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Abstract

In this work, we develop a fully implicit Hybrid High-Order algorithm for the Cahn–Hilliard
problem in mixed form. The space discretization hinges on local reconstruction operators from hy-
brid polynomial unknowns at elements and faces. The proposed method has several assets: (i) It
supports fairly general meshes possibly containing polygonal elements and nonmatching interfaces;
(ii) it allows arbitrary approximation orders; (iii) it has a moderate computational cost thanks to
the possibility of locally eliminating element-based unknowns by static condensation. We perform
a detailed stability and convergence study, proving optimal convergence rates in energy-like norms.
Numerical validation is also provided using some of the most common tests in the literature.
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1 Introduction

Let Ω Ă Rd, d “ 2, denote a bounded connected convex polygonal domain with boundary BΩ, and
let tF ą 0. The Cahn–Hilliard problem, originally introduced in [10, 11] to model phase separation
in a binary alloy, consists in finding the order-parameter c : Ω ˆ r0, tFs Ñ R and chemical potential
w : Ωˆ r0, tFs Ñ R such that

dtc´4w “ 0 in Ωˆ p0, tFs, (1a)

w “ Φ1pcq ´ γ24c in Ωˆ p0, tFs, (1b)

cp0q “ c0 in Ω, (1c)

Bnc “ Bnw “ 0 on BΩˆ p0, tFs, (1d)

where c0 P H
2pΩqXL2

0pΩq denotes the initial datum, γ ą 0 the interface parameter (usually taking small
values), and Φ the free-energy such that

Φpcq :“
1

4
p1´ c2q2. (2)

Relevant extensions of problem (1) (not considered here) include the introduction of a flow which requires,
in particular, to add a convective term in (1a); cf., e.g., [5, 7, 8, 29–31].

The discretization of the Cahn–Hilliard equation (1) has been considered in several works. Different
aspects of standard finite element schemes have been studied, e.g., in [14, 21, 22]; cf. also references
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therein. Mixed finite elements are considered in [24]. In [35], the authors study a nonconforming method
based on C0 shape functions for the fourth-order primal problem obtained by plugging (1b) into (1a).
Discontinuous Galerkin (dG) methods have also received extensive attention. We can cite here [36],
where a local dG method is proposed for a Cahn–Hilliard system modelling multi-component alloys, and
a stability analysis is carried out; [23], where optimal error estimates are proved for a dG discretization
of the Cahn–Hilliard problem in primal form; [30], which contains optimal error estimates for a dG
method based on the mixed formulation of the problem including a convection term; [26], where a
multi-grid approach is proposed for the solution of the systems of algebraic equations arising from a
dG discretization of the Cahn–Hilliard equation. In all of the above references, standard meshes are
considered. General polygonal meshes, on the other hand, are supported by the recently proposed C1-
conforming Virtual Element (VE) method of [4] for the problem in primal formulation; cf. also [6] for VE
methods with arbitrary regularity. Therein, the convergence analysis is carried out under the assumption
that the discrete order-parameter satisfies an C0pL8q-like a priori bound.

In this work, we develop and analyze a fully implicit Hybrid High-Order (HHO) algorithm for problem (1)
where the space discretization is based on the HHO(k`1q variation proposed in [12] of the method of [19].
The method hinges on hybrid degrees of freedom (DOFs) located at mesh elements and faces that are
polynomials of degree ď pk ` 1q and ď k, respectively. The nonlinear term in (1b) is discretized by
means of element unknowns only. For the second-order diffusive operators in (1a) and (1b), on the other
hand, we rely on two key ingredients devised locally inside each element: (i) A potential reconstruction
obtained from the solution of (small) Neumann problems and (ii) a stabilization term penalizing the
lowest-order part of the difference between element- and face-based unknowns. See also [13, 33, 34] for
related methods for second-order linear diffusion operators, each displaying a set of distinctive features.
The global discrete problem is then obtained by a standard element-by-element assembly procedure.
When using a first-order (Netwon-like) algorithm to solve the resulting system of nonlinear algebraic
equations, element-based unknowns can be statically condensed. As a result, the only globally coupled
unknowns in the linear subproblems are discontinuous polynomials of degree ď k on the mesh skeleton
for both the order-parameter and the chemical potential. With a backward Euler scheme to march in
time, the C0pH1q-like error on the order-parameter and the L2pH1q-like error on the chemical potential
are proved to optimally converge as phk`1 ` τq (with h and τ denoting, respectively, the spatial and
temporal mesh sizes) provided the solution has sufficient regularity.

The proposed method has several assets: (i) It supports general meshes possibly including polygonal
elements and nonmatching interfaces (resulting, e.g., from nonconforming mesh refinement); (ii) it allows
one to increase the spatial approximation order to accelerate convergence in the presence of (locally)
regular solutions; (iii) it is (relatively) inexpensive. The number of globally coupled spatial unknowns for
our method scales as 2 cardpFhqpk ` 1q (with cardpFhq denoting the number of mesh faces) as opposed
to cardpThqpk` 3qpk` 2q (with cardpThq denoting the number of mesh elements) for a mixed dG method
delivering the same order of convergence (i.e., based on broken polynomials of degree k`1). Additionally,
thanks to the underlying fully discontinuous polynomial spaces, the proposed method can accomodate
abrupt variations of the unknowns in the vicinity of the interface between phases.

Our analysis adapts the techniques originally developed in [30] in the context of dG methods. Therein,
the treatment of the nonlinear term in (1b) hinges on C0-in-time a priori estimates for various (semi-
)norms of the discrete order-parameter. Instrumental in proving these estimates are discrete functional
analysis results, including discrete versions of Agmon’s and Gagliardo–Nirenberg–Poincaré’s inequalities
for broken polynomial functions on quasi-uniform matching simplicial meshes. Adapting these tools
to hybrid polynomial spaces on general meshes entails several new ideas. A first key point consists in
defining appropriate discrete counterparts of the Laplace and Green’s operators. To this end, we rely on
a suitably tailored L2-like hybrid inner product which guarantees stability estimates for the former and
optimal approximation properties for the latter. Another key point consists in replacing the standard
nodal interpolator used in the proofs of [30, Lemmas 2.2 and 2.3], by the L2-orthogonal projector which,
unlike the former, is naturally defined for meshes containing poygonal elements. We show that this
replacement is possible thanks to the W s,p-stability and approximation properties of the L2-orthogonal
projector on broken polynomial spaces recently presented in a unified setting in [15]; cf. also references
therein for previous results on this subject.

The material is organized as follows: In Section 2 we introduce the notation for space and time meshes
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and recall some key results on broken polynomial spaces; in Section 3, we introduce hybrid polynomial
spaces and local reconstructions, and state the discrete problem; in Section 4 we carry out the stability
analysis of the method, while the convergence analysis is detailed in Section 5; Section 6 contains an
extensive numerical validation of the proposed algorithm; finally, in Appendix A we give proofs of the
discrete functional analysis results used to derive stability bounds and error estimates.

2 Discrete setting

In this section we introduce the discrete setting and recall some basic results on broken polynomial
spaces.

2.1 Space and time meshes

We recall here the notion of admissible spatial mesh sequence from [17, Chapter 1]. Denote by H Ă R`˚ a
countable set of spatial meshsizes having 0 as its unique accumulation point. We consider h-refined mesh
sequences pThqhPH where, for all h P H, Th is a finite collection of nonempty disjoint open polygonal
elements T of boundary BT such that Ω “

Ť

TPTh T and h “ maxTPTh hT with hT standing for the
diameter of the element T .

A face F is defined as a planar closed connected subset of Ω with positive pd´1q-dimensional Hausdorff
measure and such that (i) either there exist T1, T2 P Th such that F Ă BT1 X BT2 and F is called an
interface or (ii) there exists T P Th such that F Ă BT X BΩ and F is called a boundary face. Mesh
faces are collected in the set Fh and the diameter of a face F P Fh is denoted by hF . For all T P Th,
FT :“ tF P Fh | F Ă BT u denotes the set of faces Ă BT and, for all F P FT , nTF is the unit normal to
F pointing out of T . Symmetrically, for all F P Fh, we denote by TF the set of one (if F P Fb

h ) or two
(if F P F i

h) elements sharing F .

Assumption 1 (Admissible spatial mesh sequence). We assume that, for all h P H, Th admits a
matching simplicial submesh Th and there exists a real number % ą 0 independent of h such that, for
all h P H, the following properties hold: (i) Shape regularity: For all simplex S P Th of diameter hS
and inradius rS, %hS ď rS; (ii) contact-regularity: For all T P Th, and all S P Th such that S Ă T ,
%hT ď hS.

To discretize in time, we consider a uniform partition ptnq0ďnďN of the time interval r0, tFs with t0 “ 0,
tN “ tF and tn ´ tn´1 “ τ for all 1 ď n ď N (the analysis can be adapted to nonuniform partitions).
For any sufficiently regular function of time ϕ taking values in a vector space V , we denote by ϕn P V
its value at discrete time tn, and we introduce the backward differencing operator δt such that, for all
1 ď n ď N ,

δtϕ
n :“

ϕn ´ ϕn´1

τ
P V. (3)

In what follows, we often abbreviate by a À b the inequality a ď Cb with a and b positive real numbers
and C ą 0 a generic constant which can depend on Ω, %, γ, tF, and the polynomial degree, but is
independent of both the meshsize h and the time step τ . Also, for a subset X Ă Ω, we denote by p¨, ¨qX
and }¨}X the usual L2pXq-inner product and norm, with the convention that we omit the index if X “ Ω.
The same notation is used for the vector space L2pXqd.

2.2 Basic results on broken polynomial spaces

The proposed method is based on local polynomial spaces on mesh elements and faces. Let an integer
l ě 0 be fixed. Let U be a subset of Rd, HU the affine space spanned by U , dU its dimension, and
assume that U has a non-empty interior in HU . We denote by PlpUq the space spanned by dU -variate
polynomials on HU of total degree ď l and by πlU the L2-orthogonal projector onto this space. In the
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following sections, the set U will represent a mesh element or face. The space of broken polynomial
functions on Th of degree ď l is denoted by PlpThq, and πlh is the corresponding L2-orthogonal projector.

We next recall some functional analysis results that hold for broken polynomial spaces.

Remark 1 (Validity in higher space dimensions). The results reported in the rest of this section are not
specific to the dimension d “ 2, and can be extended to higher space dimensions provided the notion of
admissible mesh sequence from the previous section is generalized as in [17, Chapter 1] (this essentially
entails replacing “polygonal” by “polytopal” and “planar” by “hyperplanar”).

The following discrete trace and inverse inequalities on local polynomial spaces are proved in [17, Chap-
ter 1] (cf. in particular Lemmas 1.44 and 1.46): There exists a real number C ą 0 depending on % and
l, but independent of h, such that, for all T P Th,

@v P PlpT q, }v}F ď Ch
´1{2

F }v}T @F P FT , (4)

and
@v P PlpT q, }∇v}T ď Ch´1

T }v}T . (5)

We will also need the following local direct and reverse Lebesgue embeddings (cf. [15, Lemma 5.1]): For
all q, p P r1,`8s,

@v P PlpT q, C´1}v}LqpT q ď h
d
q´

d
p

T }v}LppT q ď C}v}LqpT q, (6)

with real number C ą 0 depending on l, %, q, and m but independent of h.

We next recall some key results for the local L2-orthogonal projector whose proofs can be found in [15,
Appendix A.2]. For an open set U of Rd, s P N and p P r1,`8s, we define the seminorm |¨|W s,ppUq as

@v PW s,ppUq , |v|W s,ppUq :“
ÿ

αPNN , |α|`1“s

}Bαv}LppUq,

where |α|`1 “ α1 ` . . . ` αN and Bα “ Bα1
1 ¨ ¨ ¨ B

αN

N . The L2-orthogonal projector is W s,p-stable: For all
s P t1, . . . , l ` 1u and all p P r1,`8s, it holds for all T P Th,

@v PW s,ppT q, |πlT v|W s,ppT q ď C|v|W s,ppT q, (7)

with real number C ą 0 depending on %, l, s, and p but independent of h. Additionally, the following
optimal approximation properties hold: For all s P t1, . . . , l ` 1u, all p P r1,`8s, all m P t0, . . . , su, it
holds for all T P Th,

@v PW s,ppT q, |v ´ πlT v|Wm,ppT q ` h
1{p

T |v ´ π
l
T v|Wm,ppFT q ď Chs´mT |v|W s,ppT q, (8)

where Wm,ppFT q denotes the set of functions that belong to Wm,ppF q for all F P FT and the real number
C ą 0 depends on %, l, s, p, and m but is independent of h. Finally, for all F P Fh, it holds with C ą 0
depending on % and l but not on h,

@v P H1pF q, }v ´ πlF v}F ď Ch|v|H1pF q. (9)

In the proofs of Lemmas 7 and 13 below, we will make use of the following global inverse inequalities,
which require mesh quasi-uniformity.

Proposition 2 (Global inverse inequalities for Lebesgue norms of broken polynomials). In addition to
Assumption 1, we assume that the mesh is quasi-uniform, i.e.,

@T P Th, %h ď hT . (10)

Then, for all polynomial degree l ě 0 and all 1 ď p ď q ď `8, it holds

@wh P PlpThq, }wh}LqpΩq À Ch
d
q´

d
p }wh}LppΩq, (11)

with real number C ą 0 depending on Ω, %, l, p, and q, but not on h.
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Proof. Let wh P PlpThq. We start by proving that, for all p P r1,`8s,

@wh P PlpThq, }wh}L8pΩq À h´
d
p }wh}LppΩq, (12)

which corresponds to (11) with q “ `8. By the local reverse Lebesgue embeddings (6), there is C ą 0
depending on % but independent of h such that

@T P Th, }wh}L8pT q ď Ch
´ d

p

T }wh}LppT q ď Cρ´
d
ph´

d
p }wh}LppΩq,

where we have used the mesh quasi-uniformity assumption (10) to conclude. Inequality (12) follows
observing that }wh}L8pΩq “ maxTPTh }wh}L8pT q. Let us now turn to the case 1 ď q ă `8. We have

}wh}
q
LqpΩq ď }wh}

q´p
L8pΩq}wh}

p
LppΩq À

´

h
d
q´

d
p }wh}LppΩq

¯q

,

where the conclusion follows using (12).

3 The Hybrid High-Order method

In this section we define hybrid spaces and state the discrete problem.

3.1 Hybrid spaces

The discretization of the diffusion operator hinges on a variation of the original HHO method of [19]
introduced in [12] and using elements DOFs of degree ď pk ` 1q instead of k (cf. Remark 15 for further
insight on this choice). The global discrete space is defined as

Ukh :“

˜

ą

TPTh

Pk`1pT q

¸

ˆ

˜

ą

FPFh

PkpF q

¸

. (13)

The restriction of Ukh to an element T P Th is denoted by UkT . For a generic collection of DOFs in
Ukh, we use the underlined notation vh “ ppvT qTPTh , pvF qFPFh

q and, for all T P Th, we denote by
vT “ pvT , pvF qFPFT

q its restriction to UkT . Also, to keep the notation compact, we denote by vh (no
underline) the function in Pk`1pThq such that

vh|T “ vT @T P Th.

In what follows, we will also need the zero-average subspace

Ukh,0 :“
!

vh P U
k
h | pvh, 1q “ 0

)

.

The interpolator Ikh : H1pΩq Ñ Ukh is such that, for all v P H1pΩq,

pIkhvqT :“ πk`1
T v @T P Th, pIkhvqF :“ πkF v @F P Fh. (14)

We define on Ukh the seminorm }¨}1,h such that

}vh}
2
1,h :“ }∇hvh}

2 ` |vh|
2
1,h, |vh|

2
1,h :“ s1,hpvh, vhq, (15)

where ∇h denotes the usual broken gradient on H1pThq and the stabilization bilinear form s1,h on

Ukh ˆ U
k
h is such that

s1,hpvh, zhq :“
ÿ

TPTh

ÿ

FPFT

h´1
F pπ

k
F pvF ´ vT q, π

k
F pzF ´ zT qqF . (16)
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Using the stability and approximation properties of the L2-orthogonal projector expressed by (7)–(8),
one can prove that Ikh is H1-stable:

@v P H1pΩq, }Ikhv}1,h À }v}H1pΩq. (17)

The following Friedrichs’ inequalities can be proved using the arguments of [15, Lemma 7.2], where
element DOFs of degree k are considered (cf. also [9, 16] for related results using dG norms): For all
r P r2,`8q and all vh P U

k
h,0,

}vh}LrpΩq À }vh}1,h. (18)

The case r “ 2 corresponds to Poincaré’s inequality. Finally, to close this section, we prove that }¨}1,h
defines a norm on Ukh,0.

Proposition 3 (Norm }¨}1,h). The map }¨}1,h defines a norm on Ukh,0.

Proof. We only have to show that }vh}1,h “ 0 ùñ vh “ 0. By (18), }vh}1,h ùñ vh ” 0, i.e., vT ” 0
for all T P Th. Plugging this result into the definition (15) of }¨}1,h, we get

ř

TPTh
ř

FPFT
h´1
F }vF }

2
F “ 0,

which implies in turn vF ” 0 for all F P Fh.

3.2 Diffusive bilinear form and discrete problem

For all T P Th, we define the potential reconstruction operator pk`1
T : UkT Ñ Pk`1pT q such that, for all

vT P U
k
T , pk`1

T vT is the unique solution of the following Neumann problem:

p∇pk`1
T vT ,∇zqT “ ´pvT ,4zqT `

ÿ

FPFT

pvF ,∇z¨nTF qF @z P Pk`1pT q, (19)

with closure condition ppk`1
T vT , 1qT “ pvT , 1qT . It can be proved that, for all v P H1pT q, denoting by IkT

the restriction of the reduction map Ikh defined by (14) to H1pT q Ñ UkT ,

p∇ppk`1
T IkT v ´ vq,∇zqT “ 0 @z P Pk`1pT q, (20)

which expresses the fact that ppk`1
T ˝IkT q is the elliptic projector onto Pk`1pT q (and, as such, has optimal

approximation properties in Pk`1pT q). The diffusive bilinear form ah on UkhˆU
k
h is obtained by element-

wise assembly setting

ahpvh, zhq :“
ÿ

TPTh

p∇pk`1
T vT ,∇pk`1

T zT qT ` s1,hpvh, zhq, (21)

with stabilization bilinear form s1,h defined by (16). Denoting by }¨}a,h the seminorm defined by ah on

Ukh, a straightforward adaptation of the arguments used in [19, Lemma 4] shows that

}vh}1,h À }vh}a,h À }vh}1,h @vh P U
k
h, (22)

which expresses the coercivity and boundedness of ah. Additionally, following the arguments in [19,
Theorem 8], one can easily prove that the bilinear form ah enjoys the following consistency property:
For all v P Hmaxp2,lqpΩq X L2

0pΩq with l ě 1,

sup
zhPU

k
h,0,}zh}1,h“1

ˇ

ˇ

ˇ
ahpI

k
hv, zhq ` p4v, zhq

ˇ

ˇ

ˇ
À hminpk`1,l´1q}v}HlpΩq. (23)

Remark 4 (Consistency of ah). For sufficiently regular solutions, (23) shows that the consistency error
scales as hk`1. This is a consequence of the fact that both the potential reconstruction pk`1

T (cf. (19))
and the stabilization bilinear form s1,h (cf. (16)) are consistent for exact solutions that are polynomials
of degree ď pk ` 1q inside each element. In particular, a key point in s1,h is to penalize πkF pvF ´ vT q
instead of pvF ´vT q. A similar stabilization bilinear form had been independently suggested in the context
of Hybridizable Discontinuous Galerkin methods in [32, Remark 1.2.4].
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The discrete problem reads: For all 1 ď n ď N , find pcnh, w
n
hq P U

k
h,0 ˆ U

k
h such that

pδtc
n
h, ϕhq ` ahpw

n
h, ϕhq “ 0 @ϕ

h
P Ukh, (24a)

pwnh , ψhq “ pΦ
1pcnhq, ψhq ` γ

2ahpc
n
h, ψhq @ψ

h
P Ukh, (24b)

and c0h P U
k
h,0 solves

ahpc
0
h, ϕhq “ ´p4c0, ϕhq @ϕ

h
P Ukh. (25)

We note, in passing, that the face DOFs in c0h are not needed to initialize the algorithm.

Remark 5 (Static condensation). Problem (24) is a system of nonlinear algebraic equations, which can
be solved using an iterative algorithm. When first order (Newton-like) algorithms are used, element-based
DOFs can be locally eliminated at each iteration by a standard static condensation procedure.

4 Stability analysis

In this section, we establish some uniform a priori bounds on the discrete solution. To this purpose,
we need a discrete counterpart of Agmon’s inequality; cf. [3, Lemma 13.2] and also [1, Theorem 3]. We
define on Ukh the following L2-like inner product:

pvh, zhq0,h :“ pvh, zhq ` s0,hpvh, zhq,

s0,hpvh, zhq :“
ÿ

TPTh

ÿ

FPFT

hF pπ
k
F pvF ´ vT q, π

k
F pzF ´ zT qqF ,

(26)

and denote by }¨}0,h and |¨|0,h the norm and seminorm corresponding to the bilinear forms p¨, ¨q0,h and
s0,h, respectively. For further insight on the role of s0,h, cf. Remark 18. We introduce the discrete

Laplace operator Lkh : Ukh Ñ Ukh such that, for all vh P U
k
h,

´ pLkhvh, zhq0,h “ ahpvh, zhq @zh P U
k
h. (27)

We denote by Lkhvh the broken polynomial function in Pk`1pThq obtained from element DOFs in Lkhvh.

Remark 6 (Restriction of Lkh to Ukh,0 Ñ Ukh,0). Whenever vh P U
k
h,0, Lkhvh P U

k
h,0. To prove it, it suffices

to take zh “ IkhχΩ in (27) (with χΩ characteristic function of Ω), and observe that the left-hand side
satisfies pLkhvh, zhq0,h “ pL

k
hvh, 1q while, by definition (21) of the bilinear form ah, the right-hand side

vanishes. In what follows, we keep the same notation for the (bijective) restriction of Lkh to Ukh,0 Ñ Ukh,0.

The following result, specific to the dimension d “ 2, will be proved in Appendix A.

Lemma 7 (Discrete Agmon’s inequality). Assume mesh quasi-uniformity (10). Then, it holds with real
number C ą 0 depending on Ω, %, and k but independent of h,

@vh P U
k
h,0, }vh}L8pΩq ď C}vh}

1{2

1,h}L
k
hvh}

1{2

0,h. (28)

We also recall the following discrete Gronwall’s inequality (cf. [28, Lemma 5.1]).

Lemma 8 (Discrete Gronwall’s inequality). Let two reals δ,G ą 0 be given, and let, for integers n ě 1,
an, bn, and χn denote nonnegative real numbers such that

aN ` δ
N
ÿ

n“1

bn ď δ
N
ÿ

n“1

χnan `G @N P N˚.

Then, if χnδ ă 1 for all n, letting ςn :“ p1´ χnδq´1, it holds

aN ` δ
N
ÿ

n“1

bn ď exp

˜

δ
N
ÿ

n“1

ςnχn

¸

ˆG @N P N˚. (29)
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We are now ready to prove the a priori bounds.

Lemma 9 (Uniform a priori bounds). Under the assumptions of Lemma 7, and further assuming that
τ ď L for a given real number L ą 0 independent of h and of τ and sufficiently small, there is a real
number C ą 0 depending on Ω, %, k, γ, and tF but independent of h and τ such that

max
1ďnďN

´

}cnh}
2
a,h ` pΦpc

n
hq, 1q ` }w

n
h}

2 ` }cnh}L8pΩq ` }L
k
hc
n
h}

2
0,h

¯

`

N
ÿ

n“1

τ}wnh}
2
a,h ď C.

Proof. The proof is split into several steps.

(i) We start by proving that

max
1ďnďN

`

}cnh}
2
a,h ` pΦpc

n
hq, 1q

˘

`

N
ÿ

n“1

τ}wnh}
2
a,h À 1. (30)

Subtracting (24b) with ψ
h
“ cnh ´ cn´1

h from (24a) with ϕ
h
“ τwnh, and using the fact that, for all

r, s P R, Φ1prqpr ´ sq ě Φprq ´ Φpsq ´ 1
2 pr ´ sq

2, it is inferred, for all 1 ď n ď N ,

γ2ahpc
n
h, c

n
h ´ c

n´1
h q ` τ}wnh}

2
a,h ` pΦpc

n
hq, 1q ď

1

2
}cnh ´ c

n´1
h }2 ` pΦpcn´1

h q, 1q. (31)

Notice that pΦpcnhq, 1q ě 0 for all 0 ď n ď N by definition (2) of Φ. Making ϕ
h
“ τpcnh ´ c

n´1
h q in (24a)

and using the Cauchy–Schwarz and Young’s inequalities, we infer

}cnh ´ c
n´1
h }2 ď

τ

2
}wnh}

2
a,h `

τ

2
}cnh ´ c

n´1
h }2a,h. (32)

Additionally, recalling the following formula for the backward Euler scheme:

2xpx´ yq “ x2 ` px´ yq2 ´ y2, (33)

it holds

ahpc
n
h, c

n
h ´ c

n´1
h q “

1

2

`

}cnh}
2
a,h ` }c

n
h ´ c

n´1
h }2a,h ´ }c

n´1
h }2a,h

˘

. (34)

Plugging (32) and (34) into (31), we obtain

γ2}cnh}
2
a,h `

´

γ2 ´
τ

2

¯

}cnh ´ c
n´1
h }2a,h `

3τ

2
}wnh}

2
a,h ` 2pΦpcnhq, 1q ď γ2}cn´1

h }2a,h ` 2pΦpcn´1
h q, 1q.

Provided τ ă 2γ2, the bound (30) follows summing the above inequality over 1 ď n ď N , and using the
fact that γ2}c0h}a,h ` 2pΦpc0hq, 1q À 1. To prove this bound, observe that

γ2}c0h}a,h ` 2pΦpc0hq, 1q À γ2}c0h}
2
1,h ` 1` }c0h}

4
L4pΩq ` }c

0
h}

2

À γ2}c0h}
2
1,h ` 1` }c0h}

4
1,h ` }c

0
h}

2
1,h À 1,

where we have used the definition (2) of the free-energy Φ in the first line followed by the discrete
Friedrichs’ inequality with r “ 4, 2 in the second line and the first bound in (46) below to conclude.

(ii) We next prove that
N
ÿ

n“1

τ}cnh}
4
L8pΩq À 1. (35)

The discrete Agmon’s inequality (28) followed by the first inequality in (22) yields

N
ÿ

n“1

τ}cnh}
4
L8pΩq À

N
ÿ

n“1

τ}cnh}
2
a,h}L

k
hc
n
h}

2
0,h À

ˆ

max
1ďnďN

}cnh}a,h

˙2

ˆ

N
ÿ

n“1

τ}Lkhc
n
h}

2
0,h.

8



The first factor is À 1 owing to (30). Thus, to prove (35), it suffices to show that also the second factor
is À 1. Using the definition (27) of Lkh followed by (24b) with ψ

h
“ Lkhc

n
h, we infer that

γ2}Lkhc
n
h}

2
0,h “ ´γ

2ahpc
n
h, L

k
hc
n
hq “ pΦ

1pcnhq, L
k
hc
n
hq ´ pw

n
h , L

k
hc
n
hq. (36)

Using again (27) for the second term in the right-hand side of (36) followed by the Cauchy–Schwarz and
Young’s inequalities, we obtain

γ2}Lkhc
n
h}

2
0,h “ pΦ

1pcnhq, L
k
hc
n
hq ` ahpc

n
h, w

n
hq ` s0,hpL

k
hc
n
h, w

n
hq

ď
1

2γ2
}Φ1pcnhq}

2 `
γ2

2
}Lkhc

n
h}

2
0,h `

γ2

2
}cnh}

2
a,h `

1

2γ2
}wnh}

2
a,h `

1

2γ2
|wnh|

2
0,h.

Hence, since |wnh|0,h ď h|wnh|1,h À }w
n
h}a,h,

γ2}Lkhc
n
h}

2
0,h À γ´2}Φ1pcnhq}

2 ` γ2}cnh}
2
a,h ` γ

´2}wnh}
2
a,h.

The fact that
řn
n“1 τ}L

k
hc
n
h}

2
0,h À 1 then follows multiplying the above inequality by τ , summing over

1 ď n ď N , using (30) to bound the second and third terms in the right-hand side, and observing that

}Φ1pcnhq}
2 ď }cnh}

6
L6pΩq ` 2}cnh}

4
L4pΩq ` }c

n
h}

2 À }cnh}
6
1,h ` }c

n
h}

4
1,h ` }c

n
h}

2
1,h À 1, (37)

where we have used the definition (2) to obtain the first bound, Friedrichs’ inequality (18) with r “ 6, 4, 2
to obtain the second bound, and (30) together with the first inequality in (22) to conclude.

(iii) We proceed by proving that

max
1ďnďN

}wnh}
2 ` γ2

N
ÿ

n“1

τ}δtc
n
h}

2 À 1. (38)

Let w0
h :“ πk`1

h pΦ1pc0hq ´ γ
24c0q. Recalling (25), w0

h satisfies

pw0
h, ψhq “ pΦ

1pc0hq, ψhq ` γ
2ahpc

0
h, ψhq @ψ

h
P Ukh. (39)

For any 1 ď n ď N , subtracting from (24b) at time step n (24b) at time step pn´ 1q if n ą 1 or (39) if
n “ 1, and selecting ψ

h
“ wnh as a test function in the resulting equation, it is inferred that

pwnh ´ w
n´1
h , wnhq “ τγ2ahpδtc

n
h, w

n
hq ` pΦ

1pcnhq ´ Φ1pcn´1
h q, wnhq.

Using (24a) with ϕ
h
“ τγ2δtc

n
h to infer τγ2ahpδtc

n
h, w

n
hq “ ´τγ

2}δtc
n
h}

2, we get

pwnh ´ w
n´1
h , wnhq ` τγ

2}δtc
n
h}

2 “ pΦ1pcnhq ´ Φ1pcn´1
h q, wnhq. (40)

Using the fact that
Φ1prq ´ Φ1psq “ pr2 ` rs` s2 ´ 1qpr ´ sq, (41)

followed by the Cauchy–Schwarz and Young’s inequalities, we infer

|pΦ1pcnhq ´ Φ1pcn´1
h q, wnhq| ď

τγ2

2
}δtc

n
h}

2 `
τCn

2
}wnh}

2, (42)

with Cn :“ Cp1`}cnh}
4
L8pΩq`}c

n´1
h }4L8pΩqq for a real number C ą 0 independent of h and τ . Using (33)

for the first term in the left-hand side of (40) together with (42) for the right-hand side, we get

}wnh}
2 ` }wnh ´ w

n´1
h }2 ` τγ2}δtc

n
h}

2 ď τCn}wnh}
2 ` }wn´1

h }2. (43)

Summing (43) over 1 ď n ď N , observing that, thanks to (35) and the second bound in (46) below, we
can have τCn ă 1 for all 1 ď n ď N provided that we choose τ small enough, and using the discrete
Gronwall’s inequality (29) (with δ “ τ , an “ }wnh}

2, bn “ γ2}δtc
n
h}

2, χn “ Cn and G “ }w0
h}

2), the
estimate (38) follows if we can bound }w0

h}
2. To this end, recalling the definition of w0

h and using the
Cauchy–Schwarz inequality, one has

}w0
h}

2 “ pΦ1pc0hq, w
0
hq ´ γ

2p4c0, w0
hq ď

`

}Φ1pc0hq} ` γ
2}c0}H2pΩq

˘

}w0
h},

and the conclusion follows from the regularity of c0 noting the first bound in (46) below and estimating
the first term in parentheses as in (37).
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(iv) We conclude by proving the bound

max
1ďnďN

´

}cnh}L8pΩq ` }L
k
hc
n
h}

2
0,h

¯

À 1. (44)

Using the Cauchy–Schwarz and Young’s inequalities to bound the right-hand side of (36) followed by (18)
with r “ 6, 4, 2 and the first inequality in (22), we obtain, for all 1 ď n ď N ,

γ2}Lkhc
n
h}

2
0,h À γ´2

`

}Φ1pcnhq}
2 ` }wnh}

2
˘

À

´

}cnh}
6
L6pΩq ` }c

n
h}

4
L4pΩq ` }c

n
h}

2
¯

` }wnh}
2

À
`

}cnh}
6
a,h ` }c

n
h}

4
a,h ` }c

n
h}

2
a,h

˘

` }wnh}
2 À 1,

(45)

where we have concluded using (30) multiple times for the terms in parentheses and (38) for }wnh}
2. Using

the discrete Agmon’s inequality (28) followed by Young’s inequality and the first inequality in (22), we
infer

max
1ďnďN

}cnh}L8pΩq À max
1ďnďN

´

}cnh}a,h ` }L
k
hc
n
h}0,h

¯

À 1,

where the conclusion follows using (30) for the first addend in the argument of the maximum and (45)
for the second.

Proposition 10 (Bounds for c0h). Let c0h P U
k
h,0 be defined by (25) with c0 P H

2pΩq X L2
0pΩq. Then, it

holds with real number C ą 0 depending on Ω, %, and k but independent of h,

}c0h}1,h ` }c
0
h}L8pΩq ď C}c0}H2pΩq. (46)

Proof. To prove the first bound in (46), let ϕ
h
“ c0h in (25) and use the first inequality in (22), the

Cauchy–Schwarz inequality and the discrete Poincaré’s inequality (18) with r “ 2 to infer

}c0h}
2
1,h À ahpc

0
h, c

0
hq “ ´p4c0, c0hq ď }4c0}}c0h} À }c0}H2pΩq}c

0
h}1,h.

To prove the second bound in (46), we start by noticing that, using (27) with zh “ ´L
k
hc

0
h,

}Lkhc
0
h}

2
0,h “ ´ahpc

0
h, L

k
hc

0
hq “ p4c0, Lkhc0hq ď }c0}H2pΩq}L

k
hc

0
h},

hence }Lkhc
0
h}0,h ď }c0}H2pΩq. Combining the discrete Agmon’s inequality (28) with the latter inequality

and the first bound in (46), one gets

}c0h}L8pΩq ď }c
0
h}

1{2

1,h}L
k
hc

0
h}

1{2

0,h À }c0}H2pΩq,

and the desired result follows.

5 Error analysis

In this section we carry out the error analysis of the method (24).

5.1 Error equations

Our goal is to estimate the difference between the discrete solution obtained solving (24) and the projec-
tions of the exact solution such that, for all 1 ď n ď N , pwnh “ Ikhw

n, while, for all 0 ď n ď N , pcnh P U
k
h,0

solves
ahppc

n
h, ϕhq “ ´p4c

n, ϕhq @ϕ
h
P Ukh,

and ppcnh, 1q “ 0. We define, for all 1 ď n ď N , the errors

enc,h :“ cnh ´pcnh, enw,h :“ wnh ´ pwnh. (47)
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By definition (25), pc0h “ c0h, which prompts us to set e0
c,h :“ 0. Using Poincaré’s inequality (18) with

r “ 2 and the consistency (23) of ah, the following estimate is readily inferred: For all 0 ď n ď N ,

}pcnh ´ π
k`1
h cn} À }pcnh ´ I

k
hc
n}1,h À hk`1}cn}Hk`2pΩq. (48)

We notice, in passing, that using elliptic regularity (which holds since Ω is convex, cf., e.g., [25]), one can
improve this result and show that }pcnh ´ π

k`1
h cn} À hk`2}cn}Hk`2pΩq. Recalling (24), for all 1 ď n ď N ,

the error penc,h, e
n
w,hq P U

k
h,0 ˆ U

k
h solves

pδte
n
c,h, ϕhq ` ahpe

n
w,h, ϕhq “ Epϕ

h
q @ϕ

h
P Ukh, (49a)

penw,h, ψhq “ pΦ
1pcnhq ´ Φ1pcnq, ψhq ` γ

2ahpe
n
c,h, ψhq, @ψ

h
P Ukh, (49b)

where, in (49a), we have defined the consistency error

Epϕ
h
q :“ ´pδtpc

n
h, ϕhq ´ ahppw

n
h, ϕhq, (50)

while in (49b) we have combined the definitions of pwnh and pcnh with (1b) to infer

p pwnh , ψhq ´ γ
2ahppc

n
h, ψhq “ pw

n `4cn, ψhq “ pΦ1pcnq, ψhq.

5.2 Error estimate

Theorem 11 (Error estimate). Suppose that the assumptions of Lemma 9 hold true. Let pc, wq denote
the solution to (1), for which we assume the following additional regularity:

c P C2p0, tF;L2pΩqq X C1p0, tF;Hk`2pΩqq, w P C0p0, tF;Hk`2pΩqq. (51)

Then, the following estimate holds for the errors defined by (47):

˜

max
1ďnďN

}enc,h}
2
a,h `

N
ÿ

n“1

τ}enw,h}
2
a,h

¸1{2

ď Cphk`1 ` τq, (52)

with C ą 0 real number depending on Ω, %, k, γ, and tF but independent of h and τ .

Proof. Let 1 ď n ď N . Subtracting (49b) with ψ
h
“ δte

n
c,h from (49a) with ϕ

h
“ enw,h, we obtain

}enw,h}
2
a,h ` γ

2ahpe
n
c,h, δte

n
c,hq “ Epenw,hq ` pΦ1pcnq ´ Φ1pcnhq, δte

n
c,hq :“ T1 ` T2. (53)

We proceed to bound the terms in the right-hand side.

(i) Bound for T1. Let ϕ
h
P Ukh. Adding to (50) the quantity

pdtc
n ´4wn, ϕhq ` pδtπk`1

h cn ´ δtc
n, ϕhq “ 0,

(use (1a) to prove that the first addend is 0 and the definition of the L2-orthogonal projector πk`1
h to

prove that the second is also 0), we can decompose Epϕ
h
q as follows:

Epϕ
h
q “ pdtc

n ´ δtc
n, ϕhq ` pδtpπ

k`1
h cn ´ pcnhq, ϕhq ´

´

ahppw
n
h, ϕhq ` p4w

n, ϕhq
¯

:“ T1,1 ` T1,2 ` T1,3.

For the first term, we have

|T1,1| ď }dtc
n ´ δtc

n}}ϕh} À τ}c}C2p0,tF;L2pΩqq}ϕh}1,h À τ}ϕ
h
}1,h, (54)

where we have used the Cauchy–Schwarz inequality, a classical estimate based on Taylor’s remainder,
Poincaré’s inequality (18) with r “ 2, and we have concluded using the regularity (51) for c. For the
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second term, on the other hand, using the Cauchy–Schwarz inequality followed by (48) together with the
C1-stability of the backward differencing operator (3), Poincaré’s inequality, and the regularity (51) for
c, we readily obtain

|T1,2| ď }δtpπ
k`1
h cn ´ pcnhq}}ϕh} À hk`1}cn}C1p0,tF;Hk`2pΩqq}ϕh} À hk`1}ϕ

h
}1,h. (55)

Finally, recalling the consistency properties (23) of ah, we get for the last term

|T1,3| À hk`1}wn}Hk`2pΩq}ϕh}1,h ď hk`1}w}C0p0,tF;Hk`2pΩqq}ϕh}1,h À hk`1}ϕ
h
}1,h. (56)

Collecting the bounds (54)–(56), it is inferred

$ :“ sup
ϕ

h
PUk

h,}ϕh
}1,h“1

Epϕ
h
q À hk`1 ` τ, (57)

so that, for any real ε ą 0, denoting by Cε ą 0 a real depending on ε but not on h or τ , and using the
second inequality in (22) to bound }enw,h}1,h À }e

n
w,h}a,h,

|T1| ď $}enw,h}1,h À ph
k`1 ` τq}enw,h}1,h ď Cεph

k`1 ` τq2 ` ε}enw,h}
2
a,h. (58)

(ii) Bound for T2. Set, for the sake of brevity, Qn :“ Φ1pcnhq´Φ1pcnq, and define the DOF vector zh P U
k
h

such that

zT “ πk`1
T Qn @T P Th, zF “ πkF tQ

nuF @F P F i
h, zF “ πkF zTF

@F P Fb
h (59)

where t¨uF denotes the usual trace operator such that, for any function ϕ admitting a possibly two-valued
trace on F P FT1

X FT2
, tϕuF :“ 1

2 pϕ|T1
` ϕ|T2

q, while, for a boundary face F P Fb
h , TF denotes the

unique element in Th such that F P FTF
. We have, using (49a) with ϕ

h
“ zh, (57), and the second

inequality in (22),

T2 “ pzh, δte
n
c,hq “ Epzhq ´ ahpenw,h, zhq À

`

$` }enw,h}a,h
˘

}zh}1,h. (60)

By Proposition 14 below,
}zh}1,h À }e

n
c,h}a,h ` h

k`1, (61)

hence, for any real ε ą 0, denoting by Cε ą 0 a real number depending on ε but not on h or τ , and
recalling the bound (57) for $,

|T2| ď Cε
`

}enc,h}
2
a,h ` ph

k`1 ` τq2
˘

` ε}enw,h}
2
a,h. (62)

(iii) Conclusion. Using (58) and (62) with ε “ 1{4 to bound the right-hand side of (53), it is inferred

}enw,h}
2
a,h ` γ

2ahpe
n
c,h, δte

n
c,hq À ph

k`1 ` τq2 ` }enc,h}
2
a,h.

Multiplying by τ , summing over 1 ď n ď N , using (33) for the second term in the left-hand side, and
recalling that, by definition, e0

c,h “ 0, we get

γ2}eNc,h}
2
a,h `

N
ÿ

n“1

τ}enw,h}
2
a,h ď

N
ÿ

n“1

Cτ}enc,h}
2
a,h ` Cph

k`1 ` τq2,

with C ą 0 independent of h and τ . The error estimate (52) then follows from an application of
the discrete Gronwall’s inequality (29) with δ “ τ , an “ γ2}enc,h}

2
a,h, bn “ }enw,h}

2
a,h, χn “ C, and

G “ Cphk`1 ` τq2 assuming τ small enough.

Remark 12 (BDF2 time discretization). In Section 6, we have also used a BDF2 scheme to march in
time, which corresponds to the backward differencing operator

δ
p2q
t ϕ :“

3ϕn`2 ´ 4ϕn`1 ` ϕn

2τ
,

used in place of (3). The analysis is essentially analogous to the backward Euler scheme, the main
difference being that formula (33) is replaced by

2xp3x´ 4y ` zq “ x2 ´ y2 ` p2x´ yq2 ´ p2y ´ zq2 ` px´ 2y ` zq2.

As a result, the right-hand side of (52) scales as phk`1 ` τ2q instead of phk`1 ` τq.
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To prove the bound (61), we need discrete counterparts of the following Gagliardo–Nirenberg–Poincaré’s
inequalities valid for all 2 ď p ă `8 and all v P H2pΩq X L2

0pΩq:

|v|W 1,ppΩq À }v}
1
p |v|

p´1
p

H2pΩq À |v|
1
p

H1pΩq|v|
p´1
p

H2pΩq, (63)

where the first bound follows from [1, Theorem 3] and the second from Poincaré’s inequality. The proof
of the following Lemma will be given in Appendix A.

Lemma 13 (Discrete Gagliardo–Nirenberg–Poincaré’s inequalities). Under the assumptions of Lemma 7,
it holds for all 2 ď p ă `8 with C ą 0 depending on Ω, %, p and k but independent of h,

@vh P U
k
h,0, }∇hvh}LppΩqd ď C}vh}

1
p

1,h}L
k
hvh}

p´1
p

0,h . (64)

Proposition 14 (Bound on }zh}1,h). With zh defined as in (59), the bound (61) holds.

Proof. Recalling the definition (15) of the }¨}1,h-norm, one has

}zh}
2
1,h “ }∇hπ

k`1
h Qn}2 `

ÿ

TPTh

ÿ

FPFTXF i
h

h´1
F }π

k
F ptQ

nuF ´ π
k`1
T Qnq}2F :“ T2

1 ` T2
2. (65)

(i) Bound for T1. Using the H1-stability (7) of πk`1
h , formula (41) to infer Qn “ qnpcnh ´ cnq with

qn :“ pcnhq
2 ` cnhc

n ` pcnq2 ´ 1, the triangle and Hölder inequalities, we get, for all T P Th,

|T1| À }∇hQ
n} ď }qn∇hpc

n
h ´ c

nq} ` }pcnh ´ c
nq∇hq

n}

À

´

}cnh}
2
L8pΩq ` }c

n}2L8pΩq ` 1
¯

}∇hpc
n
h ´ c

nq}

` }cnh ´ c
n}L6pΩq

`

}cnh}L8pΩq ` }c
n}L8pΩq

˘ `

}∇hc
n
h}L3pΩqd ` }∇cn}L3pΩqd

˘

.

Noting the a priori bound (44) and the regularity assumption (51), both }cnh}L8pΩq and }cn}L8pΩq are
À 1. Additionally, by the continuous Gagliardo–Nirenberg–Poincaré’s inequality (63) with p “ 3 and

the regularity assumption (51), one has }∇cn}L3pΩqd À |c
n|

1{3

H1pΩq}c
n}

2{3

H2pΩq À 1. Similarly, the discrete

Gagliardo–Niremberg–Poincaré’s inequality (64) combined with the a priori bounds (30) and (44) yields

}∇hc
n
h}L3pΩqd À }c

n
h}

1{3

1,h}L
k
hc
n
h}

2{3

0,h À 1. Then, inserting ˘ppcnh ´ π
k`1
h cnq and using the triangle inequality,

|T1| À
`

}∇he
n
c,h} ` }e

n
c,h}L6pΩq

˘

`
`

}∇hppc
n
h ´ π

k`1
h cnq} ` }pcnh ´ π

k`1
h cn}L6pΩq

˘

`
`

}∇hpπ
k`1
h cn ´ cnq} ` }πk`1

h cn ´ cn}L6pΩq

˘

:“ T1,1 ` T1,2 ` T1,3.
(66)

Using the discrete Friedrichs’ inequality (18) with r “ 6 together with the definition (15) of the }¨}1,h-
norm and the first inequality in (22), it is readily inferred that T1,1 À }e

n
c,h}a,h. Again the Friedrichs’

inequality (18) with r “ 6 followed by the approximation properties (48) of pcnh and the regularity (51)
yields T2,2 À hk`1}cn}Hk`2pΩq À hk`1. Finally, using the approximation properties (8) of πk`1

h , we

have T1,3 À hk`1p}cn}Hk`2pΩq ` }c
n}Wk`1,6pΩqq À hk`1, where we have used the classical embedding

Hk`2pΩq ĂW k`1,6pΩq valid for all k ě 0 in dimension 2 (cf. [2, Theorem 4.12]). Gathering the previous
bounds, we conclude that

|T1| À }e
n
c,h}a,h ` h

k`1. (67)

(ii) Bound for T2. For all interface F P FT1
X FT2

, we denote by r¨sF the usual jump operator such
that, for every function ϕ with a possibly two-valued trace on F , rϕsF :“ ϕ|T1

´ ϕ|T2
(the orientation is

irrelevant). Let an element T P Th and an interface face F P FT X FT` be fixed. Using the L2-stability
of πkF , inserting ˘QnT (with QnT :“ Qn|T ), and using the triangle inequality it holds,

}πkF ptQ
nuF ´ π

k`1
T QnT q}F ď }tQ

nuF ´ π
k`1
T QnT }F

ď
1

2
}rQnsF }F ` }Q

n
T ´ π

k`1
T QnT }F

À }rQnsF }F ` h
1{2

T }∇QnT }T ,

(68)
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where we have used (8) for the last term. Let us bound the first term in the right-hand side. Observing
that rΦ1pcnqsF “ 0 and recalling (41), it is inferred

|rQnsF | “ |rΦ
1pcnhqsF | ď |rc

n
hsF |

`

|cT |
2 ` |cT ||cT` | ` |cT` |

2 ` 1
˘

.

Using this relation, and noticing the a priori bound (44), we get

}rQnsF }F À
´

}cnh}
2
L8pΩq ` 1

¯

}rcnhsF }F À }rc
n
hsF }F “ }rc

n
h ´ c

nsF }F ,

where the conclusion follows observing that cn has zero jumps across interfaces. Inserting˘rpcnh´π
k`1
h cnsF

inside the norm and using the triangle inequality, we obtain

}rQnsF }F À }rc
n
h ´ pcnhsF }F ` }rpc

n
h ´ π

k`1
h cnsF }F ` }rπ

k`1
h cn ´ cnsF }F . (69)

Define the seminorm |¨|J on H1pThq such that, for all v P H1pThq, |v|2J :“
ř

FPF i
h
h´1
F }rvsF }

2
F . Let us

prove that
@vh P U

k
h, |vh|J À }vh}1,h À }vh}a,h. (70)

Inserting ˘pπkF rvhsF ´ vF q and using the triangle inequality, it is inferred that

|vh|
2
J À

ÿ

FPF i
h

ÿ

TPTF

h´1
F

`

}vT ´ π
k
F vT }

2
F ` }π

k
F pvT ´ vF q}

2
F

˘

À }∇hvh}
2 ` |vh|

2
1,h,

where we have used (9) followed by the discrete trace inequality (4) and the fact that cardpFT q À 1
by mesh regularity for the first term, and the definition (15) of the |¨|1,h-seminorm for the second term.
This proves the first bound in (70). The second bound follows from (22).

Multiplying (68) by h
´1{2

F , squaring, summing over F P FT XF i
h then over T P Th, using mesh regularity

to infer that cardpFT q is bounded uniformly in h, and noticing (69) yields

T2
2 À }∇hQ

n}2 ` |cnh ´ pcnh|
2
J ` |pc

n
h ´ π

k`1
h cn|2J ` |π

k`1
h cn ´ cn|2J

À }∇hQ
n}2 ` }enc,h}

2
a,h ` }pc

n
h ´ I

k
hc
n}2a,h ` |π

k`1
h cn ´ cn|2J

À }∇hQ
n}2 ` }enc,h}

2
a,h `

`

hk`1}cn}Hk`2pΩq

˘2
,

(71)

where we have used (70) to pass to the second line and the approximation properties (48) of pcnh and (8)
of πk`1

h to conclude. Proceeding as in point (i) to bound the first term in the right-hand side of (71),
and recalling the regularity assumptions (51) on c, we conclude

|T2| ď }e
n
c,h}a,h ` h

k`1. (72)

(iii) Conclusion. Using (67) and (72) in (65), the estimate (61) follows.

Remark 15 (Polynomial degree for element DOFs). The use of polynomials of degree ď pk`1q (instead
of k) as elements DOFs in the discrete space (13) is used to infer an estimate of order hk`1 in (66) and
for the last term in (71).

6 Numerical results

In this section we provide numerical evidence to confirm the theoretical results.

14



Figure 1: Mesh families for the numerical tests

6.1 Convergence

We start by a (non-physical) numerical test that demonstrates the orders of converge achieved by our
method. We solve the Cahn-Hilliard problem (49) on the unit square Ω “ p0, 1q2 with tF “ 1, order-
parameter

cpx, tq “ t cospπx1q cospπx2q, (73)

and chemical potential w inferred from c according to (1b). The right-hand side of (1a) is also modified
by introducing a nonzero source in accordance with the expression of c. The interface parameter γ is
taken equal to 1.

We consider the triangular, Cartesian, and (predominantly) hexagonal mesh families of Figure 1. The two
former mesh families were introduced in the FVCA5 benchmark [27], whereas the latter was introduced
in [20]. To march in time, we use the implicit Euler scheme. Since the order-parameter is linear in
time, only the spatial component of the discretization error is nonzero and the choice of the time step is
irrelevant. The energy errors }cNh ´ I

k
hc
N }a,h and }wNh ´ I

k
hw

N }a,h at final time are depicted in Figure 2.
For all mesh families, the convergence rate is pk ` 1q, in accordance with Theorem 11. For the sake of
completeness, we also display in Figure 3 the L2-errors }cnh ´ π

k`1
h cn} and }wnh ´ π

k`1
h wn}, for which an

optimal convergence rate of pk ` 2q is observed.

6.2 Evolution of an elliptic and a cross-shaped interfaces

The numerical examples of this section consist in tracking the evolution of initial data corresponding,
respectively, to an elliptic and a cross-shaped interface between phases. For the elliptic interface test
case of Figure 4, the initial datum is

c0pxq “

#

0.95 if 81 px1 ´ 0.5q
2
` 9 px2 ´ 0.5q

2
ă 1,

´0.95 otherwhise.

For the cross-shaped interface test case of Figure 5, we take

c0pxq “

$

’

&

’

%

0.95
if 5

`

|px2 ´ 0.5q ´ 2
5 px1 ´ 0.5q| ` | 25 px1 ´ 0.5q ` px2 ´ 0.5q|

˘

ă 1

or 5
`

|px1 ´ 0.5q ´ 2
5 px2 ´ 0.5q| ` | 25 px2 ´ 0.5q ` px1 ´ 0.5q|

˘

ă 1,

´0.95 otherwhise.

In both cases, the space domain is the unit square Ω “ p0, 1q2, and the interface parameter γ is taken to
be 1 ¨ 10´2. We use a 64ˆ 64 uniform Cartesian mesh and k “ 1 with time step τ “ γ2{10.

In the test case of Figure 4, we observe evolution of the elliptic interface towards a circular interface and,
as expected, mass is well preserved (+0.5% with respect to the initial ellipse). Similar considerations
hold for the cross-shaped test case of Figure 5, which has the additional difficulty of presenting sharp
corners.
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Figure 2: Energy-errors at final time vs. h. From left to right: triangular, Cartesian and (predominantly)
hexagonal mesh families; cf. Figure 1.
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Figure 3: L2-errors at final time vs. h. From left to right: triangular, Cartesian and (predominantly)
hexagonal mesh families; cf. Figure 1.
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Figure 4: Evolution of an elliptic interface. Displayed times are 0 , 3 ¨ 10´3 , 0.3, 1.

Figure 5: Evolution of a cross-shaped interface. Displayed times are 0, 5 ¨ 10´5, 1 ¨ 10´2, 8.17 ¨ 10´2.

6.3 Spinodal decomposition

Spinodal decomposition can be observed when a binary alloy is heated to a high temperature for a certain
time and then abruptly cooled. As a result, phases are separated in well-defined high concentration areas.
In Figure 6, we display the numerical solutions obtained on a 128ˆ128 uniform Cartesian mesh for k “ 0
and on a uniform 64 ˆ 64 Cartesian mesh for k “ 1. In both cases, we use the same initial conditions
taking random values between -1 and 1 on a 32 ˆ 32 uniform Cartesian partition of the domain. The
interface parameter is γ “ 1{100, and we take τ “ γ2{10. For k “ 0, the time discretisation is based on
the Backward Euler scheme while, for k “ 1, we use the BDF2 formula to make sure that the spatial
and temporal error contributions are equilibrated; cf. Remark 12.

The separation of the two components into two distinct phases happens over a very small time; see two
leftmost panels of Figure 6 corresponding to times 0 and 5 ¨ 10´5, respectively. Later, the phases gather
increasingly slowly until the interfaces develop a constant curvature; see the two rightmost panels of
Figure 6, corresponding to times 1.25 ¨ 10´3 and 3.6 ¨ 10´2, respectively. At the latest stages, we can
observe that the solution exhibits a (small) dependence on the mesh and/or the polynomial degree, and
the high-concentrations regions in Figures 6a and 6b are highly superposable but not identical.

A Proofs of discrete functional analysis results

This section contains the proofs of Lemmas 7 and 13 preceeded by the required preliminary technical
results.

Proposition 16 (Estimates for Lkh). Assuming mesh quasi-uniformity (10), it holds

@vh P U
k
h, }Lkhvh}0,h À h´1}vh}1,h, (74)

@vh P U
k
h,0, }Lkhvh}H´1pΩq À }vh}1,h. (75)

Proof. (i) Proof of (74). Let vh P U
k
h. Making zh “ ´L

k
hvh in the definition (27) of Lkh, we have

}Lkhvh}
2
0,h “ ´ahpvh, L

k
hvhq À }vh}1,h}L

k
hvh}1,h À }vh}1,hh

´1}Lkhvh}0,h,

17



(a) 128ˆ 128 uniform Cartesian mesh, k “ 0, BE

(b) 64ˆ 64 uniform Cartesian mesh, k “ 1, BDF2

Figure 6: Spinoidal decomposition. In both cases, the same random initial condition is used. Displayed
times are 0, 5 ¨ 10´5, 1.25 ¨ 10´3, 3.6 ¨ 10´2.

where we have used the continuity of ah expressed by the second inequality in (22) followed by the fact
that, for all zh P U

k
h, }zh}1,h À h´1}zh}0,h. This inequality follows from the definition (15) of the }¨}1,h-

norm using the inverse inequality (5) to bound the first term and recalling mesh quasi-uniformity (10).

(ii) Proof of (75). Let vh P U
k
h,0. Observing that Lkhvh has zero-average on Ω (cf. Remark 6), we have

}Lkhvh}H´1pΩq “ sup
ϕPH1pΩqXL2

0pΩq,}ϕ}H1pΩq“1

pLkhvh, ϕq. (76)

Let now ϕ
h

:“ Ikhϕ. Using the fact that Lkhvh P Pk`1pThq followed by the definitions (27) of Lkh and (26)
of p¨, ¨q0,h, one has

pLkhvh, ϕq “ pL
k
hvh, π

k`1
h ϕq “ ´s0,hpL

k
hvh, ϕhq ´ ahpvh, ϕhq.

Hence, using the Cauchy–Schwarz inequality we get

|pLkhvh, ϕq| À |L
k
hvh|0,h|ϕh|0,h ` }vh}1,h}ϕh}1,h

ď h´1}vh}1,hh|ϕh|1,h ` }vh}1,h}ϕh}1,h

À }vh}1,h}ϕh}1,h À }vh}1,h}ϕ}H1pΩq,

where we have used (74) together with the fact that |zh|0,h ď h|zh|1,h for all zh P U
k
h to pass to the

second line and the H1-stability (17) of Ikh to conclude. To obtain (75), plug the above estimate into the
right-hand side of (76).

We introduce the continuous Green’s function G : L2
0pΩq Ñ H1pΩq X L2

0pΩq such that, for all ϕ P L2
0pΩq,

p∇Gϕ,∇vq “ pϕ, vq @v P H1pΩq.

Owing to elliptic regularity (which holds since Ω is convex), we have Gϕ P H2pΩq. Its discrete counterpart
Gkh : Ukh,0 Ñ Ukh,0 is defined such that, for all ϕ

h
P Ukh,0,

ahpGkhϕh, zhq “ pϕh, zhq0,h @zh P U
k
h,0, (77)
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with inner product p¨, ¨q0,h defined by (26). We will denote by Gkhvh the broken polynomial function in

Pk`1pThq obtained from element DOFs in Gkhvh. We next show that Gkh is the inverse of Lkh restricted to

Ukh,0 Ñ Ukh,0. Let vh P U
k
h,0. Using (77) with ϕ

h
“ Lkhvh followed by (27), it is inferred, for all zh P U

k
h,0,

ahpGkhL
k
hvh, zhq “ pL

k
hvh, zhq0,h “ ´ahpvh, zhq ùñ ahpvh ` GkhL

k
hvh, zhq “ 0.

Therefore, since pvh`GkhL
k
hvhq P U

k
h,0 and ah is coercive in Ukh,0 (cf. (22) and Proposition 3), we conclude

vh ` GkhL
k
hvh “ 0 @vh P U

k
h,0. (78)

Proposition 17 (Estimates for Gkh). It holds, for all vh P U
k
h,0,

}Gkhvh ´ πk`1
h Gvh} À }Gkhvh ´ I

k
hGvh}1,h À h|vh|0,h `min

`

}Gvh}H1pΩq, h}Gvh}H2pΩq

˘

. (79)

Moreover, using elliptic regularity, we have the following sharper bound for the first term:

}Gkhvh ´ πk`1
h Gvh} À h2

`

|vh|0,h ` }Gvh}H2pΩq

˘

. (80)

Proof. Let vh P U
k
h,0.

(i) Proof of (79). The first inequality in (79) is a simple consequence of the discrete Poincaré’s inequal-
ity (18) with r “ 2. Let us prove the second. For all zh P U

k
h,0 we have, using the definition (77) of Gkhvh

and subtracting the quantity pvh `4Gvh, zhq “ 0,

ahpGkhvh ´ I
k
hGvh, zhq “ pvh, zhq0,h ´ pvh, zhq

loooooooooooomoooooooooooon

T1

´ahpI
k
hGvh, zhq ´ p4Gvh, zhq

loooooooooooooooooomoooooooooooooooooon

T2

. (81)

Recalling the definition (26) of the inner product p¨, ¨q0,h, one has

|T1| “ |s0,hpvh, zhq| ď |vh|0,h|zh|0,h ď h|vh|0,h|zh|1,h. (82)

On the other hand, the consistency properties (23) of the bilinear form ah readily yield

|T2| À min
`

}Gvh}H1pΩq, h}Gvh}H2pΩq

˘

}zh}1,h. (83)

Making zh “ Gkhvh´I
k
hGvh in (81), and using the coercivity of ah expressed by the first inequality in (22)

followed by the bounds (82)–(83), (79) follows.

(ii) Proof of (80). We follow the ideas of [19, Theorem 10] and [18, Theorem 11], to which we refer
for further details. Set, for the sake of brevity, ϕ

h
:“ Gkhvh ´ IkhGvh, and let z :“ Gϕh. By elliptic

regularity, z P H2pΩq and }z}H2pΩq À }ϕh}. Observing that ´4z “ ϕh, letting pzh :“ Ikhz, and using the

definition (77) of Gkh, we have

}ϕh}
2 “ ´p4z, ϕhq ´ ahpϕh, pzhq

loooooooooooooomoooooooooooooon

T1

`pvh, pzhq ´ ahpI
k
hGvh, pzhq

loooooooooooooomoooooooooooooon

T2

` s0,hpvh, pzhq
looooomooooon

T3

. (84)

Using the consistency (23) of ah, it is readily inferred for the first term

|T1| À h}z}H2pΩq}ϕh}1,h À h2
`

|vh|0,h ` }Gvh}H2pΩq

˘

}ϕh}, (85)

where we have used elliptic regularity to infer }z}H2pΩq À }ϕh} and (79) to bound }ϕ
h
}1,h. For the second

term, upon observing that pvh, pzhq “ ´p4Gvh, zq “ p∇Gvh,∇zq since, by definition of, ´4Gvh “ vh P
Pk`1pThq and pzh “ πk`1

h z, recalling the definition (21) of the bilinear form ah and using the orthogonality

property (20) of ppk`1
T ˝ IkT q, we have

T2 “
ÿ

TPTh

p∇ppk`1
T IkTGvh ´ Gvhq,∇ppk`1

T pzh ´ zqqT ` s1,hpI
k
hGvh, pzhq.
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By the approximation properties of ppk`1
T ˝ IkT q and of πk`1

h , and bounding }z}H2pΩq and }ϕ
h
}1,h as

before, we have
|T2| À h2

`

|vh|0,h ` }Gvh}H2pΩq

˘

}ϕh}. (86)

Finally, for the last term, we write

|T3| ď |vh|0,h|pzh|0,h À |vh|0,hh
2}z}H2pΩq À h2|vh|0,h}ϕh}, (87)

where we have used the Cauchy–Schwarz inequality in the first bound, the approximation properties (8) of
πk`1
h in the second bound, and elliptic regularity to conclude. Using (85)–(87) to estimate the right-hand

side of (84) the conclusion follows.

Remark 18 (Choice of s0,h). The choice (26) for the stabilisation bilinear form s0,h is crucial to have
the right-hand side of (87) scaling as h2. Penalizing the full difference vF ´vT instead of the lowest-order
part πkF pvF ´ vT q would have lead to a right-hand side only scaling as h.

We are now ready to prove Lemma 7.

Proof of Lemma 7. Let vh P U
k
h,0 and set ϕ

h
:“ Lkhvh. Recalling that, owing to (78), vh “ ´Gkhϕh, it is

inferred using the triangle inequality,

}vh}L8pΩq ď }π
k`1
h Gϕh}L8pΩq ` }Gkhϕh ´ π

k`1
h Gϕh}L8pΩq :“ T1 ` T2. (88)

The L8-stability of πk`1
h (cf. (7)) followed by the continuous Agmon’s inequality readily yields for the

first term
T1 À }Gϕh}L8pΩq À }Gϕh}

1{2

H1pΩq}Gϕh}
1{2

H2pΩq. (89)

For the second term, we use the global inverse inequality (12) with p “ 2 followed by Poincaré’s inequal-
ity (18) with r “ 2, and the bounds (79)–(80) to infer

T2 À }Gkhϕh ´ π
k`1
h Gϕh}

1{2 ˆ

´

h´2}Gkhϕh ´ π
k`1
h Gϕh}

¯1{2

À

´

h|ϕ
h
|0,h ` }Gϕh}H1pΩq

¯1{2

ˆ

´

|ϕ
h
|0,h ` }Gϕh}H2pΩq

¯1{2

.

(90)

Using a standard regularity shift for convex polygonal domains (cf., e.g., [25]), recalling that ϕh “ Lkhvh,
and using the H´1-bound (75) for Lkhvh, we have

}Gϕh}H1pΩq À }ϕh}H´1pΩq À }vh}1,h, }Gϕh}H2pΩq À }ϕh} “ }L
k
hvh}. (91)

Hence, plugging (91) into (89) and (90), and further observing that h|ϕ
h
|0,h À }vh}1,h by (74) and

|ϕ
h
|0,h “ |L

k
hvh|0,h by definition, (28) follows.

We next prove the discrete Gagliardo–Nirenberg–Poincaré’s inequality of Lemma 13.

Proof of Lemma 13. Using the same notation as in the proof of Lemma 7, we have

}∇hvh}LppΩqd ď }∇hπ
k`1
h Gϕh}LppΩqd ` }∇hpGkhϕh ´ π

k`1
h Gϕhq}LppΩqd :“ T1 ` T2.

For the first term, we use the W 1,p-stability of πk`1
h (cf. (7)) followed by the continuous Gagliardo–

Nirenberg–Poincaré’s inequality (63), and (91) to infer

T1 À |Gϕh|W 1,ppΩq À |Gϕh|
1
p

H1pΩq}Gϕh}
1´p
p

H2pΩq À }vh}
1
p

1,h}L
k
hvh}

1´p
p

0,h .

For the second term, on the other hand, we have

T2 À h2p 1
p´

1
2 q}∇hpGkhϕh ´ π

k`1
h Gϕhq}

À h2p 1
p´

1
2 q

´

h´1}Gkhϕh ´ π
k`1
h Gϕh}

¯
1
p

}Gkhϕh ´ I
k
hGϕh}

p´1
p

1,h

À }Gkhϕh ´ π
k`1
h Gϕh}

1
p

´

h´1}Gkhϕh ´ I
k
hGϕh}1,h

¯

p´1
p

À

´

h|ϕ
h
|0,h ` }Gϕh}H1pΩq

¯
1
p
´

|ϕ
h
|0,h ` }Gϕh}H2pΩq

¯

p´1
p

À }vh}
1
p

1,h}L
k
hvh}

p´1
p

0,h ,
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where we have used the global inverse inequality (11) for Lebesgue norms of broken polynomial func-
tions in the first line, the local inverse inequality (5) together with mesh quasi-uniformity (10) to infer
}∇hpGkhϕh´ π

k`1
h Gϕhq} À h´1}Gkhϕh´ π

k`1
h Gϕh} in the second line, (79) in the fourth line, and (91) to

conclude.
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