
HAL Id: hal-01203733
https://hal.science/hal-01203733v2

Submitted on 8 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid High-Order method for the Cahn-Hilliard
problem in mixed form

Florent Chave, Daniele Antonio Di Pietro, Fabien Marche, Franck Pigeonneau

To cite this version:
Florent Chave, Daniele Antonio Di Pietro, Fabien Marche, Franck Pigeonneau. A Hybrid High-Order
method for the Cahn-Hilliard problem in mixed form. SIAM Journal on Numerical Analysis, 2016, 54
(3), pp.1873-1898. �10.1137/15M1041055�. �hal-01203733v2�

https://hal.science/hal-01203733v2
https://hal.archives-ouvertes.fr


A HYBRID HIGH-ORDER METHOD FOR THE CAHN–HILLIARD1

PROBLEM IN MIXED FORM˚2

FLORENT CHAVE: , DANIELE A. DI PIETRO: , FABIEN MARCHE:; , AND FRANCK3

PIGEONNEAU§4

Abstract. In this work we develop a fully implicit Hybrid High-Order algorithm for the Cahn–5
Hilliard problem in mixed form. The space discretization hinges on local reconstruction operators6
from hybrid polynomial unknowns at elements and faces. The proposed method has several ad-7
vantageous features: (i) It supports fairly general meshes possibly containing polyhedral elements8
and nonmatching interfaces; (ii) it allows arbitrary approximation orders; (iii) it has a moderate9
computational cost thanks to the possibility of locally eliminating element-based unknowns by static10
condensation. We perform a detailed stability and convergence study, proving optimal convergence11
rates in energy-like norms. Numerical validation is also provided using some of the most common12
tests in the literature.13
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1. Introduction. Let Ω Ă Rd, d P t2, 3u, denote a bounded connected convex17

polyhedral domain with boundary BΩ and outward normal n, and let tF ą 0. The18

Cahn–Hilliard problem, originally introduced in [11, 10] to model phase separation in19

a binary alloy, consists in finding the order-parameter c : Ωˆr0, tFs Ñ R and chemical20

potential w : Ωˆ r0, tFs Ñ R such that21

dtc´4w “ 0 in Ωˆ p0, tFs,(1a)22

w “ Φ1pcq ´ γ24c in Ωˆ p0, tFs,(1b)23

cp0q “ c0 in Ω,(1c)24

Bnc “ Bnw “ 0 on BΩˆ p0, tFs,(1d)2526

where c0 P H
2pΩqXL2

0pΩq such that Bnc0 “ 0 on BΩ denotes the initial datum, γ ą 027

the interface parameter (usually taking small values), and Φ the free-energy such that28

(2) Φpcq :“
1

4
p1´ c2q2.29

Relevant extensions of problem (1) (not considered here) include the introduction of30

a flow which requires, in particular, to add a convective term in (1a); cf., e.g., [29, 5,31

7, 8, 31, 30].32

The discretization of the Cahn–Hilliard equation (1) has been considered in several33

works. Different aspects of standard finite element schemes have been studied, e.g.,34

in [22, 21, 14]; cf. also the references therein. Mixed finite elements are considered35
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in [24]. In [35], the authors study a nonconforming method based on C0 shape func-36

tions for the fourth-order primal problem obtained by plugging (1b) into (1a). Dis-37

continuous Galerkin (dG) methods have also received extensive attention. We can cite38

here [36], where a local dG method is proposed for a Cahn–Hilliard system modelling39

multi-component alloys, and a stability analysis is carried out; [23], where optimal40

error estimates are proved for a dG discretization of the Cahn–Hilliard problem in41

primal form; [30], which contains optimal error estimates for a dG method based on42

the mixed formulation of the problem including a convection term; [26], where a43

multi-grid approach is proposed for the solution of the systems of algebraic equations44

arising from a dG discretization of the Cahn–Hilliard equation. In all of the above45

references, standard meshes are considered. General polygonal meshes in dimension46

d “ 2, on the other hand, are supported by the recently proposed C1-conforming Vir-47

tual Element (VE) method of [4] for the problem in primal formulation; cf. also [6] for48

VE methods with arbitrary regularity. Therein, the convergence analysis is carried49

out under the assumption that the discrete order-parameter satisfies a C0pL8q-like a50

priori bound.51

In this work, we develop and analyze a fully implicit Hybrid High-Order (HHO)52

algorithm for problem (1) where the space discretization is based on the HHO(k` 1q53

variation proposed in [12] of the method of [19]. The method hinges on hybrid degrees54

of freedom (DOFs) located at mesh elements and faces that are polynomials of degree55

pk ` 1q and k, respectively. The nonlinear term in (1b) is discretized by means of56

element unknowns only. For the second-order diffusive operators in (1a) and (1b), on57

the other hand, we rely on two key ingredients devised locally inside each element:58

(i) A potential reconstruction obtained from the solution of (small) Neumann problems59

and (ii) a stabilization term penalizing the lowest-order part of the difference between60

element- and face-based unknowns. See also [13, 34, 33] for related methods for second-61

order linear diffusion operators, each displaying a set of distinctive features. The62

global discrete problem is then obtained by a standard element-by-element assembly63

procedure. When using a first-order (Newton-like) algorithm to solve the resulting64

system of nonlinear algebraic equations, element-based unknowns can be statically65

condensed. As a result, the only globally coupled unknowns in the linear subproblems66

are discontinuous polynomials of degree k on the mesh skeleton for both the order-67

parameter and the chemical potential. With a backward Euler scheme to march in68

time, the C0pH1q-like error on the order-parameter and the L2pH1q-like error on the69

chemical potential are proved to optimally converge as phk`1 ` τq (with h and τ70

denoting, respectively, the spatial and temporal mesh sizes) provided the solution has71

sufficient regularity.72

The proposed method has several advantageous features: (i) It supports general73

meshes possibly including polyhedral elements and nonmatching interfaces (resulting,74

e.g., from nonconforming mesh refinement); (ii) it allows one to increase the spatial75

approximation order to accelerate convergence in the presence of (locally) regular76

solutions; (iii) it is (relatively) inexpensive. When d “ 2, e.g., the number of globally77

coupled spatial unknowns for our method scales as 2 cardpFhqpk ` 1q (with cardpFhq78

denoting the number of mesh faces) as opposed to cardpThqpk`3qpk`2q (with cardpThq79

denoting the number of mesh elements) for a mixed dG method delivering the same80

order of convergence (i.e., based on broken polynomials of degree k`1). Additionally,81

thanks to the underlying fully discontinuous polynomial spaces, the proposed method82

can accomodate abrupt variations of the unknowns in the vicinity of the interface83

between phases.84
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Our analysis adapts the techniques originally developed in [30] in the context of dG85

methods. Therein, the treatment of the nonlinear term in (1b) hinges on C0-in-time86

a priori estimates for various norms and seminorms of the discrete order-parameter.87

Instrumental in proving these estimates are discrete functional analysis results, includ-88

ing discrete versions of Agmon’s and Gagliardo–Nirenberg–Poincaré’s inequalities for89

broken polynomial functions on quasi-uniform matching simplicial meshes. Adapting90

these tools to hybrid polynomial spaces on general meshes entails several new ideas.91

A first key point consists in defining appropriate discrete counterparts of the Laplace92

and Green’s operators. To this end, we rely on a suitably tailored L2-like hybrid inner93

product which guarantees stability estimates for the former and optimal approxima-94

tion properties for the latter. Another key point consists in replacing the standard95

nodal interpolator used in the proofs of [30, Lemmas 2.2 and 2.3] by the L2-orthogonal96

projector which, unlike the former, is naturally defined for meshes containing polyhe-97

dral elements. We show that this replacement is possible thanks to the W s,p-stability98

and approximation properties of the L2-orthogonal projector on broken polynomial99

spaces recently presented in a unified setting in [15]; cf. also the references therein100

for previous results on this subject.101

The material is organized as follows: In Section 2 we introduce the notation for102

space and time meshes and recall some key results on broken polynomial spaces; in103

Section 3 we introduce hybrid polynomial spaces and local reconstructions, and state104

the discrete problem; in Section 4 we carry out the stability analysis of the method,105

while the convergence analysis is detailed in Section 5; Section 6 contains an extensive106

numerical validation of the proposed algorithm; finally, in Appendix A we give proofs107

of the discrete functional analysis results used to derive stability bounds and error108

estimates.109

2. Discrete setting. In this section we introduce the discrete setting and recall110

some basic results on broken polynomial spaces.111

2.1. Space and time meshes. We recall here the notion of admissible spatial112

mesh sequence from [17, Chapter 1]. For the sake of simplicity, we will systematically113

use the term polyhedral also when d “ 2. Denote by H Ă R`˚ a countable set of114

spatial meshsizes having 0 as its unique accumulation point. We consider h-refined115

mesh sequences pThqhPH where, for all h P H, Th is a finite collection of nonempty116

disjoint open polyhedral elements T of boundary BT such that Ω “
Ť

TPTh
T and117

h “ maxTPTh
hT with hT standing for the diameter of the element T .118

A face F is defined as a planar closed connected subset of Ω with positive pd´1q-119

dimensional Hausdorff measure and such that (i) either there exist T1, T2 P Th such120

that F Ă BT1 X BT2 and F is called an interface or (ii) there exists T P Th such121

that F Ă BT X BΩ and F is called a boundary face. Mesh faces are collected in122

the set Fh, and the diameter of a face F P Fh is denoted by hF . For all T P Th,123

FT :“ tF P Fh | F Ă BT u denotes the set of faces lying on BT and, for all F P FT ,124

nTF is the unit normal to F pointing out of T . Symmetrically, for all F P Fh, we125

denote by TF the set of one (if F P Fb
h ) or two (if F P F i

h) elements sharing F .126

Assumption 1 (Admissible spatial mesh sequence). We assume that, for all h P H,127

Th admits a matching simplicial submesh Th and there exists a real number % ą 0128

independent of h such that, for all h P H, the following properties hold: (i) Shape reg-129

ularity: For all simplex S P Th of diameter hS and inradius rS, %hS ď rS; (ii) contact-130
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4 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU

regularity: For all T P Th, and all S P Th such that S Ă T , %hT ď hS.131

To discretize in time, we consider a uniform partition ptnq0ďnďN of the time interval132

r0, tFs with t0 “ 0, tN “ tF and tn ´ tn´1 “ τ for all 1 ď n ď N (the analysis can133

be adapted to nonuniform partitions). For any sufficiently regular function of time ϕ134

taking values in a vector space V , we denote by ϕn P V its value at discrete time tn,135

and we introduce the backward differencing operator δt such that, for all 1 ď n ď N ,136

(3) δtϕ
n :“

ϕn ´ ϕn´1

τ
P V.137

In what follows, we often abbreviate by a À b the inequality a ď Cb with a and b138

positive real numbers and C ą 0 generic constant independent of both the meshsize139

h and the time step τ (named constants are used in the statements for the sake of140

easy consultation). Also, for a subset X Ă Ω, we denote by p¨, ¨qX and }¨}X the usual141

L2pXq-inner product and norm, with the convention that we omit the index if X “ Ω.142

The same notation is used for the vector-valued space L2pXqd.143

2.2. Basic results on broken polynomial spaces. The proposed method144

is based on local polynomial spaces on mesh elements and faces. Let an integer145

l ě 0 be fixed. Let U be a subset of Rd, HU the affine space spanned by U , dU its146

dimension, and assume that U has a non-empty interior in HU . We denote by PlpUq147

the space spanned by dU -variate polynomials on HU of total degree l, and by πlU148

the L2-orthogonal projector onto this space. In the following sections, the set U will149

represent a mesh element or face. The space of broken polynomial functions on Th of150

degree l is denoted by PlpThq, and πlh is the corresponding L2-orthogonal projector.151

We next recall some functional analysis results on polynomial spaces. The following152

discrete trace and inverse inequalities are proved in [17, Chapter 1] (cf. in particular153

Lemmas 1.44 and 1.46): There is C ą 0 independent of h such that, for all T P Th,154

and all @v P PlpT q,155

(4) }v}F ď Ch
´ 1

2

F }v}T @F P FT ,156

and157

(5) }∇v}T ď Ch´1
T }v}T .158

We will also need the following local direct and reverse Lebesgue embeddings (cf. [15,159

Lemma 5.1]): There is C ą 0 independent of h such that, for all T P Th, all q, p P160

r1,`8s,161

(6) @v P PlpT q, C´1}v}LqpT q ď h
d
q´

d
p

T }v}LppT q ď C}v}LqpT q.162

The proof of the following results for the local L2-orthogonal projector can be found
in [15, Appendix A.2]. For an open set U of Rd, s P N and p P r1,`8s, we define the
seminorm |¨|W s,ppUq as follows: For all v PW s,ppUq,

|v|W s,ppUq :“
ÿ

αPNd, |α|`1“s

}Bαv}LppUq,

This manuscript is for review purposes only.
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where |α|`1 :“ α1 ` ¨ ¨ ¨ ` αd and Bα “ Bα1
1 ¨ ¨ ¨ B

αd

d . For s “ 0, we recover the usual163

Lebesgue spaces LppUq. The L2-orthogonal projector is W s,p-stable and has optimal164

W s,p-approximation properties: There is C ą 0 independent of h such that, for all165

T P Th, all s P t0, . . . , l ` 1u, all p P r1,`8s, and all v PW s,ppT q, it holds,166

(7) |πlT v|W s,ppT q ď C|v|W s,ppT q,167

and, for all m P t0, . . . , su,168

(8) |v ´ πlT v|Wm,ppT q ` h
1
p

T |v ´ π
l
T v|Wm,ppFT q ď Chs´mT |v|W s,ppT q,169

where Wm,ppFT q denotes the set of functions that belong to Wm,ppF q for all F P FT .170

Finally, there is C ą 0 independent of h such that it holds, for all F P Fh,171

(9) @v P H1pF q, }v ´ πlF v}F ď Ch|v|H1pF q.172

In the proofs of Lemmas 3 and 8 below, we will make use of the following global173

inverse inequalities, which require mesh quasi-uniformity.174

Proposition 1 (Global inverse inequalities for Lebesgue norms of broken polynomi-175

als). In addition to Assumption 1, we assume that the mesh is quasi-uniform, i.e.,176

(10) @T P Th, %h ď hT .177

Then, for all polynomial degree l ě 0 and all 1 ď p ď q ď `8, it holds178

(11) @wh P PlpThq, }wh}LqpΩq ď Ch
d
q´

d
p }wh}LppΩq,179

with real number C ą 0 independent of h.180

Proof. Let wh P PlpThq. We start by proving that, for all p P r1,`8s,181

(12) @wh P PlpThq, }wh}L8pΩq À h´
d
p }wh}LppΩq,182

which corresponds to (11) with q “ `8. By the local reverse Lebesgue embed-
dings (6), there is C ą 0 independent of h such that

@T P Th, }wh}L8pT q ď Ch
´ d

p

T }wh}LppT q ď Cρ´
d
ph´

d
p }wh}LppΩq,

where we have used the mesh quasi-uniformity assumption (10) to conclude. Inequal-
ity (12) follows observing that }wh}L8pΩq “ maxTPTh

}wh}L8pT q. Let us now turn to
the case 1 ď q ă `8. We have

}wh}
q
LqpΩq ď }wh}

q´p
L8pΩq}wh}

p
LppΩq À

´

h
d
q´

d
p }wh}LppΩq

¯q

,

where the conclusion follows using (12).183

3. The Hybrid High-Order method. In this section we define hybrid spaces184

and state the discrete problem.185
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3.1. Hybrid spaces. The discretization of the diffusion operator hinges on the186

HHO method of [12] using polynomials of degree pk ` 1q inside elements and k on187

mesh faces (cf. Remark 6 for further insight on this choice). The global discrete space188

is defined as189

(13) Ukh :“

˜

ą

TPTh

Pk`1pT q

¸

ˆ

˜

ą

FPFh

PkpF q

¸

.190

The restriction of Ukh to an element T P Th is denoted by UkT . For a generic collection191

of DOFs in Ukh, we use the underlined notation vh “ ppvT qTPTh
, pvF qFPFh

q and, for192

all T P Th, we denote by vT “ pvT , pvF qFPFT
q its restriction to UkT . Also, to keep the193

notation compact, we denote by vh (no underline) the function in Pk`1pThq such that194

vh|T “ vT @T P Th.195

In what follows, we will also need the zero-average subspace

Ukh,0 :“
!

vh P U
k
h | pvh, 1q “ 0

)

.

The interpolator Ikh : H1pΩq Ñ Ukh is such that, for all v P H1pΩq,196

(14) Ikhv :“ ppπk`1
T vqTPTh

, pπkF vqFPFh
q.197

We define on Ukh the seminorm }¨}1,h such that198

(15) }vh}
2
1,h :“ }∇hvh}

2 ` |vh|
2
1,h, |vh|

2
1,h :“ s1,hpvh, vhq,199

where ∇h denotes the usual broken gradient on H1pThq and the stabilization bilinear200

form s1,h on Ukh ˆ U
k
h is such that201

(16) s1,hpvh, zhq :“
ÿ

TPTh

ÿ

FPFT

h´1
F pπ

k
F pvF ´ vT q, π

k
F pzF ´ zT qqF .202

Using the stability and approximation properties of the L2-orthogonal projector ex-203

pressed by (7)–(8), one can prove that Ikh is H1-stable:204

(17) @v P H1pΩq, }Ikhv}1,h À }v}H1pΩq.205

The following Friedrichs’ inequalities can be proved using the arguments of [15,206

Lemma 7.2], where element DOFs of degree k are considered (cf. also [9, 16] for207

related results using dG norms): For all r P r1,`8q if d “ 2, all r P r1, 6s if d “ 3,208

(18) @vh P U
k
h,0, }vh}LrpΩq À }vh}1,h.209

The case r “ 2 corresponds to Poincaré’s inequality. Finally, to close this section, we210

prove that }¨}1,h defines a norm on Ukh,0.211

Proposition 2 (Norm }¨}1,h). The map }¨}1,h defines a norm on Ukh,0.212

Proof. We only have to show that }vh}1,h “ 0 ùñ vh “ 0. By (18), }vh}1,h ùñ213

vh ” 0, i.e., vT ” 0 for all T P Th. Plugging this result into the definition (15) of }¨}1,h,214

we get
ř

TPTh

ř

FPFT
h´1
F }vF }

2
F “ 0, which implies in turn vF ” 0 for all F P Fh.215
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3.2. Diffusive bilinear form and discrete problem. For all T P Th, we216

define the potential reconstruction operator pk`1
T : UkT Ñ Pk`1pT q such that, for all217

vT P U
k
T , pk`1

T vT is the unique solution of the following Neumann problem:218

(19) p∇pk`1
T vT ,∇zqT “ ´pvT ,4zqT `

ÿ

FPFT

pvF ,∇z¨nTF qF @z P Pk`1pT q,219

with closure condition ppk`1
T vT , 1qT “ pvT , 1qT . It can be proved that, for all v P220

H1pT q, denoting by IkT the restriction of the reduction map Ikh defined by (14) to221

H1pT q Ñ UkT ,222

(20) p∇ppk`1
T IkT v ´ vq,∇zqT “ 0 @z P Pk`1pT q,223

which expresses the fact that ppk`1
T ˝ IkT q is the elliptic projector onto Pk`1pT q (and,224

as such, has optimal approximation properties in Pk`1pT q). The diffusive bilinear225

form ah on Ukh ˆ U
k
h is obtained by element-wise assembly setting226

(21) ahpvh, zhq :“
ÿ

TPTh

p∇pk`1
T vT ,∇pk`1

T zT qT ` s1,hpvh, zhq,227

with stabilization bilinear form s1,h defined by (16). Denoting by }¨}a,h the seminorm228

defined by ah on Ukh, a straightforward adaptation of the arguments used in [19,229

Lemma 4] shows that230

(22) @vh P U
k
h, }vh}1,h À }vh}a,h À }vh}1,h,231

which expresses the coercivity and boundedness of ah. Additionally, following the232

arguments in [19, Theorem 8], one can easily prove that the bilinear form ah enjoys233

the following consistency property: For all v P Hmaxp2,lqpΩq XL2
0pΩq, l ě 1, such that234

Bnv “ 0 on BΩ,235

(23) sup
zhPU

k
h,0,}zh}1,h“1

ˇ

ˇ

ˇ
ahpI

k
hv, zhq ` p4v, zhq

ˇ

ˇ

ˇ
À hminpk`1,l´1q}v}HlpΩq.236

Remark 1 (Consistency of ah). For sufficiently regular solutions (i.e., when l “ k ` 2),237

equation (23) shows that the consistency error scales as hk`1. This is a consequence238

of the fact that both the potential reconstruction pk`1
T (cf. (19)) and the stabilization239

bilinear form s1,h (cf. (16)) are consistent for exact solutions that are polynomials of240

degree pk ` 1q inside each element. In particular, a key point in s1,h is to penalize241

πkF pvF ´ vT q instead of pvF ´ vT q. A similar stabilization bilinear form had been in-242

dependently suggested in the context of Hybridizable Discontinuous Galerkin methods243

in [32, Remark 1.2.4].244

The discrete problem reads: For all 1 ď n ď N , find pcnh, w
n
hq P U

k
h,0 ˆ U

k
h such that245

pδtc
n
h, ϕhq ` ahpw

n
h, ϕhq “ 0 @ϕ

h
P Ukh,(24a)246

pwnh , ψhq “ pΦ
1pcnhq, ψhq ` γ

2ahpc
n
h, ψhq @ψ

h
P Ukh,(24b)247

248

and c0h P U
k
h,0 solves249

(25) ahpc
0
h, ϕhq “ ´p4c0, ϕhq @ϕ

h
P Ukh.250

We note, in passing, that the face DOFs in c0h are not needed to initialize the algorithm.251
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Remark 2 (Static condensation). Problem (24) is a system of nonlinear algebraic252

equations, which can be solved using an iterative algorithm. When first order (Newton-253

like) algorithms are used, element-based DOFs can be locally eliminated at each iter-254

ation by a standard static condensation procedure.255

4. Stability analysis. In this section we establish some uniform a priori bounds256

on the discrete solution. To this end, we need a discrete counterpart of Agmon’s257

inequality; cf. [3, Lemma 13.2] and also [1, Theorem 3]. We define on Ukh the following258

L2-like inner product:259

(26)

pvh, zhq0,h :“ pvh, zhq ` s0,hpvh, zhq,

s0,hpvh, zhq :“
ÿ

TPTh

ÿ

FPFT

hF pπ
k
F pvF ´ vT q, π

k
F pzF ´ zT qqF ,

260

and denote by }¨}0,h and |¨|0,h the norm and seminorm corresponding to the bilinear261

forms p¨, ¨q0,h and s0,h, respectively. For further insight on the role of s0,h, cf. Re-262

mark 7. We introduce the discrete Laplace operator Lkh : Ukh Ñ Ukh such that, for all263

vh P U
k
h,264

(27) ´ pLkhvh, zhq0,h “ ahpvh, zhq @zh P U
k
h,265

and we denote by Lkhvh (no underline) the broken polynomial function in Pk`1pThq266

obtained from element DOFs in Lkhvh.267

Remark 3 (Restriction of Lkh to Ukh,0 Ñ Ukh,0). Whenever vh P U
k
h,0, Lkhvh P U

k
h,0.268

To prove it, it suffices to take zh “ IkhχΩ in (27) (with χΩ characteristic function of269

Ω), and observe that the left-hand side satisfies pLkhvh, zhq0,h “ pLkhvh, 1q while, by270

definition (21) of the bilinear form ah, the right-hand side vanishes. In what follows,271

we keep the same notation for the (bijective) restriction of Lkh to Ukh,0 Ñ Ukh,0.272

The following result, valid for d P t2, 3u, will be proved in Appendix A.273

Lemma 3 (Discrete Agmon’s inequality). Assume mesh quasi-uniformity (10). Then,274

it holds with real number C ą 0 independent of h,275

(28) @vh P U
k
h,0, }vh}L8pΩq ď C}vh}

1
2

1,h}L
k
hvh}

1
2

0,h.276

We also recall the following discrete Gronwall’s inequality (cf. [28, Lemma 5.1]).277

Lemma 4 (Discrete Gronwall’s inequality). Let two reals δ,G ą 0 be given, and, for
integers n ě 1, let an, bn, and χn denote nonnegative real numbers such that

aN ` δ
N
ÿ

n“1

bn ď δ
N
ÿ

n“1

χnan `G @N P N˚.

Then, if χnδ ă 1 for all n, letting ςn :“ p1´ χnδq´1, it holds278

(29) aN ` δ
N
ÿ

n“1

bn ď exp

˜

δ
N
ÿ

n“1

ςnχn

¸

ˆG @N P N˚.279

We are now ready to prove the a priori bounds.280
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Lemma 5 (Uniform a priori bounds). Under the assumptions of Lemma 3, and281

further assuming that τ ď L for a given real number L ą 0 independent of h and of τ282

(but depending on γ2) and sufficiently small, there is a real number C ą 0 independent283

of h and τ such that284

max
1ďnďN

´

}cnh}
2
a,h ` pΦpc

n
hq, 1q ` }w

n
h}

2 ` }cnh}L8pΩq ` }L
k
hc
n
h}

2
0,h

¯

`

N
ÿ

n“1

τ}wnh}
2
a,h ď C.285

Proof. The proof is split into several steps.286

(i) We start by proving that287

(30) max
1ďnďN

`

}cnh}
2
a,h ` pΦpc

n
hq, 1q

˘

`

N
ÿ

n“1

τ}wnh}
2
a,h À 1.288

Subtracting (24b) with ψ
h
“ cnh ´ cn´1

h from (24a) with ϕ
h
“ τwnh, and using the289

fact that, for all r, s P R, Φ1prqpr ´ sq ě Φprq ´Φpsq ´ 1
2 pr ´ sq

2, it is inferred, for all290

1 ď n ď N , that291

(31) γ2ahpc
n
h, c

n
h ´ c

n´1
h q ` τ}wnh}

2
a,h ` pΦpc

n
hq, 1q ď

1

2
}cnh ´ c

n´1
h }2 ` pΦpcn´1

h q, 1q.292

Notice that pΦpcnhq, 1q ě 0 for all 0 ď n ď N by definition (2) of Φ. Making ϕ
h
“293

τpcnh ´ cn´1
h q in (24a) and using the Cauchy–Schwarz and Young’s inequalities, we294

infer that295

(32) }cnh ´ c
n´1
h }2 ď

τ

2
}wnh}

2
a,h `

τ

2
}cnh ´ c

n´1
h }2a,h.296

Additionally, recalling the following formula for the backward Euler scheme:297

(33) 2xpx´ yq “ x2 ` px´ yq2 ´ y2,298

it holds299

(34) ahpc
n
h, c

n
h ´ c

n´1
h q “

1

2

`

}cnh}
2
a,h ` }c

n
h ´ c

n´1
h }2a,h ´ }c

n´1
h }2a,h

˘

.300

Plugging (32) and (34) into (31), we obtain301

302

γ2}cnh}
2
a,h `

´

γ2 ´
τ

2

¯

}cnh ´ c
n´1
h }2a,h `

3τ

2
}wnh}

2
a,h ` 2pΦpcnhq, 1q303

ď γ2}cn´1
h }2a,h ` 2pΦpcn´1

h q, 1q.304305

Provided τ ă 2γ2, the bound (30) follows summing the above inequality over 1 ď n ď
N , and using the fact that γ2}c0h}a,h ` 2pΦpc0hq, 1q À 1. To prove this bound, observe
that

γ2}c0h}a,h ` 2pΦpc0hq, 1q À γ2}c0h}
2
1,h ` 1` }c0h}

4
L4pΩq ` }c

0
h}

2

À γ2}c0h}
2
1,h ` 1` }c0h}

4
1,h ` }c

0
h}

2
1,h À 1,

where we have used the definition (2) of the free-energy Φ in the first line followed by306

the discrete Friedrichs’ inequality with r “ 4, 2 in the second line and the first bound307

on the initial datum in (46) below to conclude.308
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(ii) We next prove that309

(35)
N
ÿ

n“1

τ}cnh}
4
L8pΩq À 1.310

The discrete Agmon’s inequality (28) followed by the first inequality in (22) yields

N
ÿ

n“1

τ}cnh}
4
L8pΩq À

N
ÿ

n“1

τ}cnh}
2
a,h}L

k
hc
n
h}

2
0,h À

ˆ

max
1ďnďN

}cnh}
2
a,h

˙

ˆ

N
ÿ

n“1

τ}Lkhc
n
h}

2
0,h.

The first factor is À 1 owing to (30). Thus, to prove (35), it suffices to show that311

also the second factor is À 1. Using the definition (27) of Lkh followed by (24b) with312

ψ
h
“ Lkhc

n
h, we infer that313

(36) γ2}Lkhc
n
h}

2
0,h “ ´γ

2ahpc
n
h, L

k
hc
n
hq “ pΦ

1pcnhq, L
k
hc
n
hq ´ pw

n
h , L

k
hc
n
hq.314

Using again (27) for the second term in the right-hand side of (36) followed by the
Cauchy–Schwarz and Young’s inequalities, we obtain

γ2}Lkhc
n
h}

2
0,h “ pΦ

1pcnhq, L
k
hc
n
hq ` ahpc

n
h, w

n
hq ` s0,hpL

k
hc
n
h, w

n
hq

ď
1

2γ2
}Φ1pcnhq}

2`
γ2

2
}Lkhc

n
h}

2
0,h`

γ2

2
}cnh}

2
a,h`

1

2γ2
}wnh}

2
a,h`

1

2γ2
|wnh|

2
0,h.

Hence, since |wnh|0,h ď h|wnh|1,h À }w
n
h}a,h,

γ2}Lkhc
n
h}

2
0,h À γ´2}Φ1pcnhq}

2 ` γ2}cnh}
2
a,h ` γ

´2}wnh}
2
a,h.

The fact that
řn
n“1 τ}L

k
hc
n
h}

2
0,h À 1 then follows multiplying the above inequality by315

τ , summing over 1 ď n ď N , using (30) to bound the second and third term in the316

right-hand side, and observing that317

(37) }Φ1pcnhq}
2 ď }cnh}

6
L6pΩq ` 2}cnh}

4
L4pΩq ` }c

n
h}

2 À }cnh}
6
1,h ` }c

n
h}

4
1,h ` }c

n
h}

2
1,h À 1,318

where we have used the definition (2) to obtain the first bound, Friedrichs’ inequal-319

ity (18) with r “ 6, 4, 2 to obtain the second bound, and (30) together with the first320

inequality in (22) to conclude.321

(iii) We proceed by proving that322

(38) max
1ďnďN

}wnh}
2 ` γ2

N
ÿ

n“1

τ}δtc
n
h}

2 À 1.323

Let w0
h :“ πk`1

h pΦ1pc0hq ´ γ
24c0q. Recalling (25), w0

h satisfies324

(39) pw0
h, ψhq “ pΦ

1pc0hq, ψhq ` γ
2ahpc

0
h, ψhq @ψ

h
P Ukh.325

For any 1 ď n ď N , subtracting from (24b) at time step n (24b) at time step pn´ 1q
if n ą 1 or (39) if n “ 1, and selecting ψ

h
“ wnh as a test function in the resulting

equation, it is inferred that

pwnh ´ w
n´1
h , wnhq “ τγ2ahpδtc

n
h, w

n
hq ` pΦ

1pcnhq ´ Φ1pcn´1
h q, wnhq.
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Using (24a) with ϕ
h
“ τγ2δtc

n
h to infer τγ2ahpδtc

n
h, w

n
hq “ ´τγ

2}δtc
n
h}

2, we get326

(40) pwnh ´ w
n´1
h , wnhq ` τγ

2}δtc
n
h}

2 “ pΦ1pcnhq ´ Φ1pcn´1
h q, wnhq.327

From the fact that328

(41) Φ1prq ´ Φ1psq “ pr2 ` rs` s2 ´ 1qpr ´ sq,329

followed by the Cauchy–Schwarz and Young’s inequalities, we infer330

(42) |pΦ1pcnhq ´ Φ1pcn´1
h q, wnhq| ď

τγ2

2
}δtc

n
h}

2 `
τCn

2
}wnh}

2,331

with Cn :“ Cp1` }cnh}
4
L8pΩq ` }c

n´1
h }4L8pΩqq for a real number C ą 0 independent of332

h and τ . Using (33) for the first term in the left-hand side of (40) together with (42)333

for the right-hand side, we get334

(43) }wnh}
2 ` }wnh ´ w

n´1
h }2 ` τγ2}δtc

n
h}

2 ď τCn}wnh}
2 ` }wn´1

h }2.335

Summing (43) over 1 ď n ď N , observing that, thanks to (35) and the second bound
in (46) below, we can have τCn ă 1 for all 1 ď n ď N provided that we choose τ small
enough, and using the discrete Gronwall’s inequality (29) (with δ “ τ , an “ }wnh}

2,
bn “ γ2}δtc

n
h}

2, χn “ Cn and G “ }w0
h}

2), the estimate (38) follows if we can bound
}w0

h}
2. To this end, recalling the definition of w0

h and using the Cauchy–Schwarz
inequality, one has

}w0
h}

2 “ pΦ1pc0hq, w
0
hq ´ γ

2p4c0, w0
hq ď

`

}Φ1pc0hq} ` γ
2}c0}H2pΩq

˘

}w0
h},

and the conclusion follows from the regularity of c0 noting the first bound in (46)336

below and estimating the first term in parentheses as in (37).337

(iv) We conclude by proving the bound338

(44) max
1ďnďN

´

}cnh}L8pΩq ` }L
k
hc
n
h}

2
0,h

¯

À 1.339

Using the Cauchy–Schwarz and Young’s inequalities to bound the right-hand side340

of (36) followed by (18) with r “ 6, 4, 2 and the first inequality in (22), we obtain, for341

all 1 ď n ď N ,342

(45)

γ2}Lkhc
n
h}

2
0,h À γ´2

`

}Φ1pcnhq}
2 ` }wnh}

2
˘

À

´

}cnh}
6
L6pΩq ` }c

n
h}

4
L4pΩq ` }c

n
h}

2
¯

` }wnh}
2

À
`

}cnh}
6
a,h ` }c

n
h}

4
a,h ` }c

n
h}

2
a,h

˘

` }wnh}
2 À 1,

343

where we have concluded using (30) multiple times for the terms in parentheses
and (38) for }wnh}

2. Using the discrete Agmon’s inequality (28) followed by Young’s
inequality and the first inequality in (22), we infer

max
1ďnďN

}cnh}L8pΩq À max
1ďnďN

´

}cnh}a,h ` }L
k
hc
n
h}0,h

¯

À 1,

where the conclusion follows using (30) for the first addend in the argument of the344

maximum and (45) for the second.345
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Proposition 6 (Bounds for c0h). Let c0h P U
k
h,0 be defined by (25) from an initial346

datum c0 P H
2pΩq X L2

0pΩq such that Bnc0 “ 0 on BΩ. It holds, with real number347

C ą 0 independent of h,348

(46) }c0h}1,h ` }c
0
h}L8pΩq ď C}c0}H2pΩq.349

Proof. To prove the first bound in (46), let ϕ
h
“ c0h in (25) and use the first inequality

in (22), the Cauchy–Schwarz inequality and the discrete Poincaré’s inequality (18)
with r “ 2 to infer

}c0h}
2
1,h À ahpc

0
h, c

0
hq “ ´p4c0, c0hq ď }4c0}}c0h} À }c0}H2pΩq}c

0
h}1,h.

To prove the second bound in (46), we start by noticing that, using the definition (27)
of Lkh with zh “ ´L

k
hc

0
h,

}Lkhc
0
h}

2
0,h “ ´ahpc

0
h, L

k
hc

0
hq “ p4c0, Lkhc0hq ď }c0}H2pΩq}L

k
hc

0
h},

hence }Lkhc
0
h}0,h ď }c0}H2pΩq. Combining the discrete Agmon’s inequality (28) with

the latter inequality and the first bound in (46), one gets

}c0h}L8pΩq ď }c
0
h}

1
2

1,h}L
k
hc

0
h}

1
2

0,h À }c0}H2pΩq,

and the desired result follows.350

5. Error analysis. In this section we carry out the error analysis of the method (24).351

5.1. Error equations. Our goal is to estimate the difference between the dis-352

crete solution obtained solving (24) and the projections of the exact solution such353

that, for all 1 ď n ď N , pwnh “ Ikhw
n, while, for all 0 ď n ď N , pcnh P U

k
h,0 solves354

ahppc
n
h, ϕhq “ ´p4c

n, ϕhq @ϕ
h
P Ukh,355

and ppcnh, 1q “ 0. We define, for all 1 ď n ď N , the errors356

(47) enc,h :“ cnh ´pcnh, enw,h :“ wnh ´ pwnh.357

By definition (25), pc0h “ c0h, which prompts us to set e0
c,h :“ 0. Using Poincaré’s358

inequality (18) with r “ 2 and the consistency (23) of ah, the following estimate is359

readily inferred: For all 0 ď n ď N , assuming the additional regularity cn P Hk`2pΩq,360

(48) }pcnh ´ π
k`1
h cn} À }pcnh ´ I

k
hc
n}1,h À hk`1}cn}Hk`2pΩq.361

362

Remark 4 (Improved L2-estimate). We notice, in passing, that, using elliptic regu-363

larity (which holds since Ω is convex, cf., e.g., [25]), one can improve this result and364

show that }pcnh ´ π
k`1
h cn} À hk`2}cn}Hk`2pΩq.365

Recalling (24), for all 1 ď n ď N , the error penc,h, e
n
w,hq P U

k
h,0 ˆ U

k
h solves366

pδte
n
c,h, ϕhq ` ahpe

n
w,h, ϕhq “ Epϕ

h
q @ϕ

h
P Ukh,(49a)367

penw,h, ψhq “ pΦ
1pcnhq ´ Φ1pcnq, ψhq ` γ

2ahpe
n
c,h, ψhq, @ψ

h
P Ukh,(49b)368

369
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where, in (49a), we have defined the consistency error370

(50) Epϕ
h
q :“ ´pδtpc

n
h, ϕhq ´ ahppw

n
h, ϕhq,371

while in (49b) we have combined the definitions of pwnh and pcnh with (1b) to infer

p pwnh , ψhq ´ γ
2ahppc

n
h, ψhq “ pw

n `4cn, ψhq “ pΦ1pcnq, ψhq.

5.2. Error estimate.372

Theorem 7 (Error estimate). Suppose that the assumptions of Lemma 5 hold true.373

Let pc, wq denote the solution to (1), for which we assume the following additional374

regularity:375

(51) c P C2pr0, tFs;L
2pΩqq X C1pr0, tFs;H

k`2pΩqq, w P C0pr0, tFs;H
k`2pΩqq.376

Then, the following estimate holds for the errors defined by (47):377

(52)

˜

max
1ďnďN

}enc,h}
2
a,h `

N
ÿ

n“1

τ}enw,h}
2
a,h

¸

1
2

ď Cphk`1 ` τq,378

with real number C ą 0 independent of h and τ .379

Proof. Let 1 ď n ď N . Subtracting (49b) with ψ
h
“ δte

n
c,h from (49a) with ϕ

h
“ enw,h,380

we obtain381

(53) }enw,h}
2
a,h ` γ

2ahpe
n
c,h, δte

n
c,hq “ Epenw,hq ` pΦ1pcnq ´ Φ1pcnhq, δte

n
c,hq :“ T1 ` T2.382

We proceed to bound the terms in the right-hand side.383

(i) Bound for T1. Let ϕ
h
P Ukh. Adding to (50) the quantity

pdtc
n ´4wn, ϕhq ` pδtπk`1

h cn ´ δtc
n, ϕhq “ 0,

(use (1a) to prove that the first addend is 0 and the definition of the L2-orthogonal
projector πk`1

h to prove that the second is also 0), we can decompose Epϕ
h
q as follows:

Epϕ
h
q “ pdtc

n ´ δtc
n, ϕhq ` pδtpπ

k`1
h cn ´ pcnhq, ϕhq ´

´

ahppw
n
h, ϕhq ` p4w

n, ϕhq
¯

:“ T1,1 ` T1,2 ` T1,3.

For the first term, we have384

(54) |T1,1| ď }dtc
n ´ δtc

n}}ϕh} À τ}c}C2pr0,tFs;L2pΩqq}ϕh}1,h À τ}ϕ
h
}1,h,385

where we have used the Cauchy–Schwarz inequality, a classical estimate based on386

Taylor’s remainder, Poincaré’s inequality (18) with r “ 2, and we have concluded387

using the regularity (51) for c. For the second term, on the other hand, using the388

Cauchy–Schwarz inequality followed by (48) together with the C1-stability of the389

backward differencing operator (3), Poincaré’s inequality, and the regularity (51) for390

c, we readily obtain391

(55) |T1,2| ď }δtpπ
k`1
h cn´pcnhq}}ϕh} À hk`1}cn}C1pr0,tFs;Hk`2pΩqq}ϕh} À hk`1}ϕ

h
}1,h.392
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Finally, recalling the consistency properties (23) of ah, we get for the last term393

(56)
|T1,3| À hk`1}wn}Hk`2pΩq}ϕh}1,h ď hk`1}w}C0pr0,tFs;Hk`2pΩqq}ϕh}1,h

À hk`1}ϕ
h
}1,h.

394

Collecting the bounds (54)–(56), it is inferred that395

(57) $ :“ sup
ϕ

h
PUk

h,}ϕh
}1,h“1

Epϕ
h
q À hk`1 ` τ,396

so that, for any real ε ą 0, denoting by Cε ą 0 a real depending on ε but not on h or397

τ , and using the second inequality in (22) to bound }enw,h}1,h À }e
n
w,h}a,h,398

(58) |T1| ď $}enw,h}1,h À ph
k`1 ` τq}enw,h}1,h ď Cεph

k`1 ` τq2 ` ε}enw,h}
2
a,h.399

(ii) Bound for T2. Set, for the sake of brevity, Qn :“ Φ1pcnhq ´Φ1pcnq, and define the400

DOF vector zh P U
k
h such that401

(59)
zT “ πk`1

T Qn @T P Th, zF “ πkF tQ
nuF @F P F i

h, zF “ πkF zTF
@F P Fb

h402

where t¨uF denotes the usual average operator such that, for any function ϕ admitting403

a possibly two-valued trace on F P FT1
X FT2

, tϕuF :“ 1
2 pϕ|T1

` ϕ|T2
q, while, for a404

boundary face F P Fb
h , TF denotes the unique element in Th such that F P FTF

.405

We have, using the definition of πk`1
T followed by (49a) with ϕ

h
“ zh, (57), and the406

second inequality in (22),407

(60) T2 “ pzh, δte
n
c,hq “ Epzhq ´ ahpenw,h, zhq À

`

$` }enw,h}a,h
˘

}zh}1,h.408

By Proposition 9 below,409

(61) }zh}1,h À }e
n
c,h}a,h ` h

k`1,410

hence, for any real ε ą 0, denoting by Cε ą 0 a real number depending on ε but not411

on h or τ , and recalling the bound (57) for $,412

(62) |T2| ď Cε
`

}enc,h}
2
a,h ` ph

k`1 ` τq2
˘

` ε}enw,h}
2
a,h.413

(iii) Conclusion. Using (58) and (62) with ε “ 1
4 to bound the right-hand side of (53),

it is inferred

}enw,h}
2
a,h ` γ

2ahpe
n
c,h, δte

n
c,hq À ph

k`1 ` τq2 ` }enc,h}
2
a,h.

Multiplying by τ , summing over 1 ď n ď N , using (33) for the second term in the
left-hand side, and recalling that, by definition, e0

c,h “ 0, we get

γ2}eNc,h}
2
a,h `

N
ÿ

n“1

τ}enw,h}
2
a,h ď

N
ÿ

n“1

Cτ}enc,h}
2
a,h ` Cph

k`1 ` τq2,

with C ą 0 independent of h and τ . The error estimate (52) then follows from an414

application of the discrete Gronwall’s inequality (29) with δ “ τ , an “ γ2}enc,h}
2
a,h,415

bn “ }enw,h}
2
a,h, χn “ C, and G “ Cphk`1 ` τq2 assuming τ small enough.416
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Remark 5 (BDF2 time discretization). In Section 6, we have also used a BDF2
scheme to march in time, which corresponds to the backward differencing operator

δ
p2q
t ϕ :“

3ϕn`2 ´ 4ϕn`1 ` ϕn

2τ
,

used in place of (3). The analysis is essentially analogous to the backward Euler
scheme, the main difference being that formula (33) is replaced by

2xp3x´ 4y ` zq “ x2 ´ y2 ` p2x´ yq2 ´ p2y ´ zq2 ` px´ 2y ` zq2.

As a result, the right-hand side of (52) scales as phk`1 ` τ2q instead of phk`1 ` τq.417

To prove the bound (61), we need discrete counterparts of the following Gagliardo–418

Nirenberg–Poincaré’s inequalities valid for p P r2,`8q if d “ 2, p P r2, 6s if d “ 3, and419

all v P H2pΩq X L2
0pΩq:420

(63) |v|W 1,ppΩq À }v}
1´α|v|αH2pΩq À |v|

1´α
H1pΩq|v|

α
H2pΩq, α :“

1

2
`
d

2

ˆ

1

2
´

1

p

˙

,421

where the first bound follows from [1, Theorem 3] and the second from Poincaré’s422

inequality. The proof of the following Lemma will be given in Appendix A.423

Lemma 8 (Discrete Gagliardo–Nirenberg–Poincaré’s inequalities). Under the as-424

sumptions of Lemma 3, it holds for p P r2,`8q if d “ 2, p P r2, 6s if d “ 3 with425

C ą 0 independent of h and α defined as in (63),426

(64) @vh P U
k
h,0, }∇hvh}LppΩqd ď C}vh}

1´α
1,h }L

k
hvh}

α
0,h.427

Proposition 9 (Bound on }zh}1,h). With zh defined as in (59), the bound (61)428

holds.429

Proof. Recalling the definition (15) of the }¨}1,h-norm, one has430

(65)

}zh}
2
1,h “ }∇hπ

k`1
h Qn}2 `

ÿ

TPTh

ÿ

FPFTXF i
h

h´1
F }π

k
F ptQ

nuF ´ π
k`1
T Qnq}2F :“ T2

1 ` T2
2.431

(i) Bound for T1. Using the H1-stability (7) of πk`1
h , formula (41) to infer Qn “

qnpcnh ´ c
nq with qn :“ pcnhq

2 ` cnhc
n ` pcnq2 ´ 1, the triangle and Hölder inequalities,

we get, for all T P Th,

|T1| À }∇hQ
n} ď }qn∇hpc

n
h ´ c

nq} ` }pcnh ´ c
nq∇hq

n}

À

´

}cnh}
2
L8pΩq ` }c

n}2L8pΩq ` 1
¯

}∇hpc
n
h ´ c

nq}

` }cnh ´ c
n}L6pΩq

`

}cnh}L8pΩq ` }c
n}L8pΩq

˘ `

}∇hc
n
h}L3pΩqd ` }∇cn}L3pΩqd

˘

.

Noting the a priori bound (44) and the regularity assumption (51), both }cnh}L8pΩq and432

}cn}L8pΩq are À 1. Additionally, by the continuous Gagliardo–Nirenberg–Poincaré’s433

inequality (63) with p “ 3 and the regularity assumption (51), one has with α “434
1{2 ` d{12, }∇cn}L3pΩqd À |c

n|
1´α
H1pΩq}c

n}αH2pΩq À 1. Similarly, the discrete Gagliardo–435

Nirenberg–Poincaré’s inequality (64) with p “ 3 combined with the a priori bounds (30)436

and (44) yields }∇hc
n
h}L3pΩqd À }c

n
h}

1´α
1,h }L

k
hc
n
h}
α
0,h À 1. Then, inserting˘ppcnh´π

k`1
h cnq437

and using the triangle inequality,438

(66)
|T1| À

`

}∇he
n
c,h} ` }e

n
c,h}L6pΩq

˘

`
`

}∇hppc
n
h ´ π

k`1
h cnq} ` }pcnh ´ π

k`1
h cn}L6pΩq

˘

`
`

}∇hpπ
k`1
h cn ´ cnq} ` }πk`1

h cn ´ cn}L6pΩq

˘

:“ T1,1 ` T1,2 ` T1,3.
439
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Using the discrete Friedrichs’ inequality (18) with r “ 6 together with the defini-440

tion (15) of the }¨}1,h-norm and the first inequality in (22), it is readily inferred441

that T1,1 À }enc,h}a,h. Again the Friedrichs’ inequality (18) with r “ 6 followed442

by the approximation properties (48) of pcnh and the regularity (51) yields T2,2 À443

hk`1}cn}Hk`2pΩq À hk`1. Finally, using the approximation properties (8) of πk`1
h , we444

have T1,3 À hk`1p}cn}Hk`2pΩq ` }c
n}Wk`1,6pΩqq À hk`1, where we have used the fact445

that Hk`2pΩq Ă W k`1,6pΩq for all k ě 0 and d P t2, 3u on domains satisfying the446

cone condition (cf. [2, Theorem 4.12]). Gathering the previous bounds, we conclude447

that448

(67) |T1| À }e
n
c,h}a,h ` h

k`1.449

(ii) Bound for T2. For all interface F P FT1
X FT2

, we denote by r¨sF the usual450

jump operator such that, for every function ϕ with a possibly two-valued trace on451

F , rϕsF :“ ϕ|T1
´ ϕ|T2

(the orientation is irrelevant). Let an element T P Th and an452

interface face F P FT X FT` be fixed. Using the L2-stability of πkF , inserting ˘QnT453

(with QnT :“ Qn|T ), and using the triangle inequality it holds,454

(68)

}πkF ptQ
nuF ´ π

k`1
T QnT q}F ď }tQ

nuF ´ π
k`1
T QnT }F

ď
1

2
}rQnsF }F ` }Q

n
T ´ π

k`1
T QnT }F

À }rQnsF }F ` h
1
2

T }∇QnT }T ,

455

where we have used (8) for the last term. Let us bound the first term in the right-hand
side. Observing that rΦ1pcnqsF “ 0 and recalling (41), it is inferred

|rQnsF | “ |rΦ
1pcnhqsF | ď |rc

n
hsF |

`

|cT |
2 ` |cT ||cT` | ` |cT` |

2 ` 1
˘

.

Using this relation, and noticing the a priori bound (44), we get

}rQnsF }F À
´

}cnh}
2
L8pΩq ` 1

¯

}rcnhsF }F À }rc
n
hsF }F “ }rc

n
h ´ c

nsF }F ,

where the conclusion follows observing that cn has zero jumps across interfaces. In-456

serting ˘rpcnh ´ π
k`1
h cnsF inside the norm and using the triangle inequality, we obtain457

(69) }rQnsF }F À }rc
n
h ´ pcnhsF }F ` }rpc

n
h ´ π

k`1
h cnsF }F ` }rπ

k`1
h cn ´ cnsF }F .458

Define on H1pThq the jump seminorm |v|2J :“
ř

FPF i
h
h´1
F }rvsF }

2
F . Let us prove that459

(70) @vh P U
k
h, |vh|J À }vh}1,h À }vh}a,h.460

Inserting ˘pπkF rvhsF ´ vF q and using the triangle inequality, it is inferred that

|vh|
2
J À

ÿ

FPF i
h

ÿ

TPTF

h´1
F

`

}vT ´ π
k
F vT }

2
F ` }π

k
F pvT ´ vF q}

2
F

˘

À }∇hvh}
2 ` |vh|

2
1,h,

where we have used (9) followed by the discrete trace inequality (4) and the fact that461

cardpFT q À 1 by mesh regularity for the first term, and the definition (15) of the462

|¨|1,h-seminorm for the second term. This proves the first bound in (70). The second463

bound follows from (22).464
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Fig. 1: Mesh families for the numerical tests

Multiplying (68) by h
´ 1

2

F , squaring, summing over F P FTXF i
h then over T P Th, using465

mesh regularity to infer that cardpFT q is bounded uniformly in h, and noticing (69)466

yields467

(71)

T2
2 À }∇hQ

n}2 ` |cnh ´ pcnh|
2
J ` |pc

n
h ´ π

k`1
h cn|2J ` |π

k`1
h cn ´ cn|2J

À }∇hQ
n}2 ` }enc,h}

2
a,h ` }pc

n
h ´ I

k
hc
n}2a,h ` |π

k`1
h cn ´ cn|2J

À }∇hQ
n}2 ` }enc,h}

2
a,h `

`

hk`1}cn}Hk`2pΩq

˘2
,

468

where we have used (70) to pass to the second line and the approximation proper-469

ties (48) of pcnh and (8) of πk`1
h to conclude. Proceeding as in point (i) to bound the470

first term in the right-hand side of (71), and recalling the regularity assumptions (51)471

on c, we conclude472

(72) |T2| ď }e
n
c,h}a,h ` h

k`1.473

(iii) Conclusion. Using (67) and (72) in (65), the estimate (61) follows.474

Remark 6 (Polynomial degree for element DOFs). The use of polynomials of degree475

pk` 1q (instead of k) as elements DOFs in the discrete space (13) is required to infer476

an estimate of order hk`1 in (66) and for the last term in (71).477

6. Numerical results. In this section we provide numerical evidence to confirm478

the theoretical results.479

6.1. Convergence. We start by a non-physical numerical test that demon-480

strates the orders of convergence achieved by our method. We solve the Cahn-Hilliard481

problem (49) on the unit square Ω “ p0, 1q2 with tF “ 1, order-parameter482

(73) cpx, tq “ t cospπx1q cospπx2q,483

and chemical potential w inferred from c according to (1b). The right-hand side of (1a)484

is also modified by introducing a nonzero source in accordance with the expression of485

c. The interface parameter γ is taken equal to 1.486

We consider the triangular, Cartesian, and (predominantly) hexagonal mesh families487

of Figure 1. The two former mesh families were introduced in the FVCA5 bench-488

mark [27], whereas the latter was introduced in [20]. To march in time, we use the489

implicit Euler scheme. Since the order-parameter is linear in time, only the spatial490
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N }a,h vs. h

Fig. 2: Energy-errors at final time vs. h. From left to right: triangular, Cartesian
and (predominantly) hexagonal mesh families; cf. Figure 1.

component of the discretization error is nonzero and the choice of the time step is491

irrelevant. The energy errors }cNh ´ Ikhc
N }a,h and }wNh ´ Ikhw

N }a,h at final time are492

depicted in Figure 2. For all mesh families, the convergence rate is pk ` 1q, in accor-493

dance with Theorem 7. For the sake of completeness, we also display in Figure 3 the494

L2-errors }cnh ´ πk`1
h cn} and }wnh ´ πk`1

h wn}, for which an optimal convergence rate495

of pk ` 2q is observed.496

6.2. Evolution of an elliptic and a cross-shaped interfaces. The numerical
examples of this section consist in tracking the evolution of initial data corresponding,
respectively, to an elliptic and a cross-shaped interface between phases. For the elliptic
interface test case of Figure 4, the initial datum is

c0pxq “

#

0.95 if 81 px1 ´ 0.5q
2
` 9 px2 ´ 0.5q

2
ă 1,

´0.95 otherwhise.

For the cross-shaped interface test case of Figure 5, we take

c0pxq “

$

’

&

’

%

0.95
if 5

`

|px2´0.5q ´ 2
5 px1´0.5q| ` | 25 px1´0.5q ` px2´0.5q|

˘

ă 1

or 5
`

|px1´0.5q ´ 2
5 px2´0.5q| ` | 25 px2´0.5q ` px1´0.5q|

˘

ă 1,

´0.95 otherwhise.

In both cases, the space domain is the unit square Ω “ p0, 1q2, and the interface497

parameter γ is taken to be 1 ¨ 10´2. We use a 64 ˆ 64 uniform Cartesian mesh and498

k “ 1 with time step τ “ γ2{10.499
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Fig. 3: L2-errors at final time vs. h. From left to right: triangular, Cartesian and
(predominantly) hexagonal mesh families; cf. Figure 1.

In the test case of Figure 4, we observe evolution of the elliptic interface towards a500

circular interface and, as expected, mass is well preserved (+0.5% with respect to the501

initial ellipse). Similar considerations hold for the cross-shaped test case of Figure 5,502

which has the additional difficulty of presenting sharp corners.503

6.3. Spinodal decomposition. Spinodal decomposition can be observed when504

a binary alloy is heated to a high temperature for a certain time and then abruptly505

cooled. As a result, phases are separated in well-defined high concentration areas. In506

Figure 6, we display the numerical solutions obtained on a 128ˆ128 uniform Cartesian507

mesh for k “ 0 and on a uniform 64ˆ 64 Cartesian mesh for k “ 1. In both cases, we508

use the same initial conditions taking random values between -1 and 1 on a 32 ˆ 32509

uniform Cartesian partition of the domain. The interface parameter is γ “ 1{100,510

and we take τ “ γ2{10. For k “ 0, the time discretisation is based on the Backward511

Euler scheme while, for k “ 1, we use the BDF2 formula to make sure that the spatial512

and temporal error contributions are equilibrated; cf. Remark 5.513

The separation of the two components into two distinct phases happens over a very514

small time; see two leftmost panels of Figure 6 corresponding to times 0 and 5 ¨ 10´5,515

respectively. Later, the phases gather increasingly slowly until the interfaces develop516

a constant curvature; see the two rightmost panels of Figure 6, corresponding to times517

1.25 ¨ 10´3 and 3.6 ¨ 10´2, respectively. At the latest stages, we can observe that the518

solution exhibits a (small) dependence on the mesh and/or the polynomial degree,519

and the high-concentration regions in Figures 6a and 6b are highly superposable but520
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20 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU

Fig. 4: Evolution of an elliptic interface (left to right, top to bottom). Displayed
times are 0 , 3 ¨ 10´3 , 0.3, 1.

Fig. 5: Evolution of a cross-shaped interface (left to right, top to bottom). Displayed
times are 0, 5 ¨ 10´5, 1 ¨ 10´2, 8.17 ¨ 10´2.

not identical.521

Appendix A. Proofs of discrete functional analysis results.522

This section contains the proofs of Lemmas 3 and 8 preceeded by the required pre-523

liminary technical results.524
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Proposition 10 (Estimates for Lkh). Assuming mesh quasi-uniformity (10), it holds525

@vh P U
k
h, }Lkhvh}0,h À h´1}vh}1,h,(74)526

@vh P U
k
h,0, }Lkhvh}H´1pΩq À }vh}1,h.(75)527528

Proof. (i) Proof of (74). Let vh P U
k
h. Making zh “ ´L

k
hvh in the definition (27) of

Lkh, we have

}Lkhvh}
2
0,h “ ´ahpvh, L

k
hvhq À }vh}1,h}L

k
hvh}1,h À }vh}1,hh

´1}Lkhvh}0,h,

where we have used the continuity of ah expressed by the second inequality in (22)529

followed by the fact that, for all zh P Ukh, }zh}1,h À h´1}zh}0,h. This inequality530

follows from the definition (15) of the }¨}1,h-norm using the inverse inequality (5) to531

bound the first term and recalling mesh quasi-uniformity (10).532

(ii) Proof of (75). Let vh P U
k
h,0. Observing that Lkhvh has zero-average on Ω (cf.533

Remark 3), we have534

(76) }Lkhvh}H´1pΩq “ sup
ϕPH1pΩqXL2

0pΩq,}ϕ}H1pΩq“1

pLkhvh, ϕq.535

Let now ϕ
h

:“ Ikhϕ. Using the fact that Lkhvh P Pk`1pThq followed by the defini-

tions (27) of Lkh and (26) of p¨, ¨q0,h, one has

pLkhvh, ϕq “ pL
k
hvh, π

k`1
h ϕq “ ´s0,hpL

k
hvh, ϕhq ´ ahpvh, ϕhq.

Hence, using the Cauchy–Schwarz inequality we get

|pLkhvh, ϕq| À |L
k
hvh|0,h|ϕh|0,h ` }vh}1,h}ϕh}1,h

À h´1}vh}1,hh|ϕh|1,h ` }vh}1,h}ϕh}1,h

À }vh}1,h}ϕh}1,h À }vh}1,h}ϕ}H1pΩq,

where we have used the second inequality in (22) in the first line, (74) together with536

the fact that |zh|0,h ď h|zh|1,h for all zh P U
k
h to pass to the second line, and the537

H1-stability (17) of Ikh to conclude. To obtain (75), plug the above estimate into the538

right-hand side of (76).539

We introduce the continuous Green’s function G : L2
0pΩq Ñ H1pΩqXL2

0pΩq such that,
for all ϕ P L2

0pΩq,
p∇Gϕ,∇vq “ pϕ, vq @v P H1pΩq.

Owing to elliptic regularity (which holds since Ω is convex), we have Gϕ P H2pΩq. Its540

discrete counterpart Gkh : Ukh,0 Ñ Ukh,0 is defined such that, for all ϕ
h
P Ukh,0,541

(77) ahpGkhϕh, zhq “ pϕh, zhq0,h @zh P U
k
h,0,542

with inner product p¨, ¨q0,h defined by (26). We will denote by Gkhvh (no underline)

the broken polynomial function in Pk`1pThq obtained from element DOFs in Gkhvh.

We next show that ´Gkh is the inverse of Lkh restricted to Ukh,0 Ñ Ukh,0. Let vh P U
k
h,0.

Using (77) with ϕ
h
“ Lkhvh followed by (27), it is inferred, for all zh P U

k
h,0,

ahpGkhL
k
hvh, zhq “ pL

k
hvh, zhq0,h “ ´ahpvh, zhq ùñ ahpvh ` GkhL

k
hvh, zhq “ 0.
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Therefore, since pvh`GkhL
k
hvhq P U

k
h,0 and ah is coercive in Ukh,0 (cf. (22) and Propo-543

sition 2), we conclude544

(78) vh ` GkhL
k
hvh “ 0 @vh P U

k
h,0.545

Proposition 11 (Estimates for Gkh). It holds, for all vh P U
k
h,0,546

(79) }Gkhvh ´ I
k
hGvh}1,h À h

`

|vh|0,h ` }Gvh}H2pΩq

˘

À h}vh}0,h.547

Moreover, using elliptic regularity, we have548

(80) }Gkhvh ´ πk`1
h Gvh} À h2

`

|vh|0,h ` }Gvh}H2pΩq

˘

À h2}vh}0,h.549

Proof. Let vh P U
k
h,0.550

(i) Proof of (79). For all zh P U
k
h,0 we have, using the definition (77) of Gkhvh and551

subtracting the quantity pvh `4Gvh, zhq “ 0,552

(81) ahpGkhvh ´ I
k
hGvh, zhq “ pvh, zhq0,h ´ pvh, zhq

loooooooooooomoooooooooooon

T1

´ahpI
k
hGvh, zhq ´ p4Gvh, zhq

loooooooooooooooooomoooooooooooooooooon

T2

.553

Recalling the definition (26) of the inner product p¨, ¨q0,h, one has554

(82) |T1| “ |s0,hpvh, zhq| ď |vh|0,h|zh|0,h ď h|vh|0,h|zh|1,h.555

On the other hand, the consistency property (23) of the bilinear form ah readily yields556

(83) |T2| À h}Gvh}H2pΩq}zh}1,h.557

Making zh “ Gkhvh´I
k
hGvh in (81), and using the coercivity of ah expressed by the first558

inequality in (22) followed by the bounds (82)–(83), the first bound in (79) follows. To559

prove the second bound in (79), use elliptic regularity to estimate }Gvh}H2pΩq À }vh}560

and recall the definition of the }¨}0,h-norm.561

(ii) Proof of (80). We follow the ideas of [19, Theorem 10] and [18, Theorem 11], to562

which we refer for further details. Set, for the sake of brevity, ϕ
h

:“ Gkhvh ´ IkhGvh,563

and let z :“ Gϕh. By elliptic regularity, z P H2pΩq and }z}H2pΩq À }ϕh}. Observing564

that ´4z “ ϕh, letting pzh :“ Ikhz, and using the definition (77) of Gkh, we have565

(84) }ϕh}
2 “ ´p4z, ϕhq ´ ahpϕh, pzhq

loooooooooooooomoooooooooooooon

T1

`pvh, pzhq ´ ahpI
k
hGvh, pzhq

loooooooooooooomoooooooooooooon

T2

` s0,hpvh, pzhq
looooomooooon

T3

.566

Using the consistency (23) of ah, it is readily inferred for the first term567

(85) |T1| À h}z}H2pΩq}ϕh}1,h À h2
`

|vh|0,h ` }Gvh}H2pΩq

˘

}ϕh},568

where we have used elliptic regularity to infer }z}H2pΩq À }ϕh} and (79) to bound
}ϕ

h
}1,h. For the second term, upon observing that pvh, pzhq “ ´p4Gvh, zq “ p∇Gvh,∇zq

since, by definition of, ´4Gvh “ vh P Pk`1pThq and pzh “ πk`1
h z, recalling the def-

inition (21) of the bilinear form ah and using the orthogonality property (20) of
ppk`1
T ˝ IkT q, we have

T2 “
ÿ

TPTh

p∇ppk`1
T IkTGvh ´ Gvhq,∇ppk`1

T pzh ´ zqqT ` s1,hpI
k
hGvh, pzhq.
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By the approximation properties of ppk`1
T ˝ IkT q and of πk`1

h , and bounding }z}H2pΩq569

and }ϕ
h
}1,h as before, we have570

(86) |T2| À h2
`

|vh|0,h ` }Gvh}H2pΩq

˘

}ϕh}.571

Finally, for the last term, we write572

(87) |T3| ď |vh|0,h|pzh|0,h À |vh|0,hh
2}z}H2pΩq À h2|vh|0,h}ϕh},573

where we have used the Cauchy–Schwarz inequality in the first bound, the approxima-574

tion properties (8) of πk`1
h in the second bound, and elliptic regularity to conclude.575

Using (85)–(87) to estimate the right-hand side of (84) the first inequality in (80)576

follows. Using elliptic regularity to further bound }Gvh}H2pΩq À }vh} and recalling577

the definition of the }¨}0,h-norm yields the second inequality in (80).578

Remark 7 (Choice of s0,h). The choice (26) for the stabilisation bilinear form s0,h is579

crucial to have the right-hand side of (87) scaling as h2. Penalizing the full difference580

pvF ´vT q instead of the lowest-order part πkF pvF ´vT q would have lead to a right-hand581

side only scaling as h.582

We are now ready to prove Lemma 3.583

Proof of Lemma 3. Let vh P U
k
h,0 and set ϕ

h
:“ Lkhvh. Recalling that, owing to (78),584

vh “ ´Gkhϕh, it is inferred using the triangle inequality,585

(88) }vh}L8pΩq ď }π
k`1
h Gϕh}L8pΩq ` }Gkhϕh ´ π

k`1
h Gϕh}L8pΩq :“ T1 ` T2.586

The L8-stability of πk`1
h (cf. (7)) followed by the continuous Agmon’s inequality587

readily yields for the first term588

(89) T1 À }Gϕh}L8pΩq À }Gϕh}
1
2

H1pΩq}Gϕh}
1
2

H2pΩq.589

Using a standard regularity shift (cf., e.g., [25]), recalling that ϕh “ Lkhvh, and using590

the H´1-bound (75) for Lkhvh, we have591

(90) }Gϕh}H1pΩq À }ϕh}H´1pΩq À }vh}1,h, }Gϕh}H2pΩq À }ϕh} “ }L
k
hvh},592

which plugged into (89) yields593

(91) T1 À }vh}
1
2

1,h}L
k
hvh}

1
2 .594

For the second term we have, on the other hand,595

(92)

T2 À h´
d
2 }Gkhϕh ´ π

k`1
h Gϕh}

À h
3´d

2 ph}Lkhvh}0,hq
1
2 }Lkhvh}

1
2

0,h

À h
3´d

2 }vh}
1
2

1,h}L
k
hvh}

1
2

0,h À }vh}
1
2

1,h}L
k
hvh}

1
2

0,h,

596

where we have used the global inverse inequality (12) with p “ 2 to obtain the first597

bound, the estimate (80) to obtain the second, (74) to obtain the third, and the fact598

that d ď 3 together with h ď hΩ À 1 (with hΩ diameter of Ω) to conclude. The599

conclusion follows plugging (91) and (92) into (88).600
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Remark 8 (Discrete Agmon’s inequality in dimension d “ 2). When d “ 2, we have601

the following sharper form for the discrete Agmon’s inequality:602

(93) @vh P U
k
h,0, }vh}L8pΩq À }vh}

1
2

0,h}L
k
hvh}

1
2

0,h.603

To obtain (93), the following modifications are required in the above proof: (i) The604

term T1 is bounded as T1 À }Gϕh}
1
2 }Gϕh}H2pΩq À }vh}

1
2 }Lkhvh}

1
2 , where we have used605

vh “ ´Gϕh (cf. (78)) for the first factor and (90) for the second; (ii) The third line606

of (92) becomes T2 À ph}vh}1,hq
1
2 }Lkhvh}

1
2

0,h À }vh}
1
2

0,h}L
k
hvh}

1
2

0,h, where we have used607

the inverse inequality (5) and mesh quasi-uniformity to bound the first factor.608

We next prove the discrete Gagliardo–Nirenberg–Poincaré’s inequality of Lemma 8.609

Proof of Lemma 8. Using the same notation as in the proof of Lemma 3, we have610

}∇hvh}LppΩqd ď }∇hπ
k`1
h Gϕh}LppΩqd ` }∇hpGkhϕh ´ π

k`1
h Gϕhq}LppΩqd :“ T1 ` T2.611

For the first term, we use theW 1,p-stability of πk`1
h (cf. (7)) followed by the continuous

Gagliardo–Nirenberg–Poincaré’s inequality (63), and (90) to infer

T1 À |Gϕh|W 1,ppΩq À |Gϕh|1´αH1pΩq}Gϕh}
α
H2pΩq À }vh}

1´α
1,h }L

k
hvh}

α.

For the second term, on the other hand, we have

T2 À hdp
1
p´

1
2 q}∇hpGkhϕh ´ π

k`1
h Gϕhq}

À hdp
1
p´

1
2 q}Gkhϕh ´ I

k
hGϕh}1´α1,h }G

k
hϕh ´ I

k
hGϕh}α1,h

À hα`dp
1
p´

1
2 qph}Lkhvh}0,hq

1´α}Lkhvh}
α
0,h

À hα`dp
1
p´

1
2 q}vh}

1´α
1,h }L

k
hvh}

α
0,h À }vh}

1´α
1,h }L

k
hvh}

α
0,h,

where we have used the global reverse Lebesgue inequality (11) in the first line, the
definition (15) of the }¨}1,h-norm to pass to the second line, the estimate (79) to pass
to the third line, and (74) to pass to the fourth line. To obtain the second inequality in
the fourth line, we observe that, recalling the definition (63) of α and the assumptions
on p, it holds for the exponent of h,

α` d

ˆ

1

p
´

1

2

˙

“
1

2
´
d

2

ˆ

1

2
´

1

p

˙

ě 0,

and, since h ď hΩ À 1, the conclusion follows.612

Remark 9 (Validity of the discrete Agmon’s and Gagliardo–Niremberg–Poincaré’s613

inequalities). At the discrete level, the fact that the discrete Agmon’s inequality (28)614

is valid only up to d “ 3 and that the Gagliardo–Nirenberg–Poincaré’s inequalities (64)615

are valid only for p P r2,`8q if d “ 2, p P r2, 6s if d “ 3 is reflected by the need to616

have nonnegative powers of h in the estimates of the terms T2 to conclude in the617

corresponding proofs.618
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of Mathématiques & Applications, Springer-Verlag, Berlin, 2012.656

[18] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on657
general meshes, Comput. Meth. Appl. Mech. Engrg., 283 (2015), pp. 1–21.658

[19] D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and compact-stencil discretiza-659
tion of diffusion on general meshes based on local reconstruction operators, Comput. Meth.660
Appl. Math., 14 (2014), pp. 461–472.661

[20] D. A. Di Pietro and S. Lemaire, An extension of the Crouzeix–Raviart space to general662
meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math.663
Comp., 84 (2015), pp. 1–31.664

[21] Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition,665
SIAM J. Numer. Anal., 28 (1991), pp. 1310–1322.666

[22] C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the667
Cahn–Hilliard equation, Numer. Math., 54 (1989), pp. 575–590.668

[23] X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin meth-669
ods for the Cahn–Hilliard equation of phase transition, Math. Comp., 76 (2007), pp. 1093–670
1117.671

[24] X. Feng and A. Prohl, Numerical analysis of the Cahn–Hilliard equation and approximation672
for the Hele–Shaw problem, Interfaces Free Bound., 7 (2005), pp. 1–28.673

[25] P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, 1992.674
[26] R. Guo and Y. Xu, Efficient solvers of discontinuous Galerkin discretization for the Cahn–675

Hilliard equations, J. Sci. Comput., 58 (2014), pp. 380–408.676
[27] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion677

problems on general grids, in Finite Volumes for Complex Applications V, R. Eymard and678
J.-M. Hérard, eds., John Wiley & Sons, 2008, pp. 659–692.679

[28] J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary680
Navier–Stokes problem. part IV: error analysis for second-order time discretization, SIAM681
J. Numer. Anal., 27 (1990), pp. 353–384.682

[29] D. Jacqmin, Calculations of two phase Navier–Stokes flows using phase-field modelling, J.683

This manuscript is for review purposes only.

http://dx.doi.org/10.1051/m2an/2015051
http://arxiv.org/abs/1508.01918


26 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU

Comput. Phys., 155 (1999), pp. 96–127.684
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(a) 128ˆ 128 uniform Cartesian mesh, k “ 0, BE

(b) 64ˆ 64 uniform Cartesian mesh, k “ 1, BDF2

Fig. 6: Spinoidal decomposition (left to right, top to bottom). In both cases, the
same random initial condition is used. Displayed times are 0, 5 ¨ 10´5, 1.25 ¨ 10´3,
3.6 ¨ 10´2.
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