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Efficient high order semi-implicit time discretization and

local discontinuous Galerkin methods for highly

nonlinear PDEs

Ruihan Guo∗, Francis Filbet†, Yan Xu‡

Abstract

In this paper, we develop a high order semi-implicit time discretization method for

highly nonlinear PDEs, which consist of the surface diffusion and Willmore flow of

graphs, the Cahn-Hilliard equation and the Allen-Cahn/Cahn-Hilliard system. These

PDEs are high order in spatial derivatives, which motivates us to develop implicit

or semi-implicit time marching methods to relax the severe time step restriction for

stability of explicit methods. In addition, these PDEs are also highly nonlinear, fully

implicit methods will incredibly increase the difficulty of implementation. In particular,

we can not well separate the stiff and non-stiff components for these problems, which

leads to traditional implicit-explicit methods nearly meaningless. In this paper, a high

order semi-implicit time marching method and the local discontinuous Galerkin (LDG)

spatial method are coupled together to achieve high order accuracy in both space and

time, and to enhance the efficiency of the proposed approaches, the resulting linear

or nonlinear algebraic systems are solved by multigrid solver. Specially, we develop

a first order fully discrete LDG scheme for the Allen-Cahn/Cahn-Hilliard system and

prove the unconditional energy stability. Numerical simulation results in one and two

dimensions are presented to illustrate that the combination of the LDG method for
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spatial approximation, semi-implicit temporal integration with the multigrid solver

provides a practical and efficient approach when solving this family of problems.

Key words: semi-implicit time marching method, local discontinuous

Galerkin method, multigrid, surface diffusion and Willmore flow of graphs,

Cahn-Hilliard equation, Allen-Cahn/Cahn-Hilliard system

1 Introduction

In this paper, we consider efficient high order semi-implicit time discretization and the local

discontinuous Galerkin (LDG) method for time dependent highly nonlinear partial differen-

tial equations (PDEs) containing high order spatial derivatives.

The discontinuous Galerkin (DG) method is a class of finite element methods, in which

using a completely discontinuous piecewise polynomials as the numerical solution and the

test spaces. Reed and Hill [15] first designed it as a method for solving first order linear

transport equation. Cockburn et al. later extended the DG method to solve nonlinear

hyperbolic conservation laws in a series of papers [3, 4, 5, 6].

It is difficult to apply the DG method directly to PDEs containing higher order spatial

derivatives, therefore the LDG method was introduced. The idea of the LDG method is

to rewrite the equations with higher order derivatives as a first order system, then apply

the DG method to the system. The first LDG method was constructed by Cockburn and

Shu in [7] for solving a convection diffusion equation (containing second derivatives). Their

work was motivated by the successful numerical experiments of Bassi and Rebay [1] for the

compressible Navier-Stokes equations. For a detailed description about the LDG methods for

high order time-dependent PDEs, we refer the readers to the review paper [23]. A common

feature of these LDG methods is that stability can be proved for quite general nonlinear cases.

DG and LDG methods also have several attractive properties, such as easy parallelization,

easy adaptivity and simple treatment of boundary conditions. The most important property

of DG and LDG methods is high order accurate, which motivates us to develop high order

temporal accuracy scheme to get the goal of obtaining high order accuracy in both space

and time together with robust stability conditions.

By the method of lines, the application of the LDG method for spatial variables for

a partial differential equation will generate a large coupled system of ordinary differential

equations (ODEs). The development of a suitable ODEs solver attracted a lot of attention
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in the last decades. Explicit high order nonlinearly stable Runge-Kutta methods are efficient

for hyperbolic problems or convection dominated problems. However, if the PDEs contain

high order spatial derivatives with coefficients not very small, then explicit temporal methods

suffer from severe time step restrictions for stability, of the form ∆t ≤ C∆xp, where p is the

order of the PDE. It would therefore be desirable to develop implicit or semi-implicit time

discretization techniques to alleviate this problem, especially for long time simulations.

In [19], three different time discretization techniques for solving the stiff ODEs result-

ing from an LDG spatial discretization to PDEs with higher order spatial derivatives were

explored. These are the semi-implicit spectral deferred correction (SDC) method, the ad-

ditive Runge-Kutta (ARK) method and the exponential time differencing (ETD) method,

which are all validated to be efficient. However, these three methods are mainly efficient for

a problem with easily separate stiff and non-stiff components, which treating the non-stiff

terms explicitly and the stiff terms implicitly. Actually, it is not always easy to separate stiff

and non-stiff components, for example, for the surface diffusion and Willmore flow of graphs,

the Cahn-Hilliard equation with degenerate mobility and the Allen-Cahn/Cahn-Hilliard sys-

tem with degenerate mobility, which are all highly nonlinear and containing higher order

spatial derivatives. In such cases, one usually relies on fully implicit schemes. However,

fully implicit schemes have the disadvantage of difficult implementation and poor stability

properties, especially for fully nonlinear problems.

The surface diffusion and Willmore flow of graphs are both highly nonlinear fourth-order

PDEs. Smereka [16] developed a splitting technique for the surface diffusion of graphs, which

was effective to stabilize numerical schemes but it may affect the numerical accuracy. In [8],

a first order semi-implicit numerical scheme for the Willmore flow of graphs based on a finite

element method was presented. Various unconditionally stable first order [10, 11] temporal

discretization schemes have been developed for the Cahn-Hilliard equation, based on the

convex splitting technique. These schemes are only first order accurate, and for the Cahn-

Hilliard equation with constant mobility, it is easy to extend to higher order accurate ones by

the methods introduced in [21], but for the Cahn-Hilliard equation with degenerate mobility,

high order temporal schemes are very difficult to derive. There have been limited numerical

simulations works in the existing literature for efficient semi-implicit time marching method

for solving the Allen-Cahn/Cahn-Hilliard system, and it would therefore be desirable to

develop high order semi-implicit schemes for the system.

In this paper, we focus on high order semi-implicit time marching methods for PDEs with
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high order spatial derivatives and highly nonlinear, i.e. the stiff and non-stiff components

can not be well separated. Coupled with the LDG spatial discretization, we will construct a

semi-implicit fully discrete scheme for the surface diffusion and Willmore flow of graphs, the

Cahn-Hilliard equation with degenerate mobility and the Allen-Cahn/Cahn-Hilliard system,

which is high order accurate in both space and time. Obviously, it requires to solve system of

linear or nonlinear equations at each time step. Traditional iterative solution methods such

as Gauss-Seidel method suffers from slow convergence rates, especially for larger system. To

enhance the efficiency of the proposed approach, the multigrid solver is employed to solve

the algebraic equations at each time step.

The outline of this paper is as follows. In Section 2, we give a description of the high

order semi-implicit time marching method. Section 3 is devoted to the application of LDG

method and the semi-implicit time marching method for a series of highly nonlinear PDEs

with higher order spatial derivatives. Numerical examples are also presented, testing the

performance of the time marching method coupled with the LDG spatial discretization for

these PDEs, including the surface diffusion and Willmore flow of graphs, the Cahn-Hilliard

equation with degenerate mobility and the Allen-Cahn/Cahn-Hilliard system. Finally we

give concluding remarks in Section 4.

2 The high order semi-implicit time marching method

The surface diffusion and Willmore flow of graphs, the Cahn-Hilliard equation and the

Allen-Cahn/Cahn-Hilliard system are all PDEs of highly nonlinear, and the stiff and non-

stiff components for these problems can not be well separated. After the LDG spatial

discretization for these problems, we can get an ODEs of the form





du

dt
(t) = H(t, u(t), u(t)),

u(t0) = u0,

(2.1)

where m ∈ N, u(t) ∈ R
m, H : R × R

m × R
m → R

m and H ∈ C1(R × R
m × R

m), and the

dependence on the second argument of H is non-stiff, while the dependence on the third

argument is stiff. In this section, we will devote to developing a high order semi-implicit

time marching method to solve (2.1).
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2.1 The partitioned Runge-Kutta methods

Boscarino et al. presented a new class of semi-implicit Runge-Kutta methods in [2], which

was based on the partitioned Runge-Kutta methods. Therefore, in order to introduce the

semi-implicit Runge-Kutta method, we will first give a simple description for the partitioned

Runge-Kutta methods. We consider autonomous differential equations in the partitioned

form, 



dy

dt
(t) = F(y(t), z(t)),

dz

dt
(t) = G(y(t), z(t)),

(2.2)

where y(t) ∈ R
m, z(t) ∈ R

n, F : Rm×R
n → R

m, G : Rm×R
n → R

n and F , G ∈ C1(Rm×R
n),

which are sufficient to guarantee local existence and uniqueness of the solution to (2.2).

y(t0) = y0, z(t0) = z0 are the initial conditions.

Then we can express the partitioned Runge-Kutta methods by applying two different

Runge-Kutta methods as the following Butcher tableau:

ĉ Â

b̂T

c A

bT

In the above tableau, the pair (Â|b̂) determines explicit Runge-Kutta methods and (A|b)
defines implicit Runge-Kutta methods, which means that the first variable y(t) is treated

by explicit method and the second one z(t) is treated by implicit method. The Butcher

coefficients Â = (âi,j), A = (ai,j) ∈ R
s×s, b̂T = (b̂1, . . . , b̂s), b

T = (b1, . . . , bs), ĉ = (ĉ1, . . . , ĉs)

and c = (c1, . . . , cs) are constrained by order of accuracy and stability considerations.

For practical reasons, in order to simplify the computations, we consider that Â is a

strictly lower triangular matrix and A is a lower triangular matrix for the implicit part. In

addition, the coefficients satisfy:

ĉi =
i−1∑

j=1

âi,j , and ci =
i∑

j=1

ai,j, for 1 6 i 6 s.

By applying the partitioned Runge-Kutta time marching method, the solution of the au-

tonomous system (2.2) advanced from time tn to tn+1 = tn +∆t is given by




ki = F
(
yn + ∆t

i−1∑

j=1

âi,j kj , z
n + ∆t

i∑

j=1

ai,j lj

)
, 1 6 i 6 s,

li = G
(
yn + ∆t

i−1∑

j=1

âi,j kj, z
n + ∆t

i∑

j=1

ai,j lj

)
, 1 6 i 6 s,

(2.3)
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and we can calculate yn+1 and zn+1 as follows




yn+1 = yn + ∆t
s∑

i=1

b̂i ki,

zn+1 = zn + ∆t
s∑

i=1

bi li.

(2.4)

2.2 The semi-implicit Runge-Kutta methods

Now let us assume that for every i ∈ {1, . . . , s}, bi = b̂i in (2.4).

After an overview of the partitioned Runge-Kutta methods, we will pay special attention

to the high order semi-implicit Runge-Kutta methods in this subsection. Our goal is to

develop a high order semi-implicit time marching method for equation (2.1), but not fully

implicit scheme. To derive a semi-implicit Runge-Kutta scheme, we first rewrite the non

autonomous differential equation (2.1) as an autonomous system where we double the number

of variable, that is, 



d

dt

(
t

u(t)

)
=

(
1

H(t, u(t), u(t))

)
,

du(t)

dt
= H(t, u(t), u(t)).

(2.5)

This system now corresponds to an autonomous partitioned system (2.3), with y(t) =

(t, u(t)), F = (1,H) and z(t) = u(t), G = H and y(t0) = (t0, u0), z(t0) = u0 are the

initial conditions. Applying the partitioned Runge-Kutta scheme (2.3)-(2.4) to system (2.5),

we can get a high order semi-implicit Runge-Kutta method for (2.1): the first component of

the first equation (2.5) only gives

ĉi =
i∑

j=1

âi,j ,

whereas the second component of the first equation and the second equation of (2.5) are

identical, which gives the following semi-implicit scheme

ki = H
(
tn + ĉi∆t, u

n + ∆t
i−1∑

j=1

âi,j kj , u
n + ∆t

i∑

j=1

ai,j kj

)
, 1 6 i 6 s.

It is worth to mention here that ki is defined implicitely since ai,i 6= 0. Therefore, starting

from un, we give the algorithm to calculate un+1 in the following.

1. Set for i = 1, . . . , s,

Ui = un +∆t
i−1∑

j=1

âi,jkj ,
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Vi = un +∆t
i∑

j=1

ai,jkj . (2.6)

2. For i = 1, . . . , s, compute

ki = H(tn + ĉi∆t, Ui, Vi). (2.7)

3. Update the numerical solution un+1 as

un+1 = un +∆t
s∑

i=1

bi ki. (2.8)

Remark 2.1. Observe that the augmented system (2.5) is only used to construct the parti-

tioned Runge-Kutta method as for (2.2). Since the second component of the first equation

of (2.5) and the second equation of (2.5) are the same, we only evaluate H once at each stage

and li corresponds to the second component of ki, for any i ∈ {1, . . . , n}. Furthermore, since

bi = b̂i, we also have in (2.4) that zn+1 corresponds to the second component of yn+1.

By algorithm (2.6)-(2.8), the second variable of equation (2.1) is treated explicitly and the

third one is treated implicitly. Obviously, it is necessary to solve system of linear or nonlinear

algebraic equations (2.7) at each time step. The overall performance highly depends on

the performance of the solver. Traditional iterative solution methods such as Gauss-Seidel

method suffers from slow convergence rates, especially for large systems. To enhance the

efficiency of the high order semi-implicit time marching method, we will apply the multigrid

solver to solve algebraic equations (2.7) in this paper. And for a detailed description of the

multigrid solver, we refer the readers to Trottenberg et al. [17].

In this paper, we focus on a second order L-stable scheme and a third order one, which

were introduced in the context of hyperbolic systems with stiff relaxation in [14]. The second

order L-stable is given in the following form

0 0 0

1 1 0

1/2 1/2

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

with γ = 1 − 1/
√
2. While for the third order L-stable scheme, the corresponding Butcher
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tableau is given by

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0

0 −α α 0 0

1 0 1− α α 0

1/2 β η 1/2− β − η − α α

0 1/6 1/6 2/3

with α = 0.24169426078821, β = α/4 and η = 0.12915286960590.

3 Applications of LDG method and semi-implicit time

marching methods

In this section, we perform numerical experiments of the LDG scheme coupled with the pro-

posed high order semi-implicit time marching method for the surface diffusion and Willmore

flow of graphs, the Cahn-Hilliard equation and the Allen-Cahn/Cahn-Hilliard system. To

enhance the efficiency of the proposed approach, the multigrid solver is used to solve the

algebraic equations at each time step. We present some accuracy tests to show that the

proposed spatial and time discretization methods can achieve high order accuracy in both

space and time. All the computations are performed in double precision and on uniform

spatial meshes.

3.1 The surface diffusion and Willmore flow of graphs

In this subsection, we consider LDG spatial discretization coupled with high order semi-

implicit Runge-Kutta method (2.6)-(2.8) for the surface diffusion of graphs

∂u

∂t
+ ∇ ·

(
Q

(
I − ∇u⊗∇u

Q2

)
∇H

)
= 0 (3.9)

and Willmore flow of graphs

∂u

∂t
+ Q∇ ·

(
1

Q

(
I − ∇u⊗∇u

Q2

)
∇(QH)

)
− 1

2
Q∇ ·

(
H2

Q
∇u
)

= 0, (3.10)

where Q is the area element

Q =
√
1 + |∇u|2
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and H is mean curvature of the domain boundary Γ

H = ∇ ·
(∇u
Q

)
.

Xu and Shu [22] developed the LDG finite element methods for these two equations,

which were high order accurate in space. However, the forward Euler method was applied

for time discretization with a suitably small time step ∆t (∆t = O(∆x4)) for stability, which

was not efficient, especially for long time simulations. These two equations are both highly

nonlinear, which increases the difficulty of developing semi-implicit time marching method,

not to mention high order scheme. To achieve high order accuracy in time, we will apply

the proposed semi-implicit Runge-Kutta method (2.6)-(2.8) to these two equations.

After the LDG spatial discretization, we can apply our semi-implicit Runge-Kutta scheme

by writing the ODEs in the form (2.1) with u the component treated explicitly, v the com-

ponent treated implicitly and

HSD(t, u, v) = −∇ ·
(
QSD(u)

(
I − ∇u⊗∇u

QSD(u)2

)
∇HSD(u, v)

)

for surface diffusion of graphs (3.9), where

QSD(u) =
√
1 + |∇u|2, and HSD(u, v) = ∇ ·

( ∇v
QSD(u)

)
.

While for Willmore flow of graphs (3.10), H is given as

HW (t, u, v) = −QW (u)∇ ·
(

1

QW (u)

(
I − ∇u⊗∇u

QW (u)2

)
∇(QW (u)H2,W (u, v))

)

+
1

2
QW (u)∇ ·

(
H1,W (u)2

QW (u)
∇v
)
,

where QW (u) =
√
1 + |∇u|2,

H2,W (u, v) = ∇ ·
( ∇v
QW (u)

)
and H1,W (u) = ∇ ·

( ∇u
QW (u)

)
.

With the proposed space and time discretization methods, we will achieve schemes with high

order accuracy in both space and time with a larger time step, i.e. ∆t = O(∆x). Next we

will present some numerical experiments to validate the result.

Example 3.1. Accuracy test for surface diffusion of graphs

In this example, we consider the accuracy test for one-dimensional surface diffusion of

graphs. We test our method taking the exact solution

u(x, t) = 0.05 cos(t) sin(x) (3.11)
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for equation (3.9) with a source term f , which is a given function so that (3.11) is the exact

solution. The computational domain is [−π, π], with the periodic boundary condition. The

time step is taken as ∆t = 0.1∆x. When the piecewise P1 elements are used in the LDG

method, the second order semi-implicit Runge-Kutta method is used for time integration,

while for P2 approximation, we adopt the third order scheme. The L2 and L∞ errors and

the numerical orders of accuracy at time T = 0.5 are contained in Table 3.1, which shows

(k + 1)-th order of accuracy in both L2 and L∞ norms for P k approximation.

To demonstrate the optimal complexity (with respect to the grid size ∆x) of the multigrid

solver, we provide evidence that the multigrid convergence rate is independent of ∆x for P1

and P2 approximation, which is shown in Figure 3.1.

N L
2 error order L

∞ error order

16 7.31E-04 – 9.13E-04 –

P1 32 1.82E-04 2.00 2.30E-04 1.99

64 4.56E-05 2.00 5.76E-05 2.00

128 1.14E-05 2.00 1.44E-05 2.00

16 2.29E-05 – 2.69E-05 –

P2 32 2.87E-06 3.00 3.40E-06 2.99

64 3.59E-07 3.00 4.26E-07 3.00

128 4.48E-08 3.00 5.62E-08 2.92

Table 3.1: Accuracy test for surface diffusion of graphs (3.9) with the exact solution (3.11)

at time T = 0.5.

Example 3.2. Positive perturbation for surface diffusion of graphs

In this example, we consider the numerical solutions of the two-dimensional surface dif-

fusion of graphs (3.9) with the initial condition

u0(x, y) = 1 + 0.3min(1,max(0, 2− 5
√
x2 + y2)) (3.12)

and periodic boundary conditions. The computational domain is [−1, 1] × [−1, 1]. The P2

elements with 64× 64 cells and third order semi-implicit Runge-Kutta method are taken for

space and time discretization, respectively. The numerical solutions at time T = 0, 0.0001,

0.001 and 0.005 are presented in Figure 3.2, which shows statistically similar patterns in the

numerical solution as those in Xu and Shu [22], but with the advantage of taking larger time

step (∆t = O(∆x)) comparing with the explicit time marching method (∆t = O(∆x4)) in

[22].
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(a) P1 approximation
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(b) P2 approximation

Figure 3.1: Convergence rates of multigrid solver with P1 and P2 approximation for surface

diffusion of graphs.

We present in Figure 3.3 the time evolution of the L2 norm of the numerical solution and

its dissipation, i.e.
d

dt
ESD(t) = −ISD(t),

where the functional ESD(t) and the dissipation ISD(t) are defined by

ESD(t) =
1

2

∫

Ω

u2(t,x)dx, ISD(t) =

∫

Ω

H2(u(t,x))dx.

The results show that our numerical scheme is stable with a lager time step (∆t = O(∆x)).

Example 3.3. Accuracy test for Willmore flow of graphs

In this example, we consider the accuracy test for one-dimensional Willmore flow of

graphs. We test our scheme taking the exact solution

u(x, t) = 0.05 cos(t) sin(x) (3.13)

for equation (3.10) with a source term f , which is a given function so that (3.13) is the exact

solution. The computational domain is [−π, π], with the periodic boundary condition. The

time step is taken as ∆t = 0.1∆x. When the piecewise P1 elements are used in the LDG

method, the second order semi-implicit Runge-Kutta method is used for time integration,

while for P2 approximation, we adopt the third order scheme. The L2 and L∞ errors and

the numerical orders of accuracy at time T = 0.5 are contained in Table 3.2, which shows
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(c) T = 0.001
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(d) T = 0.005

Figure 3.2: Numerical solutions for the surface diffusion of graphs with the initial condition

(3.12).

(k + 1)-th order of accuracy in both L2 and L∞ norms for Pk approximation. Figure 3.4

shows the optimal complexity of the multigrid solver for the Willmore flow of graphs.

Example 3.4. Sine perturbation for Willmore flow of graphs

In this example, we consider the numerical solutions of the two-dimensional Willmore

flow of graphs (3.10) in the square domain Ω = [−2, 2]× [−2, 2] with the initial condition

u0(x, y) = 0.25 sin(πy)(0.25 sin(πx) + 0.5 sin(3πx)) (3.14)

and periodic boundary condition. We use P2 elements with 64 × 64 cells and third order
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Figure 3.3: Evolution of the L2 norm and the dissipation for surface diffusion of graphs

N L
2 error order L

∞ error order

16 7.31E-04 – 9.09E-04 –

P1 32 1.82E-04 2.00 2.28E-04 1.99

64 4.56E-05 2.00 5.66E-05 2.00

128 1.14E-05 2.00 1.39E-05 2.02

16 2.29E-05 – 2.69E-05 –

P2 32 2.87E-06 3.00 3.40E-06 2.99

64 3.59E-07 3.00 4.26E-07 2.99

128 4.49E-08 3.00 5.42E-08 2.98

Table 3.2: Accuracy test for Willmore flow of graphs (3.10) with the exact solution (3.13) at

time T = 0.5.

semi-implicit Runge-Kutta method to solve equation (3.10). The numerical solutions at

time T = 0, 0.0001, 0.001 and 0.01 are shown in Figure 3.5. With a larger time step

of ∆t = O(∆x), our scheme gets the same results comparing the numerical calculations

performed by Xu and Shu [22].

We present in Figure 3.6 the time evolution of the energy of the numerical solution and

its dissipation, and the functional EW (t) and the dissipation IW (t) are defined by

EW (t) =
1

2

∫

Ω

H2(t,x)Q(t,x)dx, IW (t) =

∫

Ω

(u(t,x))2

Q(t,x)
dx.

From Figure 3.6, we can see that our numerical scheme is stable numerically, i.e. the discrete

13
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Figure 3.4: Convergence rates of multigrid solver with P1 and P2 approximation for Willmore

flow of graphs.

energy is non-increasing about time.

3.2 The Cahn-Hilliard equation

In this subsection, we consider LDG spatial discretization coupled with high order semi-

implicit Runge-Kutta method (2.6)-(2.8) for the Cahn-Hilliard equation

∂u

∂t
= ∇ · [ b(u)∇ (−γ∆u+Ψ′(u)) ] , (3.15)

where Ψ(u) = 1

4
(u2 − 1)2, b(u) is the degenerate mobility, and γ is a positive constant.

Xia et al. [18] developed an LDG method for the Cahn-Hilliard equation and based on the

consideration of high order in spatial derivative, Guo and Xu [11] constructed a semi-implicit

convex splitting scheme for equation (3.15). The convex splitting scheme was unconditionally

stable with a first order temporal accuracy, and the additive Runge-Kutta method was

adopted in [11] to achieve high order accuracy in time for Cahn-Hilliard equation with

constant mobility, i.e. b(u) is constant. While for Cahn-Hilliard equation with degenerate

mobility, Guo and Xu introduced the linearization scheme and fully implicit scheme to

achieve high order temporal accuracy, but the implementation was difficult and the constraint

of time step was still hard for these two methods. It would therefore be desirable to develop

high order semi-implicit time marching method to solve the Cahn-Hilliard equation with

degenerate mobility.
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Figure 3.5: Numerical solutions for the Willmore flow of graphs with the initial condition

(3.14).

The convex splitting which was proposed in [11] is given in the following form:

un+1 − un

∆t
= ∇ ·

[
b(un)∇

(
−γ∆un+1 + (un+1)3 − un

) ]
. (3.16)

Based on the unconditionally stable convex splitting scheme (3.16), and to apply our semi-

implicit Runge-Kutta scheme, we rewrite the Cahn-Hilliard equation in the form of (2.1)

with u the component treated explicitly, v the component treated implicitly, and

HCH(t, u, v) = ∇ ·
[
b(u)∇

(
−γ∆v + v3 − u

) ]
. (3.17)
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Figure 3.6: Evolution of the energy and the dissipation for Willmore flow of graphs

Then we will get a stable semi-implicit scheme for the Cahn-Hilliard equation, which is high

order accurate in both space and time.

Example 3.5. Accuracy test for Cahn-Hilliard equation

We consider the Cahn-Hilliard equation (3.15) with b(u) = 1− u2, γ = 1 in the domain

Ω = [−π, π] and with periodic boundary condition. We test our method taking the exact

solution

u(x, t) = e−t sin(x) (3.18)

for equation (3.15) with a source term f , which is a given function so that make the exact

solution (3.18). The time step is taken as ∆t = 0.1∆x. When the piecewise P1 elements are

used in the LDG method, the second order semi-implicit Runge-Kutta method is used for

time integration, while for P2 approximation, we adopt the third order scheme. Table 3.3

presents the L2 and L∞ errors and the numerical orders of accuracy at time T = 0.5, which

shows (k+1)-th order of accuracy in both L2 and L∞ norms for Pk approximation with larger

time step comparing numerical methods in [18]. Figure 3.7 presents the optimal complexity

of the multigrid solver for the Cahn-Hilliard equation, which shows that the convergence is

independent of the grid size ∆x.

Example 3.6. Long time simulation for Cahn-Hilliard equation

In the square domain Ω = [0, 6.4]× [0, 6.4], we consider the Cahn-Hilliard equation (3.15)

16



N L
2 error order L

∞ error order

16 1.01E-02 – 1.26E-02 –

P1 32 2.52E-03 2.00 3.16E-03 2.00

64 6.31E-04 2.00 7.89E-04 2.00

128 1.57E-04 2.00 1.96E-04 2.00

16 3.18E-04 – 3.75E-04 –

P2 32 3.98E-05 3.00 4.72E-05 2.99

64 5.00E-06 2.99 5.98E-06 2.98

128 6.27E-07 3.00 7.54E-07 2.99

Table 3.3: Accuracy test for the Cahn-Hilliard equation (3.15) with the exact solution (3.18)

at time T = 0.5.
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Figure 3.7: Convergence rates of multigrid solver with P1 and P2 approximation for Cahn-

Hilliard equation.

with

Ψ′(u) = u3 − u, b(u) =
√

(1 + u)2(1− u)2 + γ, γ = 0.001,

and Neumann boundary condition, i.e.

∂u

∂ν
= b(u)∇ [−γ∆u+Ψ′(u)] · ν = 0, on ∂Ω.

The initial data is a random field of values that are uniformly distributed about the average

composition ū = −0.05, with amplitude 0.05.
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We use the P2 element and third order semi-implicit Runge-Kutta method (3.17), which

is based on the convex splitting scheme proposed in [11]. Figure 3.8 shows the contour lines

of the numerical solution in some selected time levels. We present in Figure 3.9 the time

evolution of the discrete energy of the numerical solution and its dissipation, i.e.

d

dt
ECH(t) = −ICH(t),

where the functional ECH and the dissipation ICH are given by the following form

ECH(t) =

∫

Ω

[ γ
2
|∇u|2 + Ψ(u)

]
dx, ICH(t) =

∫

Ω

b(u) |∇µ|2 dx,

with µ = −γ∆u+Ψ′(u). The results show that our numerical scheme is stable.

This long time simulation example shows the capability of the LDG method, the high

order semi-implicit temporal method and the multigrid solver for solving the Cahn-Hilliard

equation with degenerate mobility.

3.3 The Allen-Cahn/Cahn-Hilliard system

In this subsection, we consider LDG spatial discretization coupled with high order semi-

implicit time marching methods for the Allen-Cahn/Cahn-Hilliard system




∂u

∂t
= ∇ · [ b(u, v)∇ (Ψu(u, v) − γ∆u) ] ,

ρ
∂v

∂t
= −b(u, v) [Ψv(u, v) − γ∆v],

(3.19)

where

Ψu(u, v) = θ[ln(u+ v)− ln(1− (u+ v)) + ln(u− v)− ln(1− (u− v))] +
α

2
(1− 2u),

Ψv(u, v) = θ[ln(u+ v)− ln(1− (u+ v))− ln(u− v) + ln(1− (u− v))]− βv,

the degenerate mobility is

b(u, v) = u (1− u)

(
1

4
− v2

)
, (3.20)

and the free energy is given by

EACCH(u, v) =

∫

Ω

[γ
2

(
|∇u|2 + |∇v|2

)
+ Ψ(u, v)

]
dx. (3.21)

The homogeneous free energy Ψ(u, v) is

ΨACCH(u, v) = θ[Φ(u+ v) + Φ(u− v)] +
1

2
[αu(1− u)− βv2],

18



x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.85

0.66

0.47

0.28

0.09

-0.10

-0.28

-0.47

-0.66

-0.85

(a) T = 1

x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.84

0.65

0.47

0.28

0.09

-0.09

-0.28

-0.47

-0.65

-0.84

(b) T = 5

x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.84

0.65

0.47

0.28

0.10

-0.09

-0.28

-0.46

-0.65

-0.83

(c) T = 20

x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.83

0.65

0.46

0.27

0.09

-0.10

-0.28

-0.47

-0.65

-0.84

(d) T = 40

x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.83

0.65

0.46

0.28

0.09

-0.09

-0.28

-0.46

-0.65

-0.83

(e) T = 60

x

y

1 2 3 4 5 6

1

2

3

4

5

6 0.83

0.65

0.46

0.28

0.09

-0.09

-0.28

-0.46

-0.65

-0.83

(f) T = 100

Figure 3.8: The time evolution of the Cahn-Hilliard equation with P2 approximation on a

256× 256 mesh.
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Figure 3.9: Evolution of the energy and the dissipation for Cahn-Hilliard equation

where Φ(s) = s ln s+ (1− s) ln(1− s).

Here θ represents the temperature, γ is the coefficient of gradient energy and α, β are the

coefficients of nearest and next-nearest pairwise energetic interactions. To close the system,

we assume that the system (3.19) is supplemented with Neumann boundary conditions, i.e.

∂u

∂ν
=

∂v

∂ν
= b(u, v)∇ (−γ∆u+Ψu(u, v)) · ν = 0, on ∂Ω. (3.22)

Xia et al. [20] developed an LDG method for the system (3.19), and in which an explicit

time marching method was employed. However, the explicit method was not efficient because

of its severe time step restriction (∆t = O(∆x4)) for stability, especially for long time

simulations.

Here, we introduce the convex splitting method for time discretization coupled with LDG

spatial discretization, to obtain a fully-discrete energy stable LDG scheme for a particular

Allen-Cahn/Cahn-Hilliard system (θ = 0). The corresponding semi-discrete convex splitting

scheme is given as





un+1 − un

∆t
= ∇ · [b(un, vn)∇(Ψu(u

n, vn)− γ∆un+1)],

ρ
vn+1 − vn

∆t
= −b(un, vn)[Ψv(u

n, vn)− γ∆vn+1],

(3.23)

where

Ψu(u
n, vn) =

α

2
(1− 2un), Ψv(u

n, vn) = −βvn.
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We consider a subdivision Th of Ω with shape-regular elements K, and denote Γ the union

of the boundary faces of elements K ∈ Th, i.e. Γ = ∪K∈Th
∂K, and Γ0 = Γ\∂Ω. We set

Vh =
{
ϕ : ϕ|K ∈ Pk(K), ∀K ∈ Th

}
,

Σd
h =
{
Φ = (φ1, · · · , φd)

T : φl|K ∈ Pk(K), l = 1 · · · d, ∀K ∈ Th

}
,

where Pk(K) is the space of polynomials of degree at most k ≥ 0 on element K. Note that

functions in Vh and Σd
h are allowed to be completely discontinuous across element interfaces.

To define the LDG method for scheme (3.23), we first rewrite it as a first order system




un+1 − un

∆t
= ∇ · sn+1,

vn+1 − vn

∆t
= −b(un, vn)(−qn+1

2 + rn2 )/ρ,

with 



sn+1 = b(un, vn)pn+1,

pn+1 = ∇(−qn+1
1 + rn1 ),

qn+1
1 = γ∇ ·wn+1

1 ,

qn+1
2 = γ∇ ·wn+1

2 ,

wn+1
1 = ∇un+1,

wn+1
2 = ∇vn+1,

rn1 = Ψu(u
n, vn),

rn2 = Ψv(u
n, vn).

The LDG scheme for the semi-discrete scheme now consists in finding un+1, vn+1, qn+1
1 , qn+1

2 ,

rn1 , r
n
2 ∈ Vh and sn+1, pn+1, wn+1

1 , wn+1
2 ∈ Σd

h, such that, for all test functions ϕ1, ϕ2, ϕ3,

ϕ4, ϕ5, ϕ6 ∈ Vh and θ1, θ2, θ3, θ4 ∈ Σd
h, we have





∫

K

un+1 − un

∆t
ϕ1dK = −

∫

K

sn+1 · ∇ϕ1 dK +

∫

∂K

ŝ
n+1 · νϕ1 ds,

∫

K

vn+1 − vn

∆t
ϕ2dK = −

∫

K

b(un, vn)

ρ
(rn2 − qn+1

2 )ϕ2 dK,

(3.24)

with




∫

K

sn+1 · θ1 dK =

∫

K

b(un, vn)pn+1 · θ1 dK,

∫

K

pn+1 · θ2 dK = −
∫

K

(rn1 − qn+1
1 )∇ · θ2 dK +

∫

∂K

(r̂n1 − q̂n+1
1 )θ2 · ν ds,

(3.25)
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and




∫

K

qn+1
1 ϕ3 dK = −γ

∫

K

wn+1
1 · ∇ϕ3 dK + γ

∫

∂K

ŵ
n+1

1 · νϕ3 ds,

∫

K

qn+1
2 ϕ4 dK = −γ

∫

K

wn+1
2 · ∇ϕ4 dK + γ

∫

∂K

ŵ
n+1

2 · ν ϕ4 ds,

(3.26)

and
∫

K

wn+1
1 · θ3 dK = −

∫

K

un+1∇ · θ3dK +

∫

∂K

ûn+1 θ3 · ν ds, (3.27a)
∫

K

wn+1
2 · θ4 dK = −

∫

K

vn+1∇ · θ4 dK +

∫

∂K

v̂n+1 θ4 · ν ds, (3.27b)
∫

K

rn1 ϕ5 dK =

∫

K

Ψu(u
n, vn)ϕ5 dK, (3.27c)

∫

K

rn2 ϕ6 dK =

∫

K

Ψv(u
n, vn)ϕ6 dK. (3.27d)

Here ŝn+1, r̂n1 , q̂
n+1
1 , ŵn+1

1 , ŵn+1

2 , ûn+1 and v̂n+1 are so-called “numerical fluxes”. To complete

the definition of LDG method, we need to define these numerical fluxes.

Let e be an interior face shared by the “left” and “right” elements KL and KR and define

the normal vectors νL and νR on e pointing exterior to KL and KR, respectively. For our

purpose “left” and “right” can be uniquely defined for each face according to any fixed rule.

For example, we choose ν0 as a constant vector. The left element KL to the face e requires

that νL ·ν0 < 0, and the right one KR requires νL ·ν0 ≥ 0. If ψ is a function on KL and KR,

but possibly discontinuous across e, let ψL denote (ψ|KL
)|e and ψR denote (ψ|KR

)|e, the left

and right trace, respectively. It turns out that we can take the simple alternating numerical

fluxes to guarantee the energy stability, such as




ŝ
n+1 = sn+1

L ,

q̂n+1
1 = qn+1

1,R ,

r̂n1 = rn1,R,

ŵ
n+1

1 = wn+1

1,L ,

ûn+1 = un+1

R ,

ŵ
n+1

2 = wn+1

2,L ,

v̂n+1 = vn+1

R .

(3.28)

We remark that the choice for the fluxes (3.28) is not unique. Considering the compactness

of the stencil and the optimal accuracy, the crucial part is taking ŝ
n+1 and r̂n1 , q̂

n+1
1 from

opposite sides, ŵn+1

1 and ûn+1 from opposite sides, ŵn+1

2 and v̂n+1 from opposite sides.
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It is easy to show that the LDG scheme is mass conservative. Next, we will prove the

energy stability for fully-discrete LDG scheme (3.24) with the alternating numerical fluxes

and Neumann boundary condition.

Proposition 3.1 (Energy stability for the fully-discrete LDG scheme). The solution to the

LDG scheme (3.24) with the numerical fluxes (3.28) satisfies the energy stability

Eh(wn+1
1 ,wn+1

2 , un+1, vn+1) − Eh(wn
1 ,w

n
2 , u

n, vn) ≤ 0, (3.29)

where

Eh(w1,w2, u, v) =

∫

Ω

(γ
2
(w1 ·w1 +w2 ·w2) + Ψ(u, v)

)
dx.

Proof. For equations (3.27a) and (3.27b) of the LDG scheme, subtracting the equations at

time level tn from the equations at time level tn+1, respectively, we get

∫

K

Dw1 · θ3 dK = −
∫

K

Du∇ · θ3 dK +

∫

∂K

Dûθ3 · ν ds,
∫

K

Dw2 · θ4 dK = −
∫

K

Dv∇ · θ4 dK +

∫

∂K

Dv̂ θ4 · ν ds,

where Dw1 = wn+1
1 −wn

1 , Du = un+1 − un, Dw2 = wn+1
2 −wn

2 and Dv = vn+1 − vn. Then

taking the test functions θ3 =
γ

∆t
wn+1

1 and θ4 =
γ

∆t
wn+1

2 , we obtain





γ

∆t

∫

K

Dw1 ·wn+1
1 dK = − γ

∆t

∫

K

Du∇ ·wn+1
1 dK +

γ

∆t

∫

∂K

Dûwn+1
1 · ν ds,

γ

∆t

∫

K

Dw2 ·wn+1
2 dK = − γ

∆t

∫

K

Dv∇ ·wn+1
2 dK +

γ

∆t

∫

∂K

Dv̂wn+1
2 · ν ds.

(3.30)

For other equations in scheme (3.24), we take the test functions as

{
ϕ1 = rn1 − qn+1

1 , ϕ2 = rn2 − qn+1
2 , θ1 = −pn+1, θ2 = sn+1

ϕ3 = 1

∆t
Du, ϕ4 = 1

∆t
Dv, ϕ5 = − 1

∆t
Du, ϕ6 = − 1

∆t
Dv.
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Then we have,




1

∆t

∫

K

Du (rn1 − qn+1
1 ) dK = −

∫

K

sn+1 · ∇(rn1 − qn+1
1 ) dK +

∫

∂K

ŝ
n+1 · ν(rn1 − qn+1

1 ) ds,

1

∆t

∫

K

Dv(rn2 − qn+1
2 ) dK = −

∫

K

b(un, vn)

ρ
(rn2 − qn+1

2 )2 dK,

−
∫

K

sn+1 · pn+1 dK = −
∫

K

b(un, vn)pn+1 · pn+1 dK,

∫

K

pn+1 · sn+1 dK = −
∫

K

(rn1 − qn+1
1 )∇ · sn+1 dK +

∫

∂K

(r̂n1 − q̂n+1
1 )sn+1 · ν ds,

1

∆t

∫

K

qn+1
1 Du dK = − γ

∆t

∫

K

wn+1
1 · ∇Du dK +

γ

∆t

∫

∂K

ŵ
n+1

1 · νDu ds,

1

∆t

∫

K

qn+1
2 Dv dK = − γ

∆t

∫

K

wn+1
2 · ∇Dv dK +

γ

∆t

∫

∂K

ŵ
n+1

2 · νDv ds,

− 1

∆t

∫

K

rn1 Du dK = − 1

∆t

∫

K

Ψu(u
n, vn)Du dK,

− 1

∆t

∫

K

rn2 Dv dK = − 1

∆t

∫

K

Ψv(u
n, vn)Dv dK.

(3.31)

By adding equations (3.30)-(3.31), and after a careful calculation we obtain

γ

∆t

∫

Ω

(
Dwn+1

1 ·wn+1
1 +Dwn+1

2 ·wn+1
2

)
dx+

∫

Ω

b(un, vn)

ρ

(
(rn2 − qn+1

2 )2 + pn+1 · pn+1
)
dx

+
1

∆t

∫

Ω

Ψu(u
n, vn)Dudx− 1

∆t

∫

Ω

Ψv(u
n, vn)Dvdx = 0.

with the help of the alternating numerical fluxes (3.28) and the Neumann bounday condition

(3.22). Notice that

Ψu(u
n, vn)Du−Ψv(u

n, vn)Dv =
α

2
(1− 2un)Du− βvnDv

=Ψ(un+1, vn+1)−Ψ(un, vn) +
α

2
(un+1 − un)2 +

β

2
(vn+1 − vn)2

Therefore we have

γ

∆t

∫

Ω

(
Dwn+1

1 ·wn+1
1 +Dwn+1

2 ·wn+1
2

)
dx+

1

∆t

∫

Ω

(Ψ(un+1, vn+1)−Ψ(un, vn))dx ≤ 0,

which implies the energy stability result.
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3.3.1 Algorithm flowchart and the multigrid solver

Given un, vn and qn1 , the algorithm to get un+1, vn+1 and qn+1
1 is as follows

1. We choose a local basis in cellK, then rn1 , r
n
2 , w

n+1
1 , wn+1

2 , qn+1
2 , pn+1, sn+1 can be elim-

inated from equations (3.27c), (3.27d), (3.27a), (3.27b), (3.26) and (3.25) respectively,

by simply inverting a small mass matrix in each case.

2. We get a system of 3 coupled linear equations for {un+1, vn+1, qn+1
1 }





un+1 = L1(q
n+1
1 , un, vn),

qn+1
1 = L2(u

n+1),

vn+1 = L3(v
n+1, un, vn).

(3.32)

3. We solve the system of nonlinear equations (3.32) at each time step by multigrid solver

and get un+1, vn+1 and qn+1
1 .

Remark 3.7. Observe here that we keep the variable q1 related to u since the evolution

equation for u contains fourth order spatial derivatives, whereas the evolution equation for

v has second order spatial derivatives. Hence the system (u, v, q1) now contains only second

order derivatives.

3.3.2 The spectral deferred correction method

For the Allen-Cahn/Cahn-Hilliard system with constant mobility, i.e. b(u, v) is constant,

we can apply the semi-implicit SDC method based on the convex splitting scheme (3.23) to

achieve high order temporal accuracy. An advantage of the SDC method is that it is a one

step method and can be constructed easily and systematically for any order of accuracy. For

convenience, the convex splitting scheme (3.23) can be rewritten as



un+1 = un +∆t(FS(u

n+1) + FN(u
n, vn)),

vn+1 = vn +∆t(GS(v
n+1) +GN(u

n, vn)),
(3.33)

where FS, GS represent the implicit part and FN , GN represent the explicit part of the

convex splitting scheme, which means



FS(u) = −γ∆2u, FN(u, v) = ∆(Ψu(u, v)),

GS(v) = γ∆v, GN(u, v) = −Ψv(u, v).
(3.34)
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Then the semi-implicit SDC method can be applied iteratively to achieve high order temporal

accuracy. For a detailed description of the SDC method as well as their implementation and

applications, we refer the readers to [9, 13, 19, 21].

3.3.3 The high order semi-implicit Runge-Kutta method

For the Allen-Cahn/Cahn-Hilliard system with degenerate mobility, i.e. b(u, v) is not con-

stant, we know that the stiff and non-stiff components can not be well separated. In this

case, the semi-implicit SDC method is not efficient any more. Therefore, we adopt the high

order semi-implicit Runge-Kutta method. And to apply our semi-implicit scheme (2.6)-(2.8),

we write the Allen-Cahn/Cahn-Hilliard system (3.19) in the form of (2.1) with u = (u1, u2)

the component treated explicitly, v = (v1, v2) the component treated implicitly and

HACCH(t, u, v) =





∇ · [b(u1, u2)∇(Ψu(u1, u2)− γ∆v1)],

− 1

ρ
b(u1, u2)[Ψv(u1, u2)− γ∆v2].

(3.35)

The semi-implicit scheme is based on the convex splitting scheme (3.23), high order

accurate in time and expected to be stable with a larger time step comparing with explicit

methods, which is very efficient, especially for long time simulations in multi-dimensional

case.

Remark 3.8. The energy stabilities of these semi-discrete LDG schemes were proved for

surface diffusion and Willmore flow of graphs [22], Cahn-Hilliard equation [18] and Allen-

Cahn/Cahn-Hilliard system [20]. As we know, based on a convex splitting principle of the

energy, the unconditional energy stability of the fully-discrete LDG scheme for Cahn-Hilliard

equation was presented in [11], and for Allen-Cahn/Cahn-Hilliard system, the corresponding

energy stability is given in Proposition 3.1. While for the fully-discrete LDG schemes for

surface diffusion and Willmore flow of graphs, these two equations are highly nonlinear,

therefore it is difficult to develop energy stable fully-discrete LDG schemes based on some

splitting technique, which will be left to our future work.

Example 3.9. We consider the Allen-Cahn/Cahn-Hilliard system (3.19) with Ψ(u, v) =

u−u2− 1

2
v2, b(u, v) = (1+u2)(1+v2) in the domain Ω = [0, 4π] and with periodic boundary

condition. We test our method taking the exact solution

u(x, t) = e−0.5t sin(x), v(x, t) = e−t cos(0.5x) (3.36)
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for equation (3.19) with a source term f , which is a given function so that (3.36) is the exact

solution. When the piecewise P1 elements are used in the LDG method, the second order

semi-implicit Runge-Kutta method is used for time integration, while for P2 approximation,

we adopt the third order scheme. The L2 and L∞ errors and the numerical orders of accuracy

at time T = 0.5 are contained in Table 3.4, which shows the (k + 1)-th order of accuracy in

both L2 and L∞ norms for Pk approximation. Figure 3.10 shows the near optimal complexity

of the multigrid solver for the Allen-Cahn/Cahn-Hilliard system, which means that the

convergence is nearly independent of the grid size ∆x.

u v

N L
2 error order L

∞ error order L
2 error order L

∞ error order

16 7.61E-02 – 5.82E-02 – 1.91E-02 – 9.79E-03 –

P1 32 1.85E-02 2.03 1.57E-02 1.89 4.28E-03 2.16 2.39E-03 2.03

64 4.59E-03 2.01 3.99E-03 1.98 1.03E-03 2.04 6.12E-04 1.96

128 1.14E-03 2.00 1.00E-03 2.00 2.57E-04 2.01 1.53E-04 1.99

16 4.70E-03 – 4.13E-03 – 5.77E-04 – 3.84E-04 –

P2 32 5.80E-04 3.01 4.91E-04 3.07 7.54E-05 2.93 4.84E-05 2.99

64 7.27E-05 2.99 6.14E-05 2.99 1.02E-05 2.87 6.27E-06 2.94

128 9.38E-06 2.96 7.94E-06 2.95 1.53E-06 2.74 8.56E-07 2.87

Table 3.4: Accuracy test for the Allen-Cahn/Cahn-Hilliard system (3.19) with the exact

solution (3.36) at time T = 0.5.

Example 3.10. To demonstrate the theoretical result of unconditional energy stability for

the Allen-Cahn/Cahn-Hilliard system, we present an example here. We consider the system

(3.19) in Ω = [0, 2π] × [0, 2π] with Neumann boundary conditions (3.22), γ = 1, θ = 0,

α = 1, β = 1, ρ = 1 with degenerate and constant mobility respectively. For the tests we

take the exact solution of

u(x, y, t) = e−2t cos(x) cos(y), v(x, y, t) =
1

2
cos(x) cos(y), (3.37)

with the source terms f(x, y, t) and g(x, y, t), respectively. We consider the following cases:

1. With degenerate mobility b(u, v) = (1− u2)(0.25− v2),

2. With constant mobility b = 0.25, which is the maximum of the degenerate mobility.
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Figure 3.10: Convergence rates of multigrid solver with P1 and P2 approximation for Allen-

Cahn/Cahn-Hilliard system.

To obtain high order accuracy scheme in both space and time, we choose Pk approxi-

mation for spatial discretization, semi-implicit SDC method and semi-implicit Runge-Kutta

method for constant mobility and degenerate mobility, respectively. Table 3.5 and Table 3.6

show the L2 and L∞ errors and numerical orders of accuracy at time T = 0.5. We can see

that these two cases with Pk approximation give (k + 1)-th order of accuracy.

We present in Figure 3.11 and Figure 3.12 the time evolution of the energy EACCH(t)

(which is defined in (3.21)) of the numerical solution and its dissipation, and the dissipation

IACCH(t) is defined by

IACCH(t) =

∫

Ω

b(u, v)

(
|∇µ1|2 +

1

ρ
(µ2)

2

)
dx,

with µ1 = −γ∆u + Ψu and µ2 = −γ∆v + Ψv, which show that our schemes are stable

numerically.

Finally, we remark that the LDG spatial discretization does allow for more flexibility

than that of the finite difference method in several other ways. LDG methods are a class of

finite element methods, which can handle the irregular computational domain and complex

boundary conditions easily comparing with the finite difference methods. Meanwhile, since

the basis functions can be completely discontinuous, discontinuous Galerkin methods have

the flexibility which is not shared by typical finite element methods, such as the allowance

of arbitrary triangulation with hanging nodes, complete freedom in changing the polynomial
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u v

N L
2 error order L

∞ error order L
2 error order L

∞ error order

16 2.20E-02 – 1.52E-02 – 1.10E-02 – 8.42E-03 –

P1 32 5.45E-03 2.01 3.81E-03 2.00 2.72E-03 2.01 2.05E-03 2.03

64 1.35E-03 2.01 9.46E-04 2.01 6.76E-04 2.01 4.88E-04 2.07

16 1.33E-03 – 1.31E-03 – 6.68E-04 – 6.72E-04 –

P2 32 1.68E-04 2.99 1.60E-04 3.03 8.40E-05 2.99 8.03E-05 3.06

64 2.10E-05 2.99 1.98E-05 3.01 1.05E-05 2.99 9.91E-06 3.01

Table 3.5: Accuracy test for the Allen-Cahn/Cahn-Hilliard system (3.19) with degenerate

mobility at time T = 0.5 in 2D.

u v

N L
2 error order L

∞ error order L
2 error order L

∞ error order

16 2.23E-02 – 1.51E-02 – 1.11E-02 – 8.22E-03 –

P1 32 5.47E-03 2.02 3.80E-03 1.99 2.73E-03 2.02 1.95E-03 2.07

64 1.35E-03 2.01 9.49E-04 2.00 6.76E-04 2.01 4.77E-04 2.03

16 1.33E-03 – 1.30E-03 – 6.68E-04 – 6.70E-04 –

P2 32 1.68E-04 2.99 1.60E-04 3.02 8.40E-05 2.99 8.03E-05 3.06

64 2.10E-05 2.99 1.98E-05 3.01 1.05E-05 2.99 9.91E-06 3.01

Table 3.6: Accuracy test for the Allen-Cahn/Cahn-Hilliard system (3.19) with constant mo-

bility at time T = 0.5 in 2D.

degrees in each element independent of that in the neighbors (p-adaptivity), and extremely

local data structure (elements only communicate with immediate neighbors regardless of the

order of accuracy of the scheme) and the resulting embarrassingly high parallel efficiency.

4 Conclusion

In this paper, we have explored a high order semi-implicit Runge-Kutta method for solving

the ODEs resulting from a local discontinuous Galerkin spatial discretization to highly non-

linear PDEs containing higher order spatial derivatives, which consist of the surface diffusion

and Willmore flow of graphs, the Cahn-Hilliard equation and the Allen-Cahn/Cahn-Hilliard

system. With the proposed semi-implicit temporal method, the severe time step restriction

of explicit methods can be relaxed and we can achieve high order temporal accuracy with a
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Figure 3.11: Evolution of the energy and the dissipation for Allen-Cahn/Cahn-Hilliard system

with degenerate mobility in 2D.
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Figure 3.12: Evolution of the energy and the dissipation for Allen-Cahn/Cahn-Hilliard system

with constant mobility in 2D.

larger time step. However, the equations at the implicit time level are linear or nonlinear,

and to enhance the efficiency of the solver, we employed the linear and nonlinear multi-

grid solver to solve algebraic equations, respectively. In addition, we have developed a first

order fully discrete LDG scheme for the Allen-Cahn/Cahn-Hilliard system and proved the

unconditional energy stability. Numerically we show the high order accuracy of the proposed
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schemes, in both time and space, with a larger time step. Also, the long time simulations

show the capacity and efficiency of the proposed temporal and spatial methods.
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