction coef-
ficients in AC-like friction laws and a = L/(N − 1). The
dimensionless equations of motion become

¨̄un = F̄n + F̄ η̄n + f̄n, (11)

with

F̄n =

 ū2 − ū1 + F̄T, n = 1
ūn+1 − 2ūn + ūn−1, 2 ≤ n ≤ N − 1
ūN−1 − ūN , n = N,

(12)

F̄ η̄n =

 η̄( ˙̄u2 − ˙̄u1), n = 1
η̄( ˙̄un+1 − 2 ˙̄un + ˙̄un−1), 2 ≤ n ≤ N − 1
η̄( ˙̄uN−1 − ˙̄uN ), n = N,

(13)

f̄n =
1

kU
(fn + τn) =

τn + fn
(µs − µk)pn

, (14)

F̄T =
T 2

mU
K(V t− u′1) = K̄(V̄ t̄− ū1), (15)

where (̇) now denotes the derivative with respect to t̄ and
not t. Note that for convenience, and being of frictional
origin, the initial shear force τn has been included in
the effective dimensionless friction force f̄n in Eq. (14)
rather than in F̄n. The dimensionless relative viscosity
is defined as

η̄ ≡ η√
km

, (16)

and we have introduced

K̄ ≡ K

k
, V̄ ≡ V

U/T
. (17)

The velocity of sound in this model is given by [33]

vs = a

√
k

m
, (18)

and in our dimensionless units this becomes

v̄s = a

√
k

m

T

X
= 1, (19)

which was the reason for our choice of X.
Looking at our new dimensionless set of equations it is

clear that the number of parameters has been reduced. In
addition to the dimensionless friction force f̄n, only K̄, V̄
and η̄, the dimensionless driving spring constant, driving
velocity and relative viscosity, respectively, will impact
the evolution of the dimensionless block positions.
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III. STEADY STATE FRONT PROPAGATION

Most previous studies of rupture front propagation in
spring-block models have initialised the models with the
shear stresses set to zero. External loading is then ap-
plied, and the evolution of the systems in time is stud-
ied [9, 12, 17–19, 21]. The interface states at the time
of nucleation of micro-slip fronts are selected naturally
through the evolution of the system in time, mimicking
the experimental setups of e.g. [16, 17].

To facilitate systematic study of the front velocity in
our system, as previously done in e.g. [11, 13], we prepare
a desired interface state at the time of rupture nucleation
and look at the resulting rupture dynamics. The initial
state is governed by the initial shear stresses, τn, which
is one of the important parameters in the effective fric-
tion force f̄n. In this paper we discuss steady-state front
propagation, i.e. fronts propagating at a constant veloc-
ity vc, and for this reason all surface properties, including
τn, are kept homogeneous throughout the interface. For
convenience, the block index n will therefore be dropped
in the following discussion where possible. We also make
the assumption that the driving spring constant K is
much smaller than the material spring constant k, i.e.
K̄ � 1, which means F̄T can be treated as constant dur-
ing the front propagation. This assumption is valid both
in models studied previously (e.g. [9, 12, 17]) and in ex-
perimental studies (e.g. [5, 17]).

Here we use both numerical and analytical tools to
study steady-state rupture fronts in 1D spring-block
models. In Section III A we measure the front speed in
our model with AC friction. We compare the cases with-
out and with bulk viscosity η̄ and show that in a few
special cases closed-form expressions for the front veloc-
ity as a function of model parameters may be obtained.
In Section III B we study the impact of a finite stiffness
of the interface before concluding with some remarks on
the complete model.

A. Amontons–Coulomb friction

Perhaps the simplest dry friction law in wide-spread
use is Amontons–Coulomb friction, which introduces
static and dynamic friction coefficients µs and µk, re-
spectively. We impose this law locally on each block in
our system as in [9, 12, 17], i.e. a block has to overcome
a friction threshold µsp to start sliding, during which it
experiences a force µkp. The friction force fn is therefore
given by

fn =

{
≤ µsp, u̇n = 0
−sgn(u̇n)µkp, u̇n 6= 0,

(20)

where, when u̇n = 0, fn balances all other forces acting
on block n. Blocks are assumed to repin to the track
when their velocity becomes 0 and will only start moving
again if the sum of all forces, except the friction force,
again reaches the static friction threshold µsp.

For sliding blocks we insert Eq. (20) into Eq. (14) and
obtain the effective dimensionless friction force f̄n:

f̄± =
τ/p∓ µk

µs − µk
. (21)

Note the necessary separation into f̄+ and f̄− at this
point, where f̄+ applies if the block is moving in the
positive direction and f̄− if it is moving in the negative
direction. This is related to the change in sign of the
friction force fn as the block velocity changes between
being positive and negative.

In the model, a front propagates in the following way:
The driving force increases on block 1 up to the local
static friction level. As block 1 moves, the tangential
force on block 2 increases, eventually reaching its static
friction threshold, and starts to move. We interpret the
successive onset of motion of blocks as the model equiva-
lent of the micro-slip fronts observed in experiments and
define the local front velocity as the distance between two
blocks divided by the time interval between the rupture
of two neighbouring blocks. We label these two blocks
n = i and n = i + 1, and denote the time between the
onset of motion of these two blocks by ∆ti. Since the
material springs are very stiff, the distance between two
neighbouring blocks can be approximated to be a, inde-
pendent of time. We define the rupture velocity vc as

vc =
a

∆ti
, v̄c = vc

T

X
=
vc

vs
, (22)

where we have used the velocity of sound in Eq. (18).
A block begins to move if the forces on it reach the

static friction threshold,

F kn + F ηn = ±µsp, (23)

which in dimensionless units becomes

F̄n + F̄ η̄n = ±1− f±. (24)

A rupture initiates when the total force on block
1 exceeds the static friction threshold, while all other
blocks are still unaffected. We initialise the system with
τ + F ′T = µsp, i.e.

τ̄ + F̄T = 1, (25)

where

τ̄ ≡ τ/p− µk

µs − µk
= f̄+. (26)

Note the definition of τ̄ , which we will later show to be
a very important model parameter. We exclusively con-
sider positive initial shear forces, the maximum being
restricted by the static friction threshold. Consequently,
all values of τ̄ , the dimensionless initial shear force, lie
between −µk/(µs − µk) and 1.

To summarise, the equations of motion for the system
are given by Eqs. (11) to (15) and (21), and rupture
initiates when Eq. (25) is satisfied. We will now proceed
by first considering the simplest case where η̄ = 0, before
studying the effect of introducing a bulk viscosity.
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1. Model without bulk viscosity (η̄ = 0)

As in the model by Maegawa et al. [17], we first take
η̄ = 0 and apply AC friction locally at each block. Since,
as discussed above, we keep F̄T constant during rupture,
and since its initial value is given by the rupture criterion
(Eq. (25)) only two parameters remain that control the
front propagation, τ̄ = f̄+ and f̄−. We first want to
identify for which values of f̄± steady-state ruptures can
be supported.

We have tried many different values for τ̄ , some exam-
ples of which are shown in Fig. 2a. We observed that
blocks never move in the negative direction for as long
as the front propagates, which means that f̄− becomes
irrelevant, and we are left with only one parameter, τ̄ ,
controlling front propagation. We have found that, for
a steady-state rupture to be supported, τ̄ ≥ 0 is re-
quired. The natural restriction τ/p < µs places another
constraint on τ̄ , and we can conclude that steady-state
ruptures occur only if

0 ≤ τ̄ < 1. (27)

The straightforward way to compute the steady-state
rupture velocity as a function of τ̄ is to solve Eqs. (11)
to (15) and (21) explicitly in time for a given value of τ̄ .
Fronts go through a transient, as seen in Fig. 2a, before
reaching the steady-state velocity. As shown in Fig. 2b,
the transient length is strongly dependent on the pre-
stress, τ̄ , and extrapolation is necessary to estimate the
final steady-state rupture velocity. We extrapolate the
rupture velocity by fitting a first order polynomial to the
curve v̄c(1/n) for the last few (∼ 50) blocks towards the
leading edge. These extrapolated steady-state velocities
are plotted as a function of τ̄ in Fig. 3 as red circles.

Alternatively, equations for the steady-state front ve-
locity can be derived from Eqs. (11) to (15) and (21). We
provide this derivation in Appendix A 1, with Eqs. (A3),
(A5), (A6) and (A8) the final set of equations. The nu-
merical scheme used to solve these equations is detailed
in Appendix B 2. We show in Fig. 3 the steady-state front
velocity v̄c as a function of τ̄ obtained by solving these
equations numerically as blue crosses. This solution is
seen to match the extrapolated front velocities obtained
previously.

It is also possible to solve the equations for the steady-
state rupture velocity, Eqs. (A3), (A5), (A6) and (A8),
analytically using an iterative approach. The solution
technique is identical to the one used by Muratov [32],
and we present the detailed calculation in Appendix B 1.
The result is a series expansion of τ̄ as a function of
z = 1/v̄c, given in Eq. (B8). In the present case with
η̄ = 0, we get

τ̄ = 1− z2

2
− z4

8
− z6

16
− 5z8

128
− 7z10

256
+O

(
z12
)
, (28)

which we recognise as the series expansion of√
1− z2 = 1− z

2

2
− z

4

8
− z

6

16
− 5z8

128
− 7z10

256
+O

(
z12
)
. (29)
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(a) Simulated front velocity as a function of position along the
interface for several different values of τ̄ = f̄+ obtained with
N = 200. From bottom to top, τ̄ = −0.1, −0.01, 0.01, 0.1, 0.5.

Velocities are seen to approach a steady-state velocity for τ̄ > 0,
while for τ̄ < 0 the fronts slow down and eventually arrest.
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(b) Transient length, defined as the block number where the front
velocity reaches 97 of the steady-state value, normalised by

system size as a function of τ̄ obtained with N = 1000.

FIG. 2: Colour online. Rupture velocity as a function of
position along the interface (a) and front velocity

transient lengths (b) for various initial shear stress.

Consequently, we have a closed-form expression for the
front velocity as a function of the initial shear stress:

τ̄ =
√

1− v̄−2
c or v̄c =

1√
1− τ̄2

. (30)

This solution is plotted as the black solid line in Fig. 3,
which matches the numerical results perfectly.

To summarise, the steady-state front velocity v̄c in
the model with AC friction and η̄ = 0 only depends
on the dimensionless initial shear stress, τ̄ , and is given
by Eq. (30), plotted in Fig. 3. The front velocity in-
creases with increasing τ̄ , as expected. All steady-state
front velocities are supersonic, with values approaching
the sound velocity as τ̄ → 0 and infinity as τ̄ → 1. The
latter is easily explained: as τ̄ → 1, every block will be
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v̄ c

τ̄
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1
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5

FIG. 3: Colour online. Steady-state front velocity v̄c as
a function of initial stress, τ̄ . v̄c approaches 1 as τ̄ → 0
and infinity as τ̄ → 1. Red circles are the extrapolated

steady-state front velocities from simulations (as in
Fig. 2a), blue crosses are the numerical solution of the
steady-state equations (Appendix A 1), and the solid
black line is the analytical solution given by Eq. (30).

infinitely close to the static friction threshold, and in-
finitesimally small movement of the neighbouring blocks
is enough to set them into motion. The time between
the triggering of neighbouring blocks will therefore ap-
proach 0, causing the front velocity to approach infinity,
see Eq. (22). This is a known feature of spring-block
models [34]. We discuss these results in more detail in
Section IV.

This model and the above results serve as our reference
for investigating now the effect of a bulk viscosity and a
tangential stiffness of the interface on the steady-state
front velocity.

2. The effect of a bulk viscosity

In this section we study the effect of the relative viscos-
ity η̄, identical to the one used in Amundsen et al. [12]
to smooth grid-scale oscillations during front propaga-
tion [31, 35]. Physically it is a simple way of introducing
energy dissipation that will occur during deformation. As
in Section III A 1 we have found that steady-state rup-
tures may occur if

0 ≤ τ̄ < 1, (31)

independent of the value of the viscosity, η̄. Similarly we
have also found that blocks exclusively move in the posi-
tive direction as the front propagates along the interface.
Consequently, we have two parameters controlling front
velocity in this system, τ̄ and η̄.

The steady-state equations are solved numerically as
in Section III A 1 for several different values of η̄, and
we plot v̄c(τ̄) in Fig. 4. As in the model with η̄ = 0, the
steady-state equations can be solved analytically, and the

v̄ c

τ̄

0 0.2 0.4 0.6 0.8 1
100

101

102

FIG. 4: Colour online. Steady-state front velocity v̄c as
a function of initial shear stress, τ̄ , for several different
values of the relative viscosity η̄. From bottom to top,
η̄ = 0 (blue, circles),

√
0.1 (green, crosses), 1 (red,

pluses) and
√

10 (cyan, squares). The point markers are
the numerical solutions of the steady-state equations,
and the solid lines are the semi-empirical closed-form

expression in Eq. (36).

result is a series expansion of τ̄ in terms of z = 1/v̄c and
η̄. For brevity we do not reproduce this expansion here,
it is given in Eq. (B8).

Unfortunately we have been unable to find a closed-
form expression for the front velocity as a function of τ̄
and η̄ from Eq. (B8). The special case η̄ = 1, however,
yields

τ̄ = 1− z +O
(
z12
)
, (32)

i.e.

τ̄ = 1− 1

v̄c
or v̄c =

1

1− τ̄ . (33)

We use this to derive a semi-empirical expression for
τ̄(v̄c). From Eqs. (30) and (33), we can write

τ̄(v̄c, η̄ = 1) = τ̄(v̄c, η̄ = 0)

(
1− v̄−1

c

1 + v̄−1
c

)1/2

. (34)

The factor [(1− z)/(1 + z)]
1/2

can be thought of as a
more general scaling factor including the η̄ dependence,
but taken at η̄ = 1. We have found that we can estimate
the η̄ dependence with an exponent of η̄/2, which fits the
numerical solution fairly well. We therefore propose the
following approximation

τ̄(v̄c, η̄) ≈ τ̄(v̄c, η̄ = 0)

(
1− v̄−1

c

1 + v̄−1
c

)η̄/2
(35)

=
√

1− v̄−2
c

(
1− v̄−1

c

1 + v̄−1
c

)η̄/2
. (36)

We plot Eq. (36) in Fig. 4, and it is seen to match the
numerical solution perfectly for η̄ = 0 and η̄ = 1 as ex-
pected, and to yield acceptable accuracy for 0 ≤ η̄ ≤ 1.
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The value of η̄ =
√

0.1 adopted by Amundsen et al. [12]
is within this range. The accuracy of the semi-empirical
expression deteriorates for η̄ > 1, which corresponds to a
regime where all waves are overdamped [12].

In Fig. 4 the relative viscosity is seen to not alter the
limiting behaviour as τ̄ → 0 and τ̄ → 1, for which the
front velocity still approaches v̄c = 1 and v̄c →∞, respec-
tively. An overall increase of front velocities compared to
the η̄ = 0 case, discussed in Section III A 1, is, however,
seen.

The reason for this particular behaviour is that the
relative viscosity serves to dampen out (reduce) relative
motion between blocks. At the front tip, the rightmost
moving block is increasing the load on the leftmost stuck
block through the material spring connecting them and
through the relative viscous force. This viscous force acts
in the direction of movement of the moving block. This
causes the static friction threshold to be reached sooner,
and the stuck block starts moving earlier than it would
have with a smaller value of η̄. Note that the stuck block
will act with an equal and opposite force on the moving
block, slowing it down. This effect remains small, how-
ever, due to the large momentum of the blocks behind the
front tip. Overall, ∆t̄n, the time between the rupture of
block n and n+ 1, is reduced.

B. Elasto-plastic like friction law

As discussed in Amundsen et al. [12], in the model
with AC friction, only the first block will experience the
tangential loading force. This causes an unphysical res-
olution dependence in the model, which was improved
considerably by introducing a finite tangential stiffness
of the interface. In addition, the interface between the
slider and the base is indeed elastic (see e.g. [2]), a feature
which is often accounted for in models using an ensemble
of interface springs to model the micro-contacts binding
the slider and base together [11, 13, 21, 36, 37].

We introduce a tangential stiffness of the interface as in
Amundsen et al. [12] by modifying the static Amontons–
Coulomb friction law to include springs between the
blocks and the track. Each block bears one interface
spring having a breaking strength equal to the static
friction threshold µsp. When a spring breaks, dynamic
friction µkp applies until the spring reattaches when the
block velocity becomes zero. The spring is reattached
such that at the time of reattachment the total force on
the block is zero.

In this section we study front velocity as a function
of τ̄ and the stiffness of the interface springs, kt. For
attached blocks the friction force is given by

fn = −kt

(
un(t)− ustick

n (t)
)

= −kt

(
u′n(t)− ustick

n

′
(t)
)
− kt

(
un(0)− ustick

n (0)
)
,

(37)

where ustick
n (t) is the position of the attachment point of

the spring. At t = 0 the total force on all blocks is zero,
i.e. fn(t = 0) = τn, and we get

fn = −kt

(
u′n(t)− ustick

n

′
(t)
)
− τn. (38)

Using Eq. (14) we obtain an expression for the dimen-
sionless friction force,

f̄n =
τn − kt

(
u′n(t)− ustick

n
′
(t)
)
− τn

µspn − µkpn
(39)

= −
−kt

(
u′n(t)− ustick

n
′
(t)
)

µspn − µkpn
(40)

= −k̄
(
ūn(t)− ūstick

n (t)
)
, (41)

where k̄ ≡ kt/k.
The rupture criterion is modified as it is a condition

on the strength of the interface springs. It is given by

kt

(
un(t)− ustick

n (t)
)

= µsp, (42)

which in dimensionless variables becomes

k̄
(
ūn(t)− ūstick

n (t)
)

+ τ̄n = 1. (43)

As discussed above, interface springs reconnect when the
block velocity becomes zero and reconnect at zero total
force:

0 = F̄n + F̄ η̄n + f̄n (44)

= F̄n + F̄ η̄n − k̄
(
ūn(t)− ūstick

n (t)
)
, (45)

which yields

ūstick
n (tstick) = ūn(tstick)− F̄n(tstick) + F̄ η̄n (tstick)

k̄
, (46)

where the only new parameter introduced is the dimen-
sionless interface stiffness k̄ = kt/k, and tstick is the time
at which the block velocity becomes zero. ūstick

n (t) stays
constant for t > tstick until the block reattaches after
another detachment event.

For simplicity we investigate the behaviour of this
model without the relative viscosity here, η̄ = 0, but
this assumption is relaxed in Section III C. As in Sec-
tion III A 1 we have investigated when steady-state rup-
tures occur and found that it is again restricted to

0 ≤ τ̄ < 1, (47)

independent of the value of the interface stiffness, k̄. Sim-
ilarly we have also found that blocks exclusively move in
the positive direction as the front propagates along the
interface. Consequently, we have two parameters con-
trolling the rupture velocity in this system, τ̄ and k̄.

We solve the steady-state equations (derived in Ap-
pendix A 2) and show in Fig. 5 the front velocity as a
function of the dimensionless initial shear force τ̄ for var-
ious values of the interface stiffness k̄. In the limit k̄ →∞
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FIG. 5: Colour online. Steady-state front velocity v̄c as
a function of initial shear stress, τ̄ , for several different
values of the interface stiffness k̄. From top to bottom,

k̄ = e3, e1, 1, e− 1, e− 3. The crosses are the
numerical solution, and the solid lines are the empirical

closed-form expression in Eq. (48).

the interface is infinitely stiff and the static friction law
approaches AC’s friction law. As k̄ decreases the front
velocity also decreases and v̄c → 1 in the k̄ → 0 limit
where the interface is infinitely soft.

The rupture criterion, Eq. (43), is essentially a crite-
rion for the displacement of a block relative to its at-
tachment point. For a given pre-stress τ̄ , as the interface
stiffness k̄ is reduced, blocks move a larger distance before
detaching. In the limit k̄ → 0 the rupture front will es-
sentially become a displacement wave which moves with
a velocity equal to the velocity of sound. This explains
the behaviour of the model seen in the k̄ → 0 limit.

Unfortunately we have not been able to obtain an an-
alytical solution for the front velocity in the model with
a tangential stiffness of the interface. Instead we have
found the empirical expression

τ̄(v̄c, k̄) = (1− v̄−n1
c )1/n2 , (48)

where the coefficients n1 and n2 are functions of k̄, to
yield satisfactory agreement with the numerical solu-
tions. Best fit values of the coefficients n1 and n2, for
the values of k̄ in Fig. 5, are given in Table I. These
were obtained by solving the steady-state equations (Ap-
pendix A 2) numerically as described in Appendix B 2
and fitting with Eq. (48) using a least squares method.
The predictions made by Eq. (48) are shown as solid lines
in Fig. 5.

C. Behaviour of the complete model

Figure 6 shows the evolution of front velocity as a func-
tion of pre-stress in the complete model, i.e. where both a
relative viscosity and a tangential stiffness of the interface
are included. Several values of η̄ and k̄ are used, demon-

k̄ n1 n2

103 2 2
101 3.75 1.7
100 7.86 1.97

10−1 20.8 2.01
10−3 106 2.87

TABLE I: Best fit coefficients to be used in the
empirical expression for the front velocity given in

Eq. (48). Note that the empirical approximation for
k̄ = e3 is identical to Eq. (30).

η̄ =
√
0.1, k̄ = 0.1

η̄ =
√
0.1, k̄ = 10

η̄ = 0, k̄ = 1
η̄ = 1, k̄ = 1
η̄ =

√
0.1, k̄ = 1
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FIG. 6: Colour online. Steady-state front velocity v̄c as
a function of initial shear stress, τ̄ , for several different
values of relative viscosity η̄ and interface stiffness k̄.

strating that the complete model behaves in a way quali-
tatively consistent with the results of Section III A 2 and
Section III B. In particular, front speed increases both
with increasing η̄ and with increasing k̄.

IV. DISCUSSION

We have found that, in general, the rupture front veloc-
ity increases with increasing pre-stress in our 1D spring-
block-like models of extended frictional interfaces, as seen
in Figs. 3 to 6. This is in agreement with observations
on poly(methyl methacrylate) interfaces by Ben-David
et al. [5]. We have also found the governing pre-stress
parameter to be

τ̄ ≡ τ/p− µk

µs − µk
. (49)

That is, in addition to the pre-stress τ itself, the steady-
state rupture velocity also depends on the local friction
parameters µs and µk, and on the applied normal load
through p. The same parameter τ̄ has successfully been
applied to 2D spring-block models to scale non-steady-
state front velocities obtained with different model pa-
rameters (see Fig. 4b in [9], or [13]). It is also equivalent
to the S ratio used in the geophysical literature [38], de-
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fined as

S =
σy − σ1

σ1 − σf
, (50)

where σy, σ1 and σf are the yield stress, initial stress
and sliding frictional stress, respectively. In terms of the
parameters in the model discussed here, σy = µsp, σ1 =
τ , σf = µkp, and we can express S in terms of τ̄ :

S =
µs − τ/p
τ/p− µk

=
1

τ̄
− 1. (51)

The parameter τ̄ is therefore much more general than the
derivation from the present model alone would indicate.

The second parameter of importance to steady-state
ruptures is the relative viscosity parameter η̄ discussed
in Section III A 2. It provides a simple way of introduc-
ing energy dissipation that will occur during deformation
of the slider and also removes resolution-dependent oscil-
lations in Burridge–Knopoff-like models [12, 39], with the

recommended value η̄ =
√

0.1. Note that the viscosity η
considered here is a bulk viscosity affecting the relative
motion of blocks. It is thus qualitatively different from
an interfacial viscosity that would affect the absolute mo-
tion of a single block on the track, as was sometimes
introduced at the micro-junction level in multi-junction
models (see e.g. [21]) or directly at mesoscales as a ve-
locity strengthening branch of the friction law at large
slip velocities (see e.g. [40]). In our case, the friction
force on a block in the sliding state is µkp, independent
of slip speed. At a given τ̄ , increasing η̄ increases the
steady-state front velocity, see Fig. 4. As discussed in
Section III A 2 this is due to the added shear force aris-
ing from the damping of relative motion between blocks.
The particular choice η̄ =

√
0.1 (used in [9, 12]) is in

Fig. 4 seen to only modestly increase the front velocity
compared to η̄ = 0.

The third and last parameter studied here is k̄ = kt/k,
the interface to bulk stiffness ratio, discussed in Sec-
tion III B. In Fig. 5 the limit k̄ → ∞ is seen to yield
Amontons–Coulomb-like behaviour, while decreasing k̄
yields decreasing front velocities. In fact, as k̄ → 0 the
front velocity approaches the speed of sound as discussed
earlier due to the front becoming a sound wave. These
results should be relevant to various similar 1D and 2D
models in which blocks are elastically connected to the
base by springs [9, 11–13, 21, 22].

Recent simulations, in a 2D spring-block model with a
friction law at the block scale emerging as the collective
behaviour of many micro-junctions in parallel, have iden-
tified two different slip regimes for individual blocks [11].
A fast (inertial) slip regime is followed by a slow slip
regime, controlled by the healing dynamics of the inter-
face after rupture. Fronts driven by fast slip are fast
inertial fronts, whereas fronts propagating when a signif-
icant portion of the slipping blocks are in the slow regime
are slow [13]. In this context, all fronts observed in the
present 1D models are of the fast type.

Although as seen in Fig. 2a the transient front velocity
is often sub-sonic, in our model, all steady-state fronts
are supersonic, i.e. v̄c > 1. The fronts can propagate at
arbitrarily large speeds as long as the pre-stress τ̄ is large
enough. This has been discussed previously by Knopoff
[34]. The velocity of sound in a 1D model is the longitu-
dinal wave speed, while shear and Rayleigh waves do not
exist. Nevertheless, we think it useful to point out that
super-shear fronts have recently been observed in model
experiments [5], and that in the geophysical community,
such fronts have been both predicted theoretically [41, 42]
and confirmed experimentally [1, 6, 43, 44].

As seen in Fig. 2b, and previously found in [13], the ini-
tial transient in front speed before steady state is reached
can be very long when τ̄ is close to zero. Because the di-
mensionless equations of motion do not change with the
model resolution, it is clear that in this model, the length
of the transients is given by a fixed number of blocks
rather than a physical length, so we have overcome the
problem of getting close to the steady state by perform-
ing simulations with a large number of blocks. In the
other limit of τ̄ → 1, the transient length vanishes. We
provide a demonstration of this result in Appendix C.

To investigate the transient length’s dependence on τ̄
for small values of τ̄ we initialise the system with a con-
stant pre-stress as in Fig. 3 and let the rupture propagate
until its velocity has reached 97 of the steady-state value.
We define the point at which this happens as the tran-
sient length and plot in Fig. 2b the transient length as a
function of τ̄ . For small values of τ̄ the transient length
is very large.

The above considerations emphasise the fact that in
spring-block models like the one studied here it is impor-
tant to choose the resolution carefully: this choice will
indeed select the physical length of transients in front
dynamics. The size of each block should be equal to the
screening length [45], which in a purely elastic model is
given by λd ≈ d2/a, where d is the distance between
micro-contacts and a is the size of micro-contacts. For
micrometer-ranged roughnesses, we expect a ∼ 1 and
d ∼ 10100, yielding λ ∼ 0.110, i.e. in the millimeter
range. The typical horizontal length scale for extended
lab-scale interfaces is L ∼ 100, which yields N ∼ 100,
which is consistent with the number of blocks used here
or in our previous studies [9, 11–13].

Let us now compare our results to those of previ-
ous studies of steady state rupture velocities. In the
Amontons–Coulomb case, our solution vc(τ̄) takes the
exact same form as the one found in [32] for the Burridge–
Knopoff model with Amontons–Coulomb friction (com-
pare Eq. (B8) and Eq. (A14) in [32]). As in [32], we find a
well-defined continuum limit where rupture velocities do
not depend on the chosen resolution. Compared to the
studies in [30, 31] of the Burridge–Knopoff model with
velocity weakening friction, our results are qualitatively,
although not quantitatively, similar. In particular, we
also find that the rupture velocity increases with increas-
ing shear prestress of the interface and with increasing



10

values of the viscous coefficient. Note that [30–32] did
not discuss the effect of an interfacial stiffness on rup-
ture speed.

Trømborg et al. [11], Trømborg et al. [13] showed that,
in their 2D model, the rupture and slip velocities are pro-
portional. In 1D it is possible to derive a similar, exact
relationship between the average slip speed and rupture
velocity in the case of Amontons–Coulomb friction and
no viscosity. This derivation is provided in Appendix D,
where it is found that the local rupture velocity v̄c,i at
block i in a simulation is related to the local average slip
velocity ˙̄ui,avg by

v̄c,i =
˙̄ui,avg

1− τ̄ . (52)

This relationship is demonstrated in Fig. 8, where we
have plotted the local rupture velocity as a function
of the local average slip velocity for various values of
τ̄ as measured in simulations similar to those seen in
Fig. 2a. Rescaling the average slip velocity by 1/(1− τ̄),
a straight line of unit slope is obtained. For com-
parison with the rescaling formula found by Trømborg
et al. [11], Trømborg et al. [13], it is instructive to write
Eq. (52) using dimensional quantities. Equations (10),
(18) and (22) yield

vc,i =
u̇i,avgak

µsp− τ
=
u̇i,avgES

µsp− τ
, (53)

where we have used a = L/(N−1) and k = (N−1)ES/L
as in [12], where L is the length of the slider, E is Young’s
modulus and S is the cross-sectional area of the slider.
This strongly resembles the rescaling formula in [11, 13]
which has the same denominator, while the characteristic
force in the numerator is different due to the different
interfacial laws applied.

An important question is whether the results obtained
in the present 1D model can be extended to 2D models.
To answer this question, we perform a series of simula-
tions using the 2D model described in [11, 13], with model
parameters suitable for the study of steady state front
propagation. In particular, the slider’s length is twenty
times larger than in [11], so that front propagation has a
chance to converge towards a steady state (the length of
transients ranges from less than 40 blocks for τ̄ = 0.95
to longer than the system length for τ̄ = 0.2). We first
choose a reference set of parameters, in which parame-
ters are the same as in Table S1 of [11], except L = 2.8,
Nx = 1140, M = 1.5, FN = 3840, τ̄trigger = 0.95, and
α = η/160. The rest of the settings are as follows: The
width of the initial junction force distribution is zero, so
the interface springs effectively act as a single spring per
block. We checked that the mean junction slipping time
t̄R, while important for slow fronts, does not affect these
fast front results. Steady-state front velocity is estimated
as in Section III A 1, by fitting a straight line to v̄c(1/n)
for the last (∼ Nx/2) blocks towards the leading edge
(excluding the last ∼ 40, which have v̄c increasing due to
an edge effect).

1D equation
(v)

(iv)

(iii)

(ii)

(i)
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FIG. 7: Colour online. Steady-state front velocity, v̄c,
as a function of initial shear stress, τ̄ , for simulations
using the full 2D model of [11], for several different

values of mass, damping coefficient, bulk stiffness and
interface stiffness. Five sets of parameters were used:

(i) Reference set; (ii) mass doubled and damping

coefficient increased by a factor of
√

2, leaving η̄
unchanged; (iii) bulk and interface stiffnesses halved,
leaving k̄ unchanged, (iv) damping coefficient and η̄

reduced by a factor of 4; and (v) interface stiffness and
k̄ increased by a factor of 10. The dashed line plots

Eq. (36) for the reference value of η̄. Front speeds are
normalized against the longitudinal bulk wave speed.

We first run simulations of the reference model for vari-
ous values of τ̄ and plot the normalized steady state front
speed v̄c as a function of τ̄ in Fig. 7 (blue crosses). We
observe that the results are qualitatively fully consistent
with the behaviour in 1D, i.e. Fig. 6. In particular,
the steady state front speed is always supersonic, tends
towards the longitudinal bulk wave speed for small pre-
stress and diverges for large prestress.

We then show that the two control parameters iden-
tified in 1D, η̄ and k̄, are also controlling the 2D front
speed. To do this, we change model parameters (slider’s
mass, damping coefficient, bulk and interfacial stiff-
nesses) in such a way that the rescaled parameters η̄ and
k̄ are kept unchanged. Figure 7 clearly shows (see cyan
dots and red squares) that these changes do not affect
the values of v̄c.

Finally, we show that changes to the values of either η̄
or k̄ induce variations in the v̄c(τ̄) curve which are fully
consistent with those observed in 1D (Fig. 6): decreasing
η̄ decreases the front speed (see black diamonds) whereas
increasing k̄ increases the front speed (green stars). All
these results indicate that our main findings from the 1D
model are not specific to 1D, but also hold in 2D, with
the same non-dimensional control parameters and all the
same qualitative characteristics.
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V. CONCLUSIONS

We have systematically studied the quantitative de-
pendence of the steady-state rupture front velocity on
pre-stress, damping and stiffness of the interface in a 1D
spring-block model. We find that front velocity changes
significantly by changing any of these parameters, the
result of which can be seen in Figs. 3 to 6.

Increasing pre-stress leads to increasing rupture veloc-
ities, in agreement with both experiments [5] and 2D
models (see discussion and [9, 10, 13]). Specifically,
for the model with no viscosity and no finite stiffness of
the interface, we derive a closed-form expression for the
front velocity, given by Eq. (30). The dimensionless pre-
stress parameter found to be controlling front velocities,
τ̄ = (τ/p − µk)/(µs − µk), also depends on the strength
of the interface through the frictional parameters µs and
µk. It is essentially a version of the S ratio often used by
the geophysical community [38] and shown to also apply
in 2D models [9, 13].

Material damping affects the front velocity through the
parameter η̄ = η/

√
km. Increasing values of η̄ are seen

to yield increasing front velocities caused by the addi-
tional shear force. A semi-empirical expression for the
dependence of the front velocity on η̄ and τ̄ is given in
Eq. (36).

Front velocities are seen to decrease with decreasing
tangential stiffness of the interface through the parame-
ter k̄ = kt/k, i.e. the ratio between the shear stiffness
of the interface and the material stiffness of the slider.
An empirical expression for this dependence is given in
Eq. (48). In fact, in the limit of a very soft interface
compared to the material stiffness, steady-state rupture
velocities are seen to approach the velocity of sound. The
qualitative behaviour of all these parameters are seen to
carry over to a model with both a finite stiffness of the
interface and relative viscosity.

From Fig. 2b it is clear that transients can become
very long, especially for low pre-stresses. This, coupled
with a heterogeneous interface where τ̄ can be negative,
suggests that experimentally observed rupture fronts like
those in e.g. [4, 5] may be dominated by transients. Di-
rect comparison between these rupture fronts and the
ones studied here may therefore not be possible, but the
qualitative behaviour on parameters such as the internal
damping and interface stiffness should remain valid.

Also note that viscoelastic materials have been shown
in finite element simulations to exhibit memory effects.
Stress concentrations left at the arrest location of one
precursory slip event are not erased by the following rup-
ture [46]. This causes non-homogeneous initial stresses
for subsequent events. An interesting direction for fu-
ture work would be to investigate the transient speeds
resulting from such complicated stress states.

Despite the limitations of the model discussed above,
it can provide valuable insight into rupture dynamics of
frictional interfaces. We have shown here that the 1D
results can be extended to a 2D model with the same in-

terfacial law and bulk damping. Experimentally, it would
be interesting to investigate the dependence of front ve-
locities on the interface stiffness and bulk viscosity as
they have been shown here to affect the rupture velocity
significantly. Also, investigating the dependence of the
front velocity on the system length would shed light on
the influence of transients on observed ruptures.
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Appendix A: Deriving the equations for the
steady-state rupture velocity

Here we derive the equations for steady-state rupture
in the models discussed in this paper. We assume u̇n(t̄) >
0 for all detached blocks, in agreement with the numerical
solution of the equations for all cases where f̄+ > 0, as
discussed in Section III. The system is considered to be
infinitely long and the tangential driving velocity much
smaller than the front velocity, we can therefore ignore
the system boundaries.

1. Amontons–Coulomb friction

Here we derive the equations for the steady-state front
velocity for the model with AC friction. As our start-
ing point we use the dimensionless equations of motion,
Eqs. (11) to (13), (21) and (25). Consequently, the con-
trolling parameters in the equations of motion are τ̄ = f̄+

and η̄.
The equations of motion for moving blocks are given

by

¨̄un = ūn+1 − 2ūn + ūn−1

+ η̄( ˙̄un+1 − 2 ˙̄un + ˙̄un−1) + τ̄ .
(A1)

To eliminate the dependence on τ̄ we introduce ũn de-
fined by

ūn = τ̄
(
ũn + t̄2/2

)
, (A2)

where the acceleration of blocks due to the force τ̄ is taken
into account explicitly by the term τ̄ t̄2/2 in Eq. (A2).
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Equation (A1) simplifies to

¨̃un = ũn+1 − 2ũn + ũn−1

+ η̄( ˙̃un+1 − 2 ˙̃un + ˙̃un−1),
(A3)

which is our final equation of motion for moving blocks.
If the front is propagating at a constant velocity,

ūn(t̄) = ūn+1(t̄+ ∆t̄), ˙̄un(t̄) = ˙̄un+1(t̄+ ∆t̄), (A4)

must hold, where ∆t̄ is the time between the triggering
of two neighbouring blocks. It is therefore sufficient to
consider the system in a time interval of length ∆t̄. We
choose t̄ ∈ [t̄i, t̄i + ∆t̄], where block i begins to move at
t̄ = t̄i. For convenience, and without loss of generality,
we choose t̄i = 0. Using Eq. (A2) this yields

ũi(0) = 0, ˙̃ui(0) = 0, (A5)

which is the initial condition for block i. For convenience
we choose i = 0.

The initial condition for Eq. (A3) can be obtained by
evaluating Eq. (A4) at t̄ = 0 and using Eq. (A2). This
yields

ũn(0) = ũn+1

(
v̄−1
c

)
+

1

2v̄2
c

,

˙̃un(0) = ˙̃un+1

(
v̄−1
c

)
+

1

v̄c
,

(A6)

since

∆t̄ =
a/X

v̄c
= v̄−1

c (A7)

from the definition of X, Eq. (10).
The equation of motion for all moving blocks is given

by Eq. (A3), but the equation of motion for block i
can be rewritten taking into account that block i + 1
is stationary. Inserting ūi+1 = 0 into Eq. (A2) yields
ũi+1 = −t̄2/2, and using Eq. (A3) with n = i we have

¨̃ui = ũi−1 − 2ũi − t̄2/2
+ η̄( ˙̃ui−1 − 2 ˙̃ui − t̄),

(A8)

Solving Eqs. (A3), (A5), (A6) and (A8) result in ũn(t̄)
for a given rupture velocity v̄c. This velocity is related to
the parameter τ̄ through the rupture criterion, Eq. (24),
at time t̄ = 0 for block i = 0. At t̄ = 0 we have ū0(0) =
ū1(0) = ˙̄u0(0) = ˙̄u1(0) = 0, and using Eqs. (12), (13),
(24) and (A2) in addition to τ̄ = f̄+ we get

ũ−1(0) + η̄ ˙̃u−1(0) =
1− τ̄
τ̄

, (A9)

or equivalently

τ̄ =
1

ũ−1(0) + η̄ ˙̃u−1(0) + 1
(A10)

which relates the solution of Eqs. (A3), (A5), (A6)
and (A8) for a given v̄c to the corresponding τ̄ . Note
that these equations, in the case of η̄ = 0, reduce to the
equations determining the front velocity in the Burridge–
Knopoff model using AC friction and the approximations
of slow and soft tangential loading as derived by Muratov
[32].

2. Including a finite tangential stiffness of the
interface

Here we derive the steady-state equations for the model
including a tangential stiffness of the interface discussed
in Section III B. The equations of motion for sliding
blocks are given by Eq. (A3) as their equation of mo-
tion is identical to the AC case. For stuck blocks we
combine Eqs. (11) to (13), (41) and (A2) and get

¨̃un = ũn+1 + ũn−1 − 2ũn

+ η̄( ˙̃un+1 − 2 ˙̃un + ˙̃un−1)

− k̄(ũn + t̄2/2)− 1,

(A11)

where, without loss of generality, we have set ustick
n = 0.

For convenience we again let block i = 0 detach at t̄ = 0,
and by the same argument as above these equations need
only to be solved for t̄ ∈ [0,∆t̄]. The initial conditions are
the same as for the AC case, Eq. (A6), with the exception
that only blocks far away from the rupture front keep a
constant position. The initial conditions are therefore
given by

ũn−1(0) = ũn(v̄−1
c ) +

1

2v̄c
,

˙̃un−1(0) = ˙̃un(v̄−1
c ) +

1

v̄c
,

ũn→∞ = ˙̃un→∞ = 0.

(A12)

Using Eqs. (43) and (A2) at t̄ = 0 with ūstick
n = 0 we get

k̄ũn(0) =
1− τ̄
τ̄

, (A13)

which relates the solution of Eqs. (A3), (A11) and (A12)
for a given v̄c to τ̄ .

Appendix B: Solving the equations for the
steady-state rupture velocity

Here we solve for the steady-state velocity analytically
using the equation set derived in Appendix A 1 for the
model with AC friction. In addition we describe a numer-
ical solution procedure that we use to solve the steady-
state equations for the models with either AC or elasto-
plastic friction laws.
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1. Analytical solution of the Amontons–Coulomb
steady-state rupture velocity equations

We solve Eqs. (A3), (A5), (A6) and (A8) using the
iterative approach employed by Muratov [32] where the
solution is a power expansion in

z ≡ v̄−1
c . (B1)

If the front velocity is large, i.e. in the limit z = v̄−1
c → 0,

the distance required for block 0 to move in order to ini-
tiate movement of block 1 is negligible. Therefore, block
0 is stationary in this limit. Also, when the rupture ve-
locity is infinitely high, interactions between the blocks
become less prominent because the time interval ∆t̄ be-
comes negligibly small.

To zeroth order in z, we therefore ignore the interaction

terms in Eqs. (A3) and (A8), which yields ¨̃u
(0)
n = 0, i.e.

ũ(0)
n = a(0)

n t̄+ b(0)
n , (B2)

where a
(0)
n and b

(0)
n are constants to be determined from

the initial condition. Using Eq. (A6) we get the two

coupled difference equations

a(0)
n = a

(0)
n+1 + z, (B3)

b(0)
n = a

(0)
n+1z + b

(0)
n+1 +

1

2
z2, (B4)

where a
(0)
0 = b

(0)
0 = 0 from Eq. (A5). The solution is

a(0)
n = −nz, (B5)

b(0)
n =

n2

2
z2, (B6)

and we therefore have

ũ(0)
n = −nzt̄+

n2

2
z2, n ≤ 0. (B7)

This is the first iteration, giving the zeroth order solu-
tion to Eqs. (A3), (A5), (A6) and (A8). The zeroth or-
der relationship between v̄c and τ̄ is obtained by using
Eqs. (A10) and (B7).

The first order solution is obtained by substituting ũn
and ˙̃un using Eq. (B7) into Eqs. (A3) and (A8), inte-
grating twice with respect to t̄ and then using Eqs. (A5)
and (A6) to eliminate the integration constants. This
approach rapidly becomes cumbersome, so we have used
Mathematica to go to higher orders. Here we simply
give the solution:

τ̄ = 1−
z

1!
η̄+

z2

2!
(η̄ − 1)(η̄ + 1) +

z3

3!
η̄(η̄ − 1)(η̄ + 1)−

z4

4!
(η̄ − 1)(η̄ + 1)(7η̄2 − 3)−

z5

5!
η̄(η̄ − 1)(η̄ + 1)(19η̄2 − 11) +

z6

6!
(η̄ − 1)(η̄ + 1)(229η̄4 − 226η̄2 + 45) +

z7

7!
η̄(η̄ − 1)(η̄ + 1)(995η̄4 − 1154η̄2 + 295)−

z8

8!
(η̄ − 1)(η̄ + 1)(17151η̄6 − 26837η̄4 + 12349η̄2 − 1575)−

z9

9!
η̄(η̄ − 1)(η̄ + 1)(102083η̄6 − 178177η̄4 + 95033η̄2 − 14971) +

z10

10!
(η̄ − 1)(η̄ + 1)(2294141η̄8 − 4930384η̄6 + 3640514η̄4 − 1063816η̄2 + 99225) +

O
(
z11
)
.

(B8)

We conclude this section with a brief discussion of the validity of the solution in Eq. (B8). It is valid only for
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τ̄ < 1 due to the form of the rupture criterion. It is not
valid for τ̄ = 0 because of the transformation in Eq. (A2).
If τ̄ < 0, then ūn becomes negative (combine Eqs. (A2)
and (B7)). As a result, the velocity must be negative,
but it was assumed to be positive. Equation (B8) is con-
sequently not valid for τ̄ ≤ 0, i.e., we get the constraints

0 < τ̄ < 1, (B9)

which is consistent with the numerical results in Sec-
tion III.

2. Numerical solution procedure

To solve the steady-state equations derived in Ap-
pendix A numerically, we used the following iterative
scheme:

1. Select the desired z = v̄−1
c for which the value of

τ̄ is to be found. An initial guess for the position
and velocity of all blocks must be made at t̄ = 0,
we used ũn(0) = ˙̃un(0) = 0 as the initial guess for
all results presented here.

2. Solve Equations (A3) and (A8) or Eqs. (A3)
and (A11) using a numerical scheme for solving
differential equations, e.g. the fourth order Runge–
Kutta method.

3. Calculate a new estimate for the initial conditions
using Eqs. (A5) and (A6) or Eq. (A12) and the cho-
sen front velocity. In the model with a tangential
stiffness of the interface we have ũn→∞ = ˙̃un→∞ =
0, which is implemented as ũN = ˙̃uN = 0 where N
is the number of blocks in the calculation. We find
that N = 100 yields satisfactory results. Calculate
τ̄ using Eq. (A10) or Eq. (A13).

4. Repeat steps 2. and 3. until τ̄ has converged. The
solution has converged when the difference in τ̄ be-
tween two iterations is less than some tolerance ε.
We use ε = e− 6.

The functions v̄c(τ̄) or equivalently τ̄(v̄c) can be calcu-
lated by repeating the above steps for several values of
v̄c.

Appendix C: Deriving the τ̄ → 1 limit of transient
length

Here we show that in the limit of τ̄ → 1 the transient
length vanishes by considering the motion of the trailing
edge block as it begins to move.

Using Eqs. (11) to (15) with AC friction [Eq. (26)] the
equation of motion for the trailing edge block becomes

¨̄uTE = −ūTE + τ̄ + F̄T (C1)
where we have set η̄ = 0 for simplicity. As before we
assume that F̄T is independent of time. The initial con-
dition for the trailing edge block is ūTE(t̄ = 0) = ˙̄uTE(t̄ =

0) = 0 and rupture initiates when τ̄+F̄T = 1. This yields

ūTE(t̄) = 1− cos t̄. (C2)

The rupture criterion, Eq. (24), applied to the second
block from the trailing edge yields

ūTE(t̄1) = 1− cos t̄1 = 1− τ̄ , (C3)

where t̄1 is the time at which the motion of the second
block from the trailing edge is triggered. Noting that
z1 = t̄1 = 1/v̄c,1, we have

τ̄ = cos z = 1− z2

2
+
z4

24
+O(z6). (C4)

Comparing with Eq. (28), the series of the steady-state
rupture velocity, the first two terms are identical, i.e.
as τ̄ → 1 (z → 0), the rupture will instantly reach the
steady-state velocity and the transient length approaches
0. For smaller values of τ̄ (larger values of z), the tran-
sient length increases due to the deviations in the higher
order terms.

Appendix D: Slip speed vs rupture speed

Here we derive the relationship between the rupture
and slip velocity in the model with Amontons–Coulomb
friction and no viscosity. Consider block i, which started
to move at time t̄ = t̄i, causing an increased shear force
on block i + 1. We only consider blocks moving in the
positive direction, i.e. only f+

i = τ̄ is required. The local
rupture velocity is given by Eq. (A7),

v̄c,i =
1

∆t̄i
, (D1)

where t̄i = t̄i+1 − t̄i is the time between the triggering of
block i and i+ 1. The position of block i at t̄i is ūi = 0.
The increase in shear force required for block i + 1 to
start moving is given by the rupture criterion, Eq. (24),
and the position of block i at t̄i+1 is therefore given by

ūi(t̄i+1) = 1− τ̄ . (D2)

The average slip velocity is consequently

˙̄ui,avg =
ūi(t̄i+1)− ūi(t̄i)

∆t̄i
=

1− τ̄
∆t̄i

, (D3)

and the rupture and slip velocities are related by

v̄c,i =
˙̄ui,avg

1− τ̄ . (52)

This relationship is demonstrated in Fig. 8, where we
have plotted the local rupture velocity as a function of the
local average slip velocity for various values of τ̄ as mea-
sured in simulations (similar to the simulations shown in
Fig. 2a). Rescaling the average slip velocity by 1/(1− τ̄),
a straight line with unit slope is obtained.
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(a) Local rupture velocity v̄c as a function of local slip velocity
˙̄uavg.

v̄ c
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(b) Local rupture velocity v̄c as a function of the rescaled local
slip velocity ˙̄uavg/(1 − τ̄). The black line is a straight line through

the origin with a slope of unity as predicted by Eq. (52).

FIG. 8: Colour online. Rupture velocity and slip velocity are closely related. These results have been obtained using
simulations as in Fig. 2a for τ̄ = 0.1, 0.2, . . . , 0.9.
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[29] B. Blanc, J.-C. Géminard, and L. Pugnaloni, Eur. Phys.

J. E 37, 112 (2014).
[30] J. S. Langer and C. Tang, Phys. Rev. Lett. 67, 1043

(1991).
[31] C. R. Myers and J. S. Langer, Phys. Rev. E 47, 3048

(1993).
[32] C. B. Muratov, Phys. Rev. E 59, 3847 (1999).
[33] C. Kittel, Introduction to Solid State Physics, eighth ed.

(John Wiley & Sons, Inc, Hoboken, 2005).
[34] L. Knopoff, Annals of Geophysics 40, 1287 (1997).
[35] B. E. Shaw, Geophys. Res. Lett. 21, 1983 (1994).

http://dx.doi.org/10.1126/science.1094022
http://dx.doi.org/10.1126/science.1094022
http://dx.doi.org/10.1140/epje/i2013-13017-0
http://dx.doi.org/10.1140/epje/i2013-13017-0
http://dx.doi.org/10.1103/PhysRevLett.112.094301
http://dx.doi.org/10.1038/nature02830
http://dx.doi.org/10.1038/nature02830
http://dx.doi.org/10.1126/science.1194777
http://dx.doi.org/10.1126/science.1194777
http://dx.doi.org/ 10.1016/j.epsl.2011.06.013
http://dx.doi.org/10.1073/pnas.0704268104
http://dx.doi.org/10.1073/pnas.0704268104
http://dx.doi.org/10.1111/j.1365-246X.2009.04444.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04444.x
http://dx.doi.org/10.1103/PhysRevLett.107.074301
http://dx.doi.org/10.1103/PhysRevLett.107.074301
http://dx.doi.org/10.1007/s11249-012-9920-0
http://dx.doi.org/10.1073/pnas.1321752111
http://dx.doi.org/10.1073/pnas.1321752111
http://dx.doi.org/10.1007/s11249-011-9894-3
http://dx.doi.org/10.1007/s11249-011-9894-3
http://dx.doi.org/10.1103/PhysRevE.92.012408
http://dx.doi.org/10.1103/PhysRevE.92.012408
http://dx.doi.org/10.1029/JB094iB04p04089
http://dx.doi.org/10.1029/JB094iB04p04089
http://dx.doi.org/10.1029/2011GL050554
http://dx.doi.org/10.1029/2011GL050554
http://dx.doi.org/10.1103/PhysRevLett.98.226103
http://dx.doi.org/10.1103/PhysRevLett.98.226103
http://dx.doi.org/10.1007/s11249-010-9611-7
http://dx.doi.org/10.1007/s11249-010-9611-7
http://dx.doi.org/10.1209/0295-5075/92/54001
http://dx.doi.org/10.1209/0295-5075/92/54001
http://dx.doi.org/10.1007/s11249-014-0432-y
http://dx.doi.org/10.1007/s11249-014-0432-y
http://dx.doi.org/10.1007/s11249-014-0451-8
http://dx.doi.org/10.1103/PhysRevLett.103.194301
http://dx.doi.org/10.1103/PhysRevLett.103.194301
http://dx.doi.org/10.1103/PhysRevB.86.085430
http://dx.doi.org/10.1103/PhysRevB.86.085430
http://dx.doi.org/10.1103/RevModPhys.66.657
http://dx.doi.org/10.1103/RevModPhys.66.657
http://dx.doi.org/10.1103/RevModPhys.84.839
http://dx.doi.org/10.1103/PhysRevA.46.6288
http://dx.doi.org/10.1021/ma950668b
http://dx.doi.org/10.1021/ma950668b
http://dx.doi.org/10.1007/s100510170321
http://dx.doi.org/10.1007/s100510170321
http://dx.doi.org/10.1140/epje/i2014-14112-4
http://dx.doi.org/10.1140/epje/i2014-14112-4
http://dx.doi.org/10.1103/PhysRevLett.67.1043
http://dx.doi.org/10.1103/PhysRevLett.67.1043
http://dx.doi.org/10.1103/PhysRevE.47.3048
http://dx.doi.org/10.1103/PhysRevE.47.3048
http://dx.doi.org/10.1103/PhysRevE.59.3847
http://www.annalsofgeophysics.eu/index.php/annals/article/view/3873
http://dx.doi.org/10.1029/94GL01685


16

[36] O. M. Braun and M. Peyrard, Phys. Rev. Lett. 100,
125501 (2008).

[37] K. Thøgersen, J. K. Trømborg, H. A. Sveinsson,
A. Malthe-Sørenssen, and J. Scheibert, Phys. Rev. E
89, 052401 (2014).

[38] C. Scholz, The Mechanics of Earthquakes and Faulting
(Cambridge University Press, 2002).

[39] L. Knopoff and X. X. Ni, Geophys. J. Int. 147, 1 (2001).
[40] Y. Bar-Sinai, R. Spatschek, E. A. Brener, and E. Bouch-

binder, Sci. Rep. 5, 7841 (2015).

[41] L. B. Freund, J. Geophys. Res.: Solid Earth 84, 2199
(1979).

[42] S. M. Day, Bull. Seismol. Soc. Am. 72, 1881 (1982).
[43] A. J. Rosakis, O. Samudrala, and D. Coker, Science 284,

1337 (1999).
[44] M. Bouchon and M. Vallée, Science 301, 824 (2003).
[45] C. Caroli and P. Nozières, Eur. Phys. J. B 4, 233 (1998).
[46] M. Radiguet, D. S. Kammer, P. Gillet, and J.-F. Moli-

nari, Phys. Rev. Lett. 111, 164302 (2013).

http://dx.doi.org/10.1103/PhysRevLett.100.125501
http://dx.doi.org/10.1103/PhysRevLett.100.125501
http://dx.doi.org/10.1103/PhysRevE.89.052401
http://dx.doi.org/10.1103/PhysRevE.89.052401
http://dx.doi.org/10.1046/j.1365-246X.2001.01567.x
http://dx.doi.org/10.1038/srep07841
http://dx.doi.org/10.1029/JB084iB05p02199
http://dx.doi.org/10.1029/JB084iB05p02199
http://dx.doi.org/10.1126/science.284.5418.1337
http://dx.doi.org/10.1126/science.284.5418.1337
http://dx.doi.org/10.1126/science.1086832
http://dx.doi.org/10.1007/s100510050374
http://dx.doi.org/10.1103/PhysRevLett.111.164302

	Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces
	Abstract
	Introduction
	Model description
	Steady state front propagation
	Amontons–Coulomb friction
	Model without bulk viscosity (bar eta = 0)
	The effect of a bulk viscosity

	Elasto-plastic like friction law
	Behaviour of the complete model

	Discussion
	Conclusions
	Acknowledgments
	Deriving the equations for the steady-state rupture velocity
	Amontons–Coulomb friction
	Including a finite tangential stiffness of the interface

	Solving the equations for the steady-state rupture velocity
	Analytical solution of the Amontons–Coulomb steady-state rupture velocity equations
	Numerical solution procedure

	Deriving the tauBar to 1 limit of transient length
	Slip speed vs rupture speed
	References


