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Singular stochastic PDE

SSPDE : Non-linear Langevin equations “whose solutions” are
supposed to generate Markov processes with Euclidean field theory
measures as invariant measures. This is also known as stochastic
quantisation.
A priori ill defined problem.

I EFT measures require renormalization to be defined. They are
realized on spaces of distributions D′(Rd) or S ′(Rd).

I The SSPDE = Non-linear Langevin equations have
coefficients inherited from EFT measures. These are typically
distributions. Nonlinear ↔ pointwise products ↔
renormalization.
If “solutions” exist, Markov process is distribution valued.
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What sort of solutions ?
Different points of view :

I Probabilistic weak solutions/ Martingale solutions : With
cut-offs these are also strong solutions and Martingale
solutions exist. This leads to Functional integral/RG point of
view to construction of semigroup/invariant measures. We
will elaborate on this later.

In D = 2, G. Jona-Lasinio and P. K. Mitter considered a
modified non-linear Langevin equation and proved in the
continuum limit the existence of a martingale (weak) solution
with the finite volume continuum massive φ4

2 measure as the
unique invariant measure. This was the first mathematical
result in this subject.
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What sort of solutions ?

I Pathwise approaches
Pathwise solutions of dynamical super-renormalizable
Euclidean Field theories. Counter-terms : those of
super-renormalizable EFT’s. (massive φ4

d d = 2, 3.)

a) D = 2: G. Da Prato and A. Debussche were the first to
produce a unique strong solution with the finite volume
continuum φ4

2 measure as the invariant measure.

b) D = 2, 3: M. Hairer (theory of regularity structures), M.
Gubinelli et. al. (paracontrolled distributions), Catelier and
Chouk: These are theories of multiplication of distributions
with counter-terms. Verified in low order perturbation theory.
The remainder is controlled as a fixed point problem in a
Banach space.
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What sort of solutions ?

I c) Antti Kupiainen : RG approach directly on the equation

D = 3: UV cut-off noise, finite volume. Rescale to unit
cut-off with enlarged volume. This gives rise to a sequence of
effective equations with rescaling at each step → Perturbative
part + remainder. The limit of the sequence of remainders has
been proved to exist by solving a Banach fixed point problem.

b), c) are : short time solutions with the upper bound on
time dependent on noise.

Global solution, D = 2 by J.C. Mourrat and H.Weber.

BUT : Hairer gives optimal regularity for paths, and intial
conditions.
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An example

Scalar field theory in dimension D, φ(x), x ∈ RD .

C0(x − y) = Fourier transform of Ĉ0(k) = 1
k2+m2 .

κ : UV cut-off

Ĉκ(k) =
1

(k2 + m2)(1 + k2

κ2 )p
for suffieciently large p.

The random gaussian field φ in Rd with covariance C0 is a
distributon for D ≥ 2. For p sufficiently large, φ distributed
according to Cκ is locally sufficiently differentiable.

dµκ(φ) =
1

Zκ(Λ)

∫
dµCκ(φ) e−Vκ(φ,Λ).

Vκ(φ,Λ) =

∫
Λ
dDx {λ

4
: φ4 :Cκ (x) + countertermsκ}

ΛL : cube side, periodic b.c., ΛL = RD/(LZD). Cκ : periodized
covariance.
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Linear process

Dynamical models

Nonlinear Langevin equations
Large class of equations available, such that if solutions exist, they
have the same invariant measure.
Example : Let 0 < ρ ≤ 1.

dφ̃t = dWt −
1

2

(
C−ρκ φ̃t + λC 1−ρ : φ̃3

t :Cκ

)
dt,

φ̃0 = φ,

values in subspace of D′(ΛL), (sufficiently differentiable functions).

f , g are test functions in D(ΛL).

E (Wt(f ),Wt(g)) = (f ,C 1−ρ
κ g) min(t, s).

[Canonical choice ρ = 1.] Counter-terms in the drift omitted.
Pronob K. Mitter SSPDE
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Linear process

Dynamical models

If the solutions exist, then there is a generator Lκ,p and it is easy
to see

Lκ,p =
1

2

∫
dx dy C 1−ρ(x − y)

(
δ

δφ(x)

δ

δφ(y)
− δS
δφ(x)

δ

δφ(y)

)
.

is symmetric with respect to L2(dµκ,Λ) and formally,∫
dµκ,Λ(φ) etLκ,p F (φ) =

∫
dµκ,Λ(φ)F (φ).

F : bounded C2 cylindrical function.

Each choice of ρ ∈ (0, 1] will, if equation can be solved, lead to
Markov processes with same invariant measure µκ,Λ.
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Linear process

Linear processes

dφt = dWt −
1

2
C−ρκ φtdt,

φt = φ

This is an Ornstein-Uhlenbeck process/Langevin equation.

This has a unique solution

φt = e−t/2φ0 +

∫ t

0
e−

1
2

(t−s)C−ρκ dWκ.

The O-U process has continuous sample paths.
Generator :

L(0)
κ =

1

2

∫
dx

∫
dy

[
C 1−ρ
κ (x − y)

δ2

δφ(x)δφ(y)
− C−ρκ (x − y)φ(x)

δ

δφ(y)

]
.
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Linear process

Linear processes

Transition probability : pt(φ,B) = µCt,κ

(
B − e−

t
2
C−ρκ φ

)
,

B : Borel set in D′(ΛL).

Ct,κ = (1− e−t C
−ρ
κ )Cκ.

µCκ : invariant measure.

POU
φ : O-U measure on path space : C0([0,∞),D′(ΛL)).

In terms of the linear process, the full process must solve the
integral equation :

φ̃t = φt −
λ

2

∫ t

0
dse−(t−s)C−ρκ C 1−ρ

κ : φ̃3
s :Cκ .
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Probabilistic weak solution

Girsanov formula :

et LκF (φ) = E
(w)
φ0=φ

(
F (φt) eξ

t,κ
0

)
(∗)

O-U process : φt is a measurable function of wt .

ξ0,(κ) = −λ
2

∫ t

0

(
: φ3

s :Cκ , dws

)
− λ3

8

∫ t

0
ds
(
: φ3

s :Cκ ,C
1−ρ : φ3

s :Cκ
)
.

Because of the cut-off κ Ito’s formula applied to eξ
t,κ
0 shows

E (w)(eξ
t,κ
0 ) = 1. (∗∗)

Martingale property :

E (w)(eξ
t,κ
s |Fs) = 1,

E (w)(eξ
t,κ
0 |Fs) = eξ

s,κ
0 .
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Probabilistic weak solution

Because of (∗∗) in the previous slide, the representation (∗) defines
a semigroup with transition probabilities,

p̂κt (φ,B) = E
(w)
φ

(
X (φt ∈ B) eξ

t,κ
0

)
,

and and the family of transtion probabilities gives a new probability
measure P̂κφ on C0([0,T ],D′(Λ)) = ΩT .

P̂κφ solves the non-linear integral equation in weak sense. Under P̂κφ

Zt = φ̂t +
λ

2

∫ t

0
ds e−(t−s)C−ρκ C 1−ρ

κ : φ̂3
s :Cκ , φ̂t ∈ ΩT

has probability distribution of an O-U process.
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The drift is a gradient vector field.

Therefore we can get rid of the stochastic integral in the Girasanov
exponent ξt0, using Ito’s formula.

The result is :

ξt = −1

2
Vκ(φt) +

1

2
Vκ(φ0)−

∫ t

0
dsṼκ(φs),

Ṽκ(φs) =
λ

4
:
(
φ3
s ,C

−ρ
κ φs

)
L2(Λ)

:Cκ +
λ2

8

(
: φ3

s :Cκ ,C
1−ρ
κ : φ3

s :Cκ
)
L2

−3λ

4
:
(
φs ,C

1−ρ
κ φs

)
L2(Λ)

,

(
et Lκ

)
(φ) = Eφ0=φ

(
F (φt) e

− 1
2
Vκ(φt)+ 1

2
Vκ(φ0)−

∫ t
0 dsṼκ(φs)

)
.
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(
G , et LκF

)
L2 (dµκ,λ,ΛL)

=

∫
dµCκ(φ) e−

1
2
Vκ(φ)G (φ)Eφ0=φ

(
F (φt)e

− 1
2
Vκ(φt)−

∫ t
0 dsṼκ(φs)

)
where Cκ is the cutoff covariance periodized on the torus ΛL and
the ΛL dependence of V and Ṽ has been suppressed.
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The previous formula actually gives an unitary transformation.
Define

F̃κ(φ) = e−
1
2
Vκ(φ) F (φ)

and observe the isometry

L2(dµκ)→ L2(dµCκ)

‖F̃κ‖2
L2(dµCκ ) = ‖F‖2

L2(dµκ)
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The previous isometry leads to the representation(
G , et LκF

)
L2 (dµκ)

=
(
G̃κ, e

t L̃κ F̃κ
)
L2 (dµCκ )

where

et L̃κ F̃ (φ) = Eφ0=φ

(
F (φt)e

−
∫ t

0 dsṼκ(φs)
)

ULTRAVIOLET CUT-OFF REMOVAL (κ→∞) .
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D = 2 The weak solution of Jona-Lasinio, Mitter in the
limit κ→∞(1985)

Here the parameter ρ : 0 < ρ ≤ 1 plays an important role. In other
words we are studying a modified non-linear Langevin (Glauber)
dynamics. The initial choice of ρ was very restricted for technical
reasons : 0 < ρ < 1

10 . Progressively, this restriction was removed
by Rozovskii and Mikulevicius (1998) : 0 < ρ < 1 and then ρ = 1.
A strong solution was given by G. da Prato and Debussche (2003)
for ρ = 1 in a very important work which introduced new
technology (use of Besov spaces). Finally (2015) J-C Mourrat and
H.Weber have extended da Prato’s work to prove global in time (
and also in space) pathwise solutions.
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Estimates [J-L,M (CMP-1985), M(Spain-1986)], κ→∞
1) D = 2 Cκ

κ→∞−−−→ C (for massive covariance).

: φn :C (f ) ∈ Lp(dµC ), ∀p : 1 ≤ p ≤ ∞.

2) The O-U transition probability µCt (φ, ·) is absolutely continuous
with respect to µC (·), µC a.e. in φ provided ρ > 0. The
Radon-Nikodym derivarive is then in L2(dµC ), µC a.e. in φ.

If h ∈ L2p(dµC ), then trivially,

Eφ(|h(φt)|p) <∞, 1 ≤ p <∞.

So h(φt) ∈ Lp(dPφ,Ω).
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3) φt is continuous in t, Pφ a.s., µC a.e. in φ.

Moreover the O-U semigroup is hypercontractive.

Using Riemann sum approximation, with κ→∞∫ t

0
ds h(φs) ∈ Lp(dPφ,Ω), µC a.e. in φ.

Therefore provided 0 < ρ < 1

Eφ

(∫ t

0
ds
(
: φ3 :C ,C

1−ρ : φ3 :C
)
L2

)
<∞,

µC a.e. in φ.
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Ito isometry

Eφ

[(∫ t

0
(: φ3

s :,dWs)

)2
]

= Eφ

(∫ t

0
ds(: φ3 :C ,C

1−ρ : φ3 :C )L2

)
<∞,

µC a.e. in φ.

Because of the above, ξt,∞0 exists as a random variable.
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4) We know

Eφ(eξ
t,κ
0 ) = 1, µC a.e.

By Fatou’s lemma

Eφ(eξ
t,∞
0 ) ≤ 1, µC a.e.

For a martingale/weak solution we have to prove

Eφ

(
eξ

t,∞
0

)
?
= 1.
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5)

eξ
t,∞
0 = eξ

t,∞
0 − eξ

t,κ
0 + eξ

t,κ
0 .

|Eφ(eξ
t,∞
0 )− 1| ≤ |E

(
eξ

t,∞
0 − eξ

t,κ
0

)
| (∗ ∗ ∗)

|E
(
eξ

t,∞
0 − eξ

t,κ
0

)
| ≤ Eφ

(
|ξt,∞0 − ξt,κ0 ||

(
eξ

t,∞
0 + eξ

t,κ
0

)
|
)

≤
(
Eφ(|ξt,∞0 − ξt,κ0 |

2
) 1

2

[(
Eφ

(
e2ξt,∞0

)) 1
2

+
(
Eφ

(
e2ξt,κ0

)) 1
2

]
It is easy to show |ξt,∞0 − ξt,κ0 | → 0 in L2

(
dPW

φ ,Ω
)

, µC a.e. in φ.
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6) Lemma

Suppose 0 < ρ < 1
10 . Then

Eφ

(
e2ξt,∞0

)
<∞, µC a.e. in φ.

e2ξt,κ0 is uniformly bounded in L2(dPW
φ ,Ω).

7) Therefore taking κ→∞ in (∗ ∗ ∗) we have

Eφ

(
eξ

t,∞
0

)
= 1.
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Semigroup and Invariant measure

Because of 7) in previous frame we have an L∞(dµΛ) semigroup
defined µ a.e. on bounded measurable functions

etL∞F (φ) = Êφ(F (φ̂t)) = Eφ(F (φt) eξ
t,∞
0 )

where Ê is the expectation with respect to a new path space
measure P̂φ on C 0([0,T ],D′(Λ)) = ΩT . We have

etL∞1 = Êφ(1) = Eφ( eξ
t,∞
0 ) = 1
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The semigroup is also symmetric in L2(dµΛ) restricted to the
subspace of bounded measurable functions and is given by a
probability measure. Therefore µΛ is an invariant measure:

∫
dµΛ etL∞ F =

∫
dµΛ F

where F is a bounded measurable function. The invariant measure
is unique because the semigroup is positivity improving.

The above facts are enough to prove that the semigroup is actually
a strongly continuous contraction on Lp(dµΛ) for 1 ≤ p ≤ ∞.
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Proof of the lemma

The idea is to undo the stochastic integral in ξt,∞0 since the drift
perturbation is a gradient. To undo the stochastic integral we use
the Ito’s formula. Then we see that each term exists as a random
variable in L2(dPW

φ ,Ω), µC a.e. in φ provided 0 < ρ < 1
2 .

Then we use the method of Nelson and Glimm from the earliest
days of constructive QFT. For the stability estimate to work we

need to restrict : 0 < ρ < 1
10 .
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∫
dµ(φ)Eφ (e2ξt,∞0 ) =

∫
dµC (φ)Eφ

(
e−V (φt)−2

∫ t
0 dsṼ (φs)

)
Where

2Ṽ (φs) =
λ

2
:
(
φ3
s ,C

−ρφs
)
L2(Λ)

:C +
λ2

4

(
: φ3

s :C ,C
1−ρ : φ3

s :C
)
L2

−3λ

2
: (φs ,C

1−ρφs) :C

≤
(∫

dµC (φ)Eφ(e−2V (φt))

) 1
2
(∫

dµC (φ)Eφ(e−4
∫ t

0 ds Ṽ (φs))

) 1
2

(∗ ∗ ∗∗)
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1) The first factor in (∗ ∗ ∗∗) is easily proven to be finite.

∫
dµC (φ)Eφ(e−2V (φt)) =

∫
dµC (φ) et L0 e−2V (φ)

=

∫
dµC (φ)e−2V (φ) < ∞,

by Nelson’s estimate ( have used that µC is invariant measure of
O-U process).
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2)

∫
dµC (φ)E

(w)
φ (e−4

∫ t
0 ds Ṽ (φs)) ≤

∫
dµC (φ)e−4t Ṽ (φ).

(φs a.s. continuous, Riemann sum approximation, Hölder’s
inequality)

Ṽ (φ) : The non-local φ6 term is a positive random variable, can
be dropped.

The negative sign mas term is dominated by the Gaussian
measure, for small λ.

We are left with the estimate provided by the following proposition.
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Proposition

For 0 < ρ < 1
10∫

dµC (φ)e−ptλG(φ) <∞

G (φ) =: (φ3,C−ρφ)L2) :C , in Lp(dµC ) for 0 < ρ <
1

2
.

I Step 1

(φ3,C−ρφ)L2(Λ) ≥
∫

Λ d2xφ4(x), 0 < ρ < 1.

Proved using spectral representation and Young’s inequality.
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I Step 2
UV cut-off field (cut-off Fourier modes)

φκ(x) =

∫
|k|≤κ

d2k

(2π)2
e ik·x φ̂(k).

Cκ(x , y) is µC covariance of φκ.
Gκ(φ) = G (φκ).

Gκ → G in Lp(dµC ) for 0 < ρ < 1
2 .

Undo Wick ordering in Gκ. The Wick constants →∞ when
κ→∞.

Using Step 1 and and estimates of Wick constants get

Gκ ≥ −const ×
(
κ4ρ (lnκ)2

)
Pronob K. Mitter SSPDE
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Step 3

Define G̃κ = G − Gκ.

Then :∫
dµC |G̃κ|2j ≤ (j!)4 bj

(
(lnκ)m κ−2+4ρ

)j ∀j , some m > 0.

Hypercontractivity to reduce Lp(dµC ) estimates to L2(dµC )
estimates, then Feynman graph computation.
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Step 4

µC
(
{G ≤ −const (κ4ρ(lnκ)2)− 1}

)
≤ µC

(
{|G̃κ|2j ≥ 1}

)
≤
∫

dµC |G̃κ|2j ≤ (j!)4bj(lnκ)m(κ−2+4ρ)j

Then Stirling’s approximation and optimal κ-dependent choice of j
gives

µC
(
{G ≤ −const (κ4ρ(lnκ)2)− 1}

)
≤ e

−const
(
κ

2−4ρ
4 (lnκ)−

m
4

)
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Step 5

κn = 2n →∞, Cκn = constκ4ρ
n (lnκn)2.

∫
dµCe

−G =

∫
dµCe

−G (X{G > −Cκ0 − 1}+ X{G ≤ −Cκ0 − 1})

≤ eCκ0 +1 + I0
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Step 5 continued

I0 =

∫
dµCe

−GX{G ≤ −Cκ0 − 1}

=

∫
dµCe

−G
∞∑
n=0

X{−Cκn+1 − 1 < G ≤ −Cκn − 1}

≤
∞∑
n=0

eCκn+1 +1 µC{G ≤ −Cκn − 1}

≤
∞∑
n=0

eCκn+1 +1 e
−const

(
κ

2−4ρ
4 (lnκ)−

m
4

)
,

and using the definition of Cκn , this series converges for ρ < 1
10 .
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Stationary O-U process

P̃ : measure on path space Ω = C0([0,∞),D′).

P̃(B) =

∫
dµCκ(φ) P̃φ(B), P̃φ : O-U measure.

I Stationarity : E P̃ (φt(f )φs(g)) = E P̃ (φt−s(f )φ0(g)), t > s.

I Symmetry : E P̃ (φt(f )φs(g)) = E P̃(φt(g)φs(f ).

I Covariance : E P̃ (φt(f )φs(g)) = Cκ(f , e−
t−s

2
C−ρκ g).

Because of stationarity : path space Ω→ Ω̃ = C0 ((−∞,∞),D′)
All of this is true when κ→∞.
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Euclidean formalism

A Euclidean formalism for the canonical choice ρ = 1.
x = (x1, ..., xD) ∈ RD x0 ∈ R,

x̃ = (x0, x) ∈ R× ΛL ⊂ RD+1,

φ(x̃) = φ(x0, x), x0 = “time” coordinate. “Time” is the time
the process has run, which we call the Langevin time.

Define :

C̃κ(x̃ , ỹ) =

∫
dk0

2π

∫
dDk

(2π)D
e ik0(x0−y0)+i(k,x−y)RD

k2
0 + Ĉκ

−2
(k)

.

µC̃κ : Gaussian measure, covariance C̃κ on D′(R× ΛL).
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Euclidean formalism

Consider fixed time test functions:

ft(x̃) = f (x)δ(x0 − t), t > 0

Take t > s. Then an easy computation shows∫
dµC̃κ(φ)φ(f t

2
)φ(f s

2
) =

(
f ,Cκe

− |t−s|
2

C−1
κ g

)
L2

= E P̃OU(φt(f )φs(g)).

Thus the analogy is given by a pull up

C̃κ : “Euclidean covariance”.

Cκ : “Fock space covariance”.
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“Time” reflection θ : The positive time subspace D+(R× ΛL)
consists of test functions f (x̃) such that f (x , t) = 0 : t < 0. The
time reflection operation on test functions in D(R× ΛL) is

θf (x , t) = f (x ,−t)

Reflection positivity : in the O-S inner product <,>+ the
covariance C̃ is positive definite. Let f ∈ D+(R× ΛL). Then
computation shows:

< f , C̃ f >+= (θf , C̃ f ) ≥ 0

< φ(f ), φ(f ) >+=

∫
dµC̃ φ(θf )φ(f ) = (θf , C̃ f ) ≥ 0
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The Osterwalder-Schrader Hilbert space

More generally, following Fröhlich or Glimm-Jaffe (see references)
we consider the Hilbert space E spanned by vectors in L2(dµC̃ ) of

the form F (φ(f )) =
∑n

i=1 aie
iφ(fi ) where the fi ∈ D and the ai are

complex numbers. Restrict E to the positive time subspace E+

obtained by restricting the test functions to D+. Then
computation shows that the Osterwalder Schrader inner product
<,>+ satisfies for f ∈ D+

< F (φ(f ),F (φ(f ) >+=

∫
dµC̃ F̄ (φ(θf ))F (φ(f )) ≥ 0

Quotient by the null space N+ in the Osterwalder-Schrader inner
product to get E+/N . E+/N+ equipped with the inner product
< ·, · > is the O-S Hilbert space H.
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The Osterwalder Schrader semigroup

The semigroup T̃t is defined on the O − S Hilbert space H by

< F (φ(f ), T̃tG (φ(f ) >+=

∫
dµC̃F (φ(θf ))G (φ(Tt f ))

where on the right hand side Tt is the time translation operator.
The semigroup which acts on E+ acts on the physical Hilbert space
H since it preseves the null space N+ in the O-S inner product.
Then it can be shown (see Osterwalder-Schrader, Fröhlich and
lectures of Glimm-Jaffe) that T̃t is a self adjoint, contractive and
strongly continuous operator on the Hilbert space H, uniformly
bounded in t. These considerations generalise when we add local
interactions which do not upset reflection positivity.
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The Euclidean Functional Integral

The partition function for stochastic quantisation in the torus ΛL

and finite “Time “ interval [−T/2,T/2] is defined by

Zκ,T ,ΛL
=

∫
dµC̃κ(φ) exp − (

∫ T/2

−T/2
ds Ṽκ(φs ,ΛL))

where Ṽκ is as defined in an earlier frame. We have set ρ = 1. The
corresponding probability measure is then given by

dP̂κ,T ,ΛL
=

1

Zκ,T ,ΛL

dµC̃κ(φ) exp − (

∫ T/2

−T/2
ds Ṽκ(φs ,ΛL))

This measure is reflection positive in the Langevin time.
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The correlation functions are given by

< F (φ(f )G (φ(g) >κ,T ,ΛL
=

∫
dP̂κ,T ,ΛL

F̃ (φ(f ),ΛL)G̃ (φ(g),ΛL))

where
F̃κ(φ(f ),ΛL) = e−

1
2
Vκ(φ,ΛL) F (φ(f ))

The existence of the limit T →∞ can be proved. The
Osterwalder-Schrader construction of the Hilbert space and
semigroup follows. It is straightforward to prove that, in the
presence of cutoffs when the functional integral is well defined, the
Osterwalder-Schrader Hilbert space H is isomorphic to the Hilbert
space L2(dµκ,Λ)) and the corresponding semigroups coincide. In
particular there is a unique ground state.
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The next step would be to apply rigorous RG methods in order to
take the continuum ultraviolet cutoff (κ→∞) or equivalently the
lattice spacing→ 0 in the lattice regularised theory. Much
progress has been made in recent years, in particular the
development and applications over the years of the RG based on
finite range multiscale expansions due to David Brydges and
collaborators. This method gets rid of the cluster expansion
altogether at the level of the fluctuation integration and proofs of
many results become easier.
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For this purpose, and as a first step, we would need a multiscale
finite range decomposition of the covariance C̃κ or of the lattice
version of C̃∞ with good regularity properties. Such a
non-pathwise program if successful would be quite robust and in
particular might enable us to make progress which encompasses
also dynamical models more singular than the superrenormalisable
ones that are being presently considered.
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