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A HYBRID HIGH-ORDER METHOD FOR THE CAHN-HILLIARD
PROBLEM IN MIXED FORM*

FLORENT CHAVE', DANIELE A. DI PIETROf, FABIEN MARCHE'f, AND FRANCK
PIGEONNEAU®

Abstract. In this work we develop a fully implicit Hybrid High-Order algorithm for the Cahn-
Hilliard problem in mixed form. The space discretization hinges on local reconstruction operators
from hybrid polynomial unknowns at elements and faces. The proposed method has several ad-
vantageous features: (i) It supports fairly general meshes possibly containing polyhedral elements
and nonmatching interfaces; (ii) it allows arbitrary approximation orders; (iii) it has a moderate
computational cost thanks to the possibility of locally eliminating element-based unknowns by static
condensation. We perform a detailed stability and convergence study, proving optimal convergence
rates in energy-like norms. Numerical validation is also provided using some of the most common
tests in the literature.

2010 Mathematics Subject Classification: 65N08, 656N30, 65N12
Keywords: Hybrid High-Order, Cahn—Hilliard equation, phase separation, mixed formulation, dis-
crete functional analysis, polyhedral meshes

1. Introduction. Let Q < R%, d € {2,3}, denote a bounded connected convex
polyhedral domain with boundary 02 and outward normal n, and let tg > 0. The
Cahn—Hilliard problem, originally introduced in [11, 10] to model phase separation in
a binary alloy, consists in finding the order-parameter ¢ : Q x [0, ¢r] — R and chemical
potential w : Q x [0,tr] — R such that

(1a) dic—Aw =10 in Q x (0,tr],
(1b) w=®(c) —y*Ac  inQ x (0,tp],
(1c) c(0) = ¢ in Q,

(1d) Onc = 0pw =0 on 09 x (0,tF],

where co € H2(Q2) n L3(2) such that d,co = 0 on Q denotes the initial datum, v > 0
the interface parameter (usually taking small values), and ® the free-energy such that

(2) ®(c) = 3(1 —?)2

Relevant extensions of problem (1) (not considered here) include the introduction of
a flow which requires, in particular, to add a convective term in (1a); cf., e.g., [29, 5,
7, 8, 31, 30].

The discretization of the Cahn-Hilliard equation (1) has been considered in several
works. Different aspects of standard finite element schemes have been studied, e.g.,
in [22, 21, 14]; cf. also the references therein. Mixed finite elements are considered
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2 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU

in [24]. In [35], the authors study a nonconforming method based on C° shape func-
tions for the fourth-order primal problem obtained by plugging (1b) into (1a). Dis-
continuous Galerkin (dG) methods have also received extensive attention. We can cite
here [36], where a local dG method is proposed for a Cahn—Hilliard system modelling
multi-component alloys, and a stability analysis is carried out; [23], where optimal
error estimates are proved for a dG discretization of the Cahn-Hilliard problem in
primal form; [30], which contains optimal error estimates for a dG method based on
the mixed formulation of the problem including a convection term; [26], where a
multi-grid approach is proposed for the solution of the systems of algebraic equations
arising from a dG discretization of the Cahn—Hilliard equation. In all of the above
references, standard meshes are considered. General polygonal meshes in dimension
d = 2, on the other hand, are supported by the recently proposed C''-conforming Vir-
tual Element (VE) method of [4] for the problem in primal formulation; cf. also [6] for
VE methods with arbitrary regularity. Therein, the convergence analysis is carried
out under the assumption that the discrete order-parameter satisfies a C%(L*)-like a
priori bound.

In this work, we develop and analyze a fully implicit Hybrid High-Order (HHO)
algorithm for problem (1) where the space discretization is based on the HHO(k + 1)
variation proposed in [12] of the method of [19]. The method hinges on hybrid degrees
of freedom (DOFs) located at mesh elements and faces that are polynomials of degree
(k + 1) and k, respectively. The nonlinear term in (1b) is discretized by means of
element unknowns only. For the second-order diffusive operators in (1a) and (1b), on
the other hand, we rely on two key ingredients devised locally inside each element:
(i) A potential reconstruction obtained from the solution of (small) Neumann problems
and (ii) a stabilization term penalizing the lowest-order part of the difference between
element- and face-based unknowns. See also [13, 34, 33] for related methods for second-
order linear diffusion operators, each displaying a set of distinctive features. The
global discrete problem is then obtained by a standard element-by-element assembly
procedure. When using a first-order (Newton-like) algorithm to solve the resulting
system of nonlinear algebraic equations, element-based unknowns can be statically
condensed. As a result, the only globally coupled unknowns in the linear subproblems
are discontinuous polynomials of degree k on the mesh skeleton for both the order-
parameter and the chemical potential. With a backward Euler scheme to march in
time, the C°(H")-like error on the order-parameter and the L?(H?)-like error on the
chemical potential are proved to optimally converge as (h**! + 1) (with h and 7
denoting, respectively, the spatial and temporal mesh sizes) provided the solution has
sufficient regularity.

The proposed method has several advantageous features: (i) It supports general
meshes possibly including polyhedral elements and nonmatching interfaces (resulting,
e.g., from nonconforming mesh refinement); (ii) it allows one to increase the spatial
approximation order to accelerate convergence in the presence of (locally) regular
solutions; (iii) it is (relatively) inexpensive. When d = 2, e.g., the number of globally
coupled spatial unknowns for our method scales as 2 card(F)(k + 1) (with card(Fy)
denoting the number of mesh faces) as opposed to card(7Ty)(k+3)(k+2) (with card(7)
denoting the number of mesh elements) for a mixed dG method delivering the same
order of convergence (i.e., based on broken polynomials of degree k+1). Additionally,
thanks to the underlying fully discontinuous polynomial spaces, the proposed method
can accomodate abrupt variations of the unknowns in the vicinity of the interface
between phases.

This manuscript is for review purposes only.
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A HHO METHOD FOR THE CAHN-HILLIARD PROBLEM 3

Our analysis adapts the techniques originally developed in [30] in the context of dG
methods. Therein, the treatment of the nonlinear term in (1b) hinges on C%-in-time
a priori estimates for various norms and seminorms of the discrete order-parameter.
Instrumental in proving these estimates are discrete functional analysis results, includ-
ing discrete versions of Agmon’s and Gagliardo—Nirenberg—Poincaré’s inequalities for
broken polynomial functions on quasi-uniform matching simplicial meshes. Adapting
these tools to hybrid polynomial spaces on general meshes entails several new ideas.
A first key point consists in defining appropriate discrete counterparts of the Laplace
and Green’s operators. To this end, we rely on a suitably tailored L2-like hybrid inner
product which guarantees stability estimates for the former and optimal approxima-
tion properties for the latter. Another key point consists in replacing the standard
nodal interpolator used in the proofs of [30, Lemmas 2.2 and 2.3] by the L?-orthogonal
projector which, unlike the former, is naturally defined for meshes containing polyhe-
dral elements. We show that this replacement is possible thanks to the W *"P-stability
and approximation properties of the L?-orthogonal projector on broken polynomial
spaces recently presented in a unified setting in [15]; cf. also the references therein
for previous results on this subject.

The material is organized as follows: In Section 2 we introduce the notation for
space and time meshes and recall some key results on broken polynomial spaces; in
Section 3 we introduce hybrid polynomial spaces and local reconstructions, and state
the discrete problem; in Section 4 we carry out the stability analysis of the method,
while the convergence analysis is detailed in Section 5; Section 6 contains an extensive
numerical validation of the proposed algorithm; finally, in Appendix A we give proofs
of the discrete functional analysis results used to derive stability bounds and error
estimates.

2. Discrete setting. In this section we introduce the discrete setting and recall
some basic results on broken polynomial spaces.

2.1. Space and time meshes. We recall here the notion of admissible spatial
mesh sequence from [17, Chapter 1]. For the sake of simplicity, we will systematically
use the term polyhedral also when d = 2. Denote by H < R} a countable set of
spatial meshsizes having 0 as its unique accumulation point. We consider h-refined
mesh sequences (7p,)nen where, for all h € H, T, is a finite collection of nonempty
disjoint open polyhedral elements T of boundary o7 such that Q = UTG% T and
h = maxrer, hr with hr standing for the diameter of the element T'.

A face F is defined as a planar closed connected subset of € with positive (d—1)-
dimensional Hausdorff measure and such that (i) either there exist Ty,T5 € T, such
that F' < 0Ty n 0Ty and F is called an interface or (ii) there exists T € T, such
that F < 0T n 092 and F is called a boundary face. Mesh faces are collected in
the set Fp, and the diameter of a face F' € Fj is denoted by hr. For all T € T,
Fr :={F € F, | F < 0T} denotes the set of faces lying on 0T and, for all F' € Fr,
nrp is the unit normal to F' pointing out of T. Symmetrically, for all F' € Fj,, we
denote by Tr the set of one (if F' € F}) or two (if F € F}) elements sharing F.

ASSUMPTION 1 (Admissible spatial mesh sequence). We assume that, for all h € H,
Trn admits a matching simplicial submesh <5, and there exists a real number o > 0
independent of h such that, for all h € H, the following properties hold: (i) Shape reg-
ularity: For all simplex S € T, of diameter hg and inradius rg, ohg < rg; (i) contact-

This manuscript is for review purposes only.
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4 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU
regularity: For all T € Ty, and all S € Ty, such that S ¢ T, phr < hg.

To discretize in time, we consider a uniform partition (¢"*)p<n<n Of the time interval

[0,tp] with t° = 0, t¥ = tp and t" — "1 = 7 for all 1 < n < N (the analysis can

be adapted to nonuniform partitions). For any sufficiently regular function of time ¢

taking values in a vector space V', we denote by ¢™ € V its value at discrete time t”,

and we introduce the backward differencing operator §; such that, for all 1 <n < N,
n_ . n—l1

(3) Sy = % ev.

In what follows, we often abbreviate by a < b the inequality a < Cb with a and b
positive real numbers and C' > 0 generic constant independent of both the meshsize
h and the time step 7 (named constants are used in the statements for the sake of
easy consultation). Also, for a subset X < €, we denote by (-,-)x and |-|x the usual
L?(X)-inner product and norm, with the convention that we omit the index if X = Q.

The same notation is used for the vector-valued space L?(X)%.

2.2. Basic results on broken polynomial spaces. The proposed method
is based on local polynomial spaces on mesh elements and faces. Let an integer
[ > 0 be fixed. Let U be a subset of R?, Hy; the affine space spanned by U, dy its
dimension, and assume that U has a non-empty interior in Hy. We denote by P!(U)
the space spanned by dy-variate polynomials on Hy of total degree [, and by ﬂb
the L2-orthogonal projector onto this space. In the following sections, the set U will
represent a mesh element or face. The space of broken polynomial functions on 7; of
degree [ is denoted by P!(73,), and !}, is the corresponding L2-orthogonal projector.

We next recall some functional analysis results on polynomial spaces. The following
discrete trace and inverse inequalities are proved in [17, Chapter 1] (cf. in particular
Lemmas 1.44 and 1.46): There is C' > 0 independent of h such that, for all T € Ty,
and all Yv € PY(T),

(4) lvlp < Chp?|vlr  VF e Fr,
and
(5) [Vo|r < Chzfvr.

We will also need the following local direct and reverse Lebesgue embeddings (cf. [15,
Lemma 5.1]): There is C' > 0 independent of h such that, for all T € T, all ¢,p €
[1, +00],

4
P

d__
(6) Vv e PY(T), C Wl paery < g ?lvlLey < ClvflLa)-

The proof of the following results for the local L?-orthogonal projector can be found
in [15, Appendix A.2]. For an open set U of R?, s € N and p € [1, +00], we define the
seminorm |-|yys.»(ry as follows: For all v e W*P(U),

Plwer@y == >, 0% e,

aeN?, |af,1 =5

This manuscript is for review purposes only.



163
164
165
166
167

168

178

179

180

181

184
185

A HHO METHOD FOR THE CAHN-HILLIARD PROBLEM 5

where |afp = @y + -+ + ag and 0% = 7" ---99?. For s = 0, we recover the usual
Lebesgue spaces LP(U). The L2-orthogonal projector is W*P-stable and has optimal
WS P-approximation properties: There is C' > 0 independent of h such that, for all
TeTy all se{0,...,l+1}, all pe[1,+w0], and all v e W*P(T), it holds,

(7) [7p0lwer(ry < Clolwen ),
and, for all m € {0,..., s},
(8) "U — ﬂ-flT'U|Wm,,p(T) + h?ﬂ"l} - 7rl71’U|Wm,p(].‘T) < C’h;_’rn|’U|V[/'s,p(j‘)7

where W™ (Fr) denotes the set of functions that belong to W™P(F) for all F € Fr.
Finally, there is C' > 0 independent of i such that it holds, for all F' € Fy,

(9) Voe HYF),  [v—rholr < Chlolr).

In the proofs of Lemmas 3 and 8 below, we will make use of the following global
inverse inequalities, which require mesh quasi-uniformity.

PROPOSITION 1 (Global inverse inequalities for Lebesgue norms of broken polynomi-
als). In addition to Assumption 1, we assume that the mesh is quasi-uniform, i.c.,

(10) VT € T, oh < hr.

Then, for all polynomial degree [ = 0 and all 1 < p < q < 400, it holds
d_d

(11) Ywy, € IP’Z('E), lwn|Lay < Cha™ % |wal Lr ),

with real number C' > 0 independent of h.

Proof. Let wy, € P(T;,). We start by proving that, for all p € [1, +o0],

_a
(12) Yy, € P(Th), lwnllLe @) < b7 [wn] e @),

which corresponds to (11) with ¢ = +o0. By the local reverse Lebesgue embed-
dings (6), there is C' > 0 independent of & such that

_a 44
VT € Th, lwn| Loy < Chy” |whl ey < Cp~ P h™ 7 [wn| Lo (),

where we have used the mesh quasi-uniformity assumption (10) to conclude. Inequal-
ity (12) follows observing that |wh|| - () = maxrer, |whal > (). Let us now turn to
the case 1 < g < +00. We have

d

— I _d q
a0y < Nonlftio lonln oy < (R5~Flunlioy)

where the conclusion follows using (12). d

3. The Hybrid High-Order method. In this section we define hybrid spaces
and state the discrete problem.

This manuscript is for review purposes only.
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6 F. CHAVE, D. A. DI PIETRO, F. MARCHE, F. PIGEONNEAU

3.1. Hybrid spaces. The discretization of the diffusion operator hinges on the
HHO method of [12] using polynomials of degree (k + 1) inside elements and k on
mesh faces (cf. Remark 6 for further insight on this choice). The global discrete space
is defined as

(13) U= ( X P’““(T)) x ( X P’f(F)).
TeTs FeFy

The restriction of U ],fb to an element T' € T}, is denoted by U ? For a generic collection
of DOFs in U, we use the underlined notation v, = ((vr)reT,, (vF)Fer,) and, for
all T € T, we denote by vy = (vr, (vp)Fer, ) its restriction to Uk. Also, to keep the
notation compact, we denote by vj, (no underline) the function in P*+1(7;) such that

Up|T = UT YT €Ty.
In what follows, we will also need the zero-average subspace
Uk o= {v e UL | (vn,1) = 0}
The interpolator If : H'(Q) — U?¥ is such that, for all v € H(Q),
(14) L= ((W§+10)T5Tm (Tpv)rer,)-
We define on U5 the seminorm |-|; 5, such that

(15) Hyh“%,h = ||VhUhH2 + |Qh|ih7 ‘yhﬁ,h = s1,n(Vp, p),

where V), denotes the usual broken gradient on H!(7}) and the stabilization bilinear
form s, on QZ X Qﬁ is such that

(16) stn(Unzn) == Y, D, hp'(mh(r —vr), mh(zF — 21)) .
TeT, FeFr

Using the stability and approximation properties of the L2-orthogonal projector ex-
pressed by (7)-(8), one can prove that I} is H'-stable:

(17) Yoe HY(Q), [l

1 S vl @)

The following Friedrichs’ inequalities can be proved using the arguments of [15,
Lemma 7.2], where element DOFs of degree k are considered (cf. also [9, 16] for
related results using dG norms): For all r € [1, +00) if d = 2, all r € [1,6] if d = 3,

k
(18) Yoy, € Up, o, lonllzr ) < lualn-

The case r = 2 corresponds to Poincaré’s inequality. Finally, to close this section, we
prove that |-, defines a norm on QZ,@

PROPOSITION 2 (Norm |-|1,4). The map ||-|1,n defines a norm on Q’Zyo.

Proof. We only have to show that |v,[1,, =0 = v, = 0. By (18), |vpl1,n =
vp, =0, i.e., vp =0 for all T € 7j,. Plugging this result into the definition (15) of |-||1,x,
we get et Dper, hpt|lvr|% = 0, which implies in turn vp = 0 for all F e 7. O

This manuscript is for review purposes only.
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A HHO METHOD FOR THE CAHN-HILLIARD PROBLEM 7

3.2. Diffusive bilinear form and discrete problem. For all T € 7T, we
define the potential reconstruction operator p’;fl U l} — PE*+1(T) such that, for all
vpel %, p];«HQT is the unique solution of the following Neumann problem:

(19) (Vp];j_lQT, VZ)T = 7(’UT7 AZ)T + Z (UF, VZ‘TLTF)F VZ € Pk+1(T),
FeFr

with closure condition (p&-t'vy, 1)r = (vr,1)7. It can be proved that, for all v €
HY(T), denoting by I% the restriction of the reduction map I5 defined by (14) to
H(T) > U,

(20) (Vph ko —v), V2)r =0 Yze PHY(T),

which expresses the fact that (ph™ o I%) is the elliptic projector onto PE+(T)) (and,
as such, has optimal approximation properties in P¥*1(T)). The diffusive bilinear
form a;, on U} x UF is obtained by element-wise assembly setting

(21) an(vy,zp) == Y, (V5 op, V5 20)r + sua(uy, 23),
TeTh

with stabilization bilinear form s; ;, defined by (16). Denoting by ||| 4,» the seminorm
defined by a; on U lfb, a straightforward adaptation of the arguments used in [19,
Lemma 4] shows that

(22) Vv, e U, vy,

[ S lenllan < lonln,

which expresses the coercivity and boundedness of a;. Additionally, following the
arguments in [19, Theorem 8|, one can easily prove that the bilinear form a; enjoys
the following consistency property: For all v e H™>*20(Q) A L2(Q), I > 1, such that
Onv = 0 on 012,

(23) sup ah(lﬁvvgh) + (Av,zp)| hmin(k“’l*l)HUHHl(Qy
EhEQ’fL7ov“E)l‘|l,h:1

REMARK 1 (Consistency of ap,). For sufficiently reqular solutions (i.e., whenl =k + 2) ]}
equation (23) shows that the consistency error scales as h**1. This is a consequence
of the fact that both the potential reconstruction p’%‘“ (cf. (19)) and the stabilization
bilinear form s1p (cf. (16)) are consistent for exact solutions that are polynomials of
degree (k + 1) inside each element. In particular, a key point in s1, is to penalize
7k (vp — vr) instead of (vp — vr). A similar stabilization bilinear form had been in-
dependently suggested in the context of Hybridizable Discontinuous Galerkin methods
in [32, Remark 1.2.4).

The discrete problem reads: For all 1 < n < N, find (c}}, w}) € Ql}i,o X Qﬁ such that

(24a) (6ech, on) + an(wy, ¢,) =0 Vo, € Uy,
(24b) (whsn) = (®'(ch), ) + Y an(ch,¥,) Yo, € Uy,

and g2 eU ﬁ,o solves

(25) ah(g(i)mfh) = —(Aco, on) Vo, € U;.

We note, in passing, that the face DOFs in Q(}JL are not needed to initialize the algorithm.

This manuscript is for review purposes only.
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REMARK 2 (Static condensation). Problem (24) is a system of nonlinear algebraic
equations, which can be solved using an iterative algorithm. When first order (Newton-
like) algorithms are used, element-based DOFs can be locally eliminated at each iter-
ation by a standard static condensation procedure.

4. Stability analysis. In this section we establish some uniform a priori bounds
on the discrete solution. To this end, we need a discrete counterpart of Agmon’s
inequality; cf. [3, Lemma 13.2] and also [1, Theorem 3]. We define on U} the following
L?-like inner product:

(Vn, 21)o0,n i= (Vn, 2n) + 0,0 (Vh, 21),

50,h (v, 2) 1= Z Z hF(W];’“(UF - UT)JT?(ZF —27))F,
TeTy, FEFT

(26)

and denote by |-|lo,» and ||, the norm and seminorm corresponding to the bilinear

forms (-,-)o,» and sgp, respectively. For further insight on the role of s¢p, cf. Re-

mark 7. We introduce the discrete Laplace operator LE : Qﬁ — Q,ﬁ such that, for all
k

Yy eLlhv

(27) — (Lhvn: zn)on = an(uy, 2,) ¥z, € Up,
and we denote by L¥v, (no underline) the broken polynomial function in P*+1(73)
obtained from element DOFs in Ly v, .

REMARK 3 (Restriction of Ly, to Uy o — Uy ). Whenever v, € U} o, Lyvy, € Uy .
To prove it, it suffices to take z; = lﬁxg in (27) (with xq characteristic function of
Q), and observe that the left-hand side satisfies (LY, z)on = (L¥uy,, 1) while, by
definition (21) of the bilinear form ay, the right-hand side vanishes. In what follows,
we keep the same notation for the (bijective) restriction ofLﬁ to QZO — Q,kw.

The following result, valid for d € {2, 3}, will be proved in Appendix A.

LEMMA 3 (Discrete Agmon’s inequality). Assume mesh quasi-uniformity (10). Then,}j
it holds with real number C > 0 independent of h,

k 3 Tk, |12
(28) Yy, € Up 0, HUhHLOO(Q) < CHQhHih”LthH&h'
We also recall the following discrete Gronwall’s inequality (cf. [28, Lemma 5.1]).

LEMMA 4 (Discrete Gronwall’s inequality). Let two reals 6,G > 0 be given, and, for
integers n =1, let a™, b™, and x™ denote nonnegative real numbers such that

N N

aN+6Zb"<52Xna"+G VN e N*,
n=1 n=1

Then, if X0 < 1 for all n, letting <™ := (1 — x™6) ™1, it holds

N N
(29) aV 4+ 2 b" < exp (5 Z g”){’) x G VN € N*.
n=1 n=1

We are now ready to prove the a priori bounds.

This manuscript is for review purposes only.
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A HHO METHOD FOR THE CAHN-HILLIARD PROBLEM 9

LEMMA 5 (Uniform a priori bounds).  Under the assumptions of Lemma 3, and
further assuming that T < L for a given real number L > 0 independent of h and of T
(but depending on v?) and sufficiently small, there is a real number C' > 0 independent
of h and T such that

N
k
max_ (e ah+@<mn+wwﬁﬂwmwm+u¢m&)+21 W< C.
ne
Proof. The proof is split into several steps.
(i) We start by proving that
N
(30) max (Ief2, + (@ +3 <1

Subtracting (24b) with ¢, = ¢ — ¢! from (24a) with ¥, = Twy, and using the
fact that, for all r, s € R, ®'(r)(r — s) = ®(r) — ®(s) — 5(r — )2, it is inferred, for all
1 <n <N, that

n n n— n 1 n n— n—
(31) ~anlch,cp — i N+ THwhHa p ot (@(ch), 1) < §||Ch — P+ (®(c H,1).

Notice that (®(cy),1) = 0 for all 0 < n < N by definition (2) of ®. Making ¢, =
T(cp — ¢y 1) in (24a) and using the Cauchy-Schwarz and Young’s inequalities, we

infer that

(32) lef = e~ < Sl

T _
§HQZ - QZ 1”2,h

Additionally, recalling the following formula for the backward Euler scheme:

(33) 20(z —y) = o® + (x — ) — v,
it holds
n 1 n — —
(34) an(ch,cp — ¢~ 1) 5 (HchH a T ley —cp 1“3,h — i ! a,h) .
Plugging (32) and (34) into (31), we obtain
2nt (12— 5) ek — TR + Skl + 2(2(h), )
<Ple ™ +2(2(c 7)),

Provided 7 < 272, the bound (30) follows summing the above inequality over 1 < n <
Man +2(2(c?),1) < 1. To prove this bound, observe

that

(®(ch),1) < WQHCW pt 1+ ||02H‘i4 @ T \\62\|2
<1,

where we have used the definition ( ) of the free—energy ® in the first line followed by
the discrete Friedrichs’ inequality with r = 4,2 in the second line and the first bound
on the initial datum in (46) below to conclude.
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(ii) We next prove that

N
(35) 2 TleRle ) S 1.

n=1

The discrete Agmon’s inequality (28) followed by the first inequality in (22) yields

N N N
k
O ekl S 3 I alEigt = (e, Ietl2a) x 35 IECR

n=1 n=1 n=1

The first factor is < 1 owing to (30). Thus, to prove (35), it suffices to show that
also the second factor is < 1. Using the definition (27) of L¥ followed by (24b) with

yh = LZQZ, we infer that

(36) VILher I = =7 an(ch, Lhci) = (¥'(ch), Lich) — (wh, Lich).

Using again (27) for the second term in the right-hand side of (36) followed by the
Cauchy—Schwarz and Young’s inequalities, we obtain

VILECr5., = (@ (ch), Lch) + ah<c2,wz> + 80 h<L’;c2,wz>

< 5l I+

1
||Ch||a h+2 2”* 2 2|wh|0h

Hence, since |w}|o.n <

k _ _
VILheh 30 < 77212 (ch)? ?lawh 30

The fact that Y, _, T”L chHO n < 1 then follows multiplying the above inequality by
7, summing over 1 < n < N, using (30) to bound the second and third term in the
right-hand side, and observing that

(37) 9" ()? < leplGoay + 2lehlac + Ienl® < Ichl n + Ichlin + Ichlin < 1,

where we have used the definition (2) to obtain the first bound, Friedrichs’ inequal-
ity (18) with r = 6,4, 2 to obtain the second bound, and (30) together with the first
inequality in (22) to conclude.

(iii) We proceed by proving that

N
(39) s W +97 3wl < 1

Let w) := i tH(@/(c)) — 42 Acy). Recalling (25), w) satisfies
(39) (wh,von) = (D'()), ¥n) +Van(d,v,) Yo, € Uy

For any 1 < n < N, subtracting from (24b) at time step n (24b) at time step (n — 1)
if n > 1or (39) if n = 1, and selecting ¢, = wj as a test function in the resulting
equation, it is inferred that

(wh —wp ™" wh) = Ty%an(Gch, wiy) + (¥ (ch) = (™), wi).
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Using (24a) with ¢, = Ty28:cl to infer 7y2ay (6, wh) = —7v2[0:c|?, we get
(40) (wh —wi ™ wp) + 720 |* = (9 (ch) — @' (™), why)-
From the fact that

(41) O'(r)—®'(s) = (r +rs+s>—1)(r—s),

followed by the Cauchy—Schwarz and Young’s inequalities, we infer
2 n
e T TC
(42) (@ () — @ (™), wp)| < Tk + T ]2,

with C™ := C(1 + Hcﬁ“‘iw(m + ”6271“400(9)) for a real number C' > 0 independent of
h and 7. Using (33) for the first term in the left-hand side of (40) together with (42)
for the right-hand side, we get

(43) Jwh | + lwp; — wp ™ * + 79210k |* < 7C™ i |* + wy 2.

Summing (43) over 1 < n < N, observing that, thanks to (35) and the second bound
in (46) below, we can have 7C™ < 1 for all 1 < n < N provided that we choose 7 small
enough, and using the discrete Gronwall’s inequality (29) (with § = 7, a™ = [w}|?,
b = %[ 6,c|?, x™ = C™ and G = |w}|?), the estimate (38) follows if we can bound
Jw|?. To this end, recalling the definition of w{ and using the Cauchy-Schwarz
inequality, one has

[wh|* = (@'(ch), wp) —+*(Dco,wh) < (19(R)] + 72 lleollrrz(e) lwhll,

and the conclusion follows from the regularity of ¢y noting the first bound in (46)
below and estimating the first term in parentheses as in (37).

(iv) We conclude by proving the bound

(44) max (leglo=) + ILEcHE 1) < 1.
Using the Cauchy—-Schwarz and Young’s inequalities to bound the right-hand side
of (36) followed by (18) with r = 6,4, 2 and the first inequality in (22), we obtain, for
alll <n <N,

VALEGIE A <772 (12 ()12 + Jwp?)
(45) < (Iekecay + Ikl + Ienl?) + il
< (IR15n + gl n + e l2 1) + i < 1,

where we have concluded using (30) multiple times for the terms in parentheses
and (38) for |w?|?. Using the discrete Agmon’s inequality (28) followed by Young’s
inequality and the first inequality in (22), we infer

max i |ze) < max (leplon + |LEchlon) <1,

1<n<N 1sn<N

where the conclusion follows using (30) for the first addend in the argument of the
maximum and (45) for the second. d
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PROPOSITION 6 (Bounds for ¢)). Let ¢) € Uho be defined by (25) from an initial
datum co € H*(Q) n L3() such that dpco = 0 on Q. It holds, with real number
C > 0 independent of h,

(46) < C”CQHHz(Q)

Proof. To prove the first bound in (46), let ¢ W= ¢ in (25) and use the first inequality
n (22), the Cauchy—Schwarz inequality and the discrete Poincaré’s inequality (18)
with r = 2 to infer

lchlli n < an(ch, ch) = —(Aco, i) < [Dcollch]l < leoll ey lichnn-

To prove the second bound in (46), we start by noticing that, using the definition (27)
of Li with 2z, = —Lﬁgg,

IL5ch 130 = —an(ch, Lich) = (Do, Lieh) < leollmz(oy | Lich

hence Ly |on < lcoll2(@y- Combining the discrete Agmon’s inequality (28) with
the latter inequality and the first bound in (46), one gets

1 1
||ChHL°0(Q s, 12H Ch“é HCOHHZ(Q)a

and the desired result follows. |
5. Error analysis. In this section we carry out the error analysis of the method (24).J]

5.1. Error equations. Our goal is to estimate the difference between the dis-
crete solution obtained Solving (24) and the projections of the exact solution such
that, for all 1 <n < N, @) = Ifw", while, for all 0 < n < N, &) € Uho solves

ah(é;zlafh) = 7(Acn790h) vfh € QZ’
and (¢,1) = 0. We define, for all 1 < n < N, the errors
(47) €oni=Ch =8 Eyp = wp — D

By definition (25), E = ¢, which prompts us to set €’ en = 0. Using Poincaré’s
inequality (18) with » = 2 and the consistency (23) of ap, the following estimate is
readily inferred: For all 0 < n < N, assuming the additional regularity ¢® € H*+2(Q),

(48) & — mh "t < gk = Lne i < R o).

REMARK 4 (Improved L2-estimate). We notice, in passing, that, using elliptic requ-

larity (which holds since §) is convex, cf., e.g., [25]), one can improve this result and

show that & — mytie| < RFT2 e prese gy -

Recalling (24), for all 1 < n < N, the error (7 ), ey, ;) € QZ’O x U¥ solves

(49a)  (deec s on) + anlenn ©,) = E(,) Ve, € Us,
(49b) (eg,hawh) = (@/(Cﬁ) - ( ) wh) + a’h( €c hawh)a Vﬂh € Q;Cm
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where, in (49a), we have defined the consistency error
(50) 6<£h) = _(5t€,};a Qoh) - ah(@;‘lagh)a
while in (49b) we have combined the definitions of ) and ¢, with (1b) to infer

(@}?ﬂph) - 72ah(§Z>£h) = (wn + Acnad}h) = (q)/(cn)awh)'

5.2. Error estimate.

THEOREM 7 (Error estimate). Suppose that the assumptions of Lemma 5 hold true.
Let (c,w) denote the solution to (1), for which we assume the following additional
reqularity:

(51)  ce C*([0,tr]; L() N CH([0, tp]: HM2(Q)),  we CO([0, te]; H*2(2)).

Then, the following estimate holds for the errors defined by (47):

N 3
(52) ( max HQZ,h”?L,h + Z 7llew, n ih) <O 4 7),

1<n<N
n=1

with real number C' > 0 independent of h and 7.

Proof. Let 1 <n < N. Subtracting (49b) with ¢, = dre ), from (49a) with o, = ey} ;.
we obtain

(53) IIQZ,hHi,h + ’72ah(eg,h75t§2,h) =E(ewn) + (®'(c") — @' (cp), deeep) == %1 + Ta.

We proceed to bound the terms in the right-hand side.
(i) Bound for Ty. Let ¢, € U¥. Adding to (50) the quantity

(dtcn - AU)n7 @h) + (6tﬂ-}lj+1cn - 5tcn7 @h) = 07

(use (1a) to prove that the first addend is 0 and the definition of the L?-orthogonal

projector ﬁ,”j“ to prove that the second is also 0), we can decompose € (gh) as follows:

Eliy) = (" = 8 n) + (G =) on) = (an(@ ) + (B )
= 5171 +%2+ 5173.
For the first term, we have

< [[dec™ = e lllenll < Tlelez(o,terirz@lle, lin < Tle, 1.0,

where we have used the Cauchy—Schwarz inequality, a classical estimate based on
Taylor’s remainder, Poincaré’s inequality (18) with » = 2, and we have concluded
using the regularity (51) for ¢. For the second term, on the other hand, using the
Cauchy-Schwarz inequality followed by (48) together with the Cl-stability of the
backward differencing operator (3), Poincaré’s inequality, and the regularity (51) for
¢, we readily obtain

(55) [Tuel < [de(my e =) lpnll < R o o ung vz cap lonl < BE 2, .
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Finally, recalling the consistency properties (23) of ay, we get for the last term

|T13] < thHwnHHHZ(Q) le,

< hk_HHfh

(56) ln < P w]coo,eny; 542 ) |2, 1,0

1Lh-
Collecting the bounds (54)—(56), it is inferred that

(57) $:= sup E(g,) < REFL 47
2, €U% e, [1.n=1

so that, for any real ¢ > 0, denoting by C. > 0 a real depending on € but not on h or
7, and using the second inequality in (22) to bound |l ,[1,n < llet, 4 ]a,ns

(58)  |Tal < Sleh plin < (B 4 1)

1 < Ce(h™ 4 7)% wellel 4170

(ii) Bound for T,. Set, for the sake of brevity, @™ := ®'(c}) — ®’(c™), and define the
DOF vector z;, € UF such that
(59)

_ . k+1n _ .k n i _ .k b
zr=m5 Q" YT €Ty, zp =1p{Q"}r VYF € F, zp = Tp2r, VEF € Fy

where {-}  denotes the usual average operator such that, for any function ¢ admitting
a possibly two-valued trace on F € Fr, n Fr,, {¢}r = 5(¢|1, + ¢|1,), While, for a
boundary face F' € ]-',‘f, Tr denotes the unique element in 7; such that F € Fr,.
We have, using the definition of 74! followed by (49a) with ©, = zp, (57), and the
second inequality in (22),

(60) Ty = (2n, Oeegn) = E(zp) — anl€hp 2n) < (84 et nllan) lznl1n-
By Proposition 9 below,

k+1
a,h+h+7

(61) lznlin < llen

hence, for any real € > 0, denoting by C. > 0 a real number depending on € but not
on h or 7, and recalling the bound (57) for $,

(62) %ol < Ce (e ullzn + (W7 +1)%) + ellel, wllZ -

a

(iii) Conclusion. Using (58) and (62) with € = } to bound the right-hand side of (53),
it is inferred

lew nlla n +Y2an(eln, Siel) < (B +7)% + ek,

2
a,h*

Multiplying by 7, summing over 1 < n < N, using (33) for the second term in the
left-hand side, and recalling that, by definition, gg) n =0, we get

N
3,h + Z 7llew. n

n=1

N
lecil 20 < ) Ol + COM 47,
n=1

with C' > 0 independent of h and 7. The error estimate (52) then follows from an
application of the discrete Gronwall’s inequality (29) with § = 7, a™ = v*[el, |2,

bt = Hﬁ?u,h

|3’h, X" = C, and G = C(h**1 4 7)% assuming 7 small enough. d
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REMARK 5 (BDF?2 time discretization). In Section 6, we have also used a BDF2
scheme to march in time, which corresponds to the backward differencing operator

2) 3<pn+2 _ 4<pn+1 + @n
0, = 5 ,
-
used in place of (3). The analysis is essentially analogous to the backward Euler
scheme, the main difference being that formula (33) is replaced by

20(3x —dy + 2) =22 —y® + (22 —y)? — (2y — 2)* + (z — 2y + 2)%
As a result, the right-hand side of (52) scales as (hW**! + 72) instead of (h**! + 7).

To prove the bound (61), we need discrete counterparts of the following Gagliardo—
Nirenberg—Poincaré’s inequalities valid for p € [2,4+00) if d = 2, p € [2,6] if d = 3, and
all ve H?(Q) n LE(Q):

o o 1 d(1 1
(63)  lolwro) S I Tolfag0) < Wlinto) =@, a=5+3 (2 - p) :

where the first bound follows from [1, Theorem 3] and the second from Poincaré’s
inequality. The proof of the following Lemma will be given in Appendix A.

LEMMA 8 (Discrete Gagliardo—Nirenberg—Poincaré’s inequalities).  Under the as-
sumptions of Lemma 3, it holds for p € [2,+w) if d = 2, p € [2,6] if d = 3 with
C > 0 independent of h and o defined as in (63),

(64) Vv, € QZ,O? HVhUhHLP(Q)d < CHQhH,_haHLZQhHS,h'

PROPOSITION 9 (Bound on |z, [1,n). With z,, defined as in (59), the bound (61)
holds.

Proof. Recalling the definition (15) of the |-|;,,-norm, one has
(65)

Iz,

L= IVam QNP+ Y ) kR ImR(Q e — T QMIF = T + T
TeTh F‘E]‘—Tf\]:’i1

(i) Bound for T;. Using the H'-stability (7) of 7}, formula (41) to infer Q" =
q" (e} — ") with ¢" := (1) + cfe™ + (¢")? — 1, the triangle and Hélder inequalities,
we get, for all T € Ty,

1T < [VaQ"| < [¢"Valcr = ") + [(ci — ") Vag"|
< (Ie3n@) + 16" ey + 1) [ Valch = <)

+ e = o) (Ihl o) + I le@)) (IVachlraye + Ve [ 13q)a) -

Noting the a priori bound (44) and the regularity assumption (51), both |cj | 1= (o) and
|e™|ze () are < 1. Additionally, by the continuous Gagliardo-Nirenberg-Poincaré’s
inequality (63) with p = 3 and the regularity assumption (51), one has with o =
Yo+ dfiz, [V |13y S |c"|};1‘z‘m le™ %2 () < 1. Similarly, the discrete Gagliardo-
Nirenberg—Poincaré’s inequality (64) with p = 3 combined with the a priori bounds (30)]]
and (44) yields [| Vil s (o) < HgﬁH%?‘HLiQZHSh < 1. Then, inserting + (¢} —m ")
and using the triangle inequality,

%1l < (IVhelnll + et nlze) + (IVa(@ = mp e + 8y — w7 e s o)

+ (HV}L(WZ-HCn — Cn)” + ||7T,]2+1Cn — CnHLﬁ(Q)) = Sl,l + ‘3:1’2 + 31,3.

(66)
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Using the discrete Friedrichs’ inequality (18) with r = 6 together with the defini-
tion (15) of the |-|1,p-norm and the first inequality in (22), it is readily inferred
that 11 < [l ), a,n- Again the Friedrichs’ inequality (18) with » = 6 followed
by the approximation properties (48) of ¢, and the regularity (51) yields Too <
hk+1||CnHHk+2 @ < hE*1. Finally, using the approximation properties (8) of 7rk+17 we
have Ty 3 < hF (||| g2y + [ [wrere(a)) < A¥TL, where we have used the fact
that H*2(Q) < WF+L5(Q) for all k > 0 and d € {2,3} on domains satisfying the
cone condition (cf. [2, Theorem 4.12]). Gathering the previous bounds, we conclude
that

(67) %] < legnllan +HHE

(ii) Bound for T5. For all interface F' € Fp, n Fr,, we denote by [-]r the usual
jump operator such that, for every function ¢ with a possibly two-valued trace on
F, [¢]F := @1, — @)1, (the orientation is irrelevant). Let an element 7" € 73, and an
interface face F' € Fr n Fr+ be fixed. Using the L2-stability of 7%, inserting +Q%
(with Q% := Q"|7), and using the triangle inequality it holds,

I ({Q" r — 737 Q) IF < {Q"}r — 717 QR F
1
(68) < SlQ"rlr + Q7 ~ Q| r

s Q"1plr + hi[VQT |z,

where we have used (8) for the last term. Let us bound the first term in the right-hand
side. Observing that [®'(c™)]F = 0 and recalling (41), it is inferred

[Q"1F| = |[®"(ch)]r| < llchlr| (lerl® + lerller+] + ler+[* +1).
Using this relation, and noticing the a priori bound (44), we get
@ ele < (Iehln@) + 1) Nkl < 1]l = ek — el

where the conclusion follows observing that ¢ has zero jumps across interfaces. In-
serting +[¢) — 77,’?“0"] r inside the norm and using the triangle inequality, we obtain

(69) 1@ 1rlr < ek — e rle + [ — mi ™ " Iple + [k e = ¢*lelp
Define on H'(7};,) the jump seminorm |v|? := . h2'|[v]F|%. Let us prove that
J reFi 'k F

(70) Vo, eUs,  |unly < v

Inserting + (7% [vn]F — vr) and using the triangle inequality, it is inferred that

onl3 < D) D bE (lvr = wpvrlf + |75 (vr —vr)|F) < [ Vaonl® + w3 4,
FeFi TeTr

where we have used (9) followed by the discrete trace inequality (4) and the fact that
card(Fr) < 1 by mesh regularity for the first term, and the definition (15) of the
|-|1,n-seminorm for the second term. This proves the first bound in (70). The second
bound follows from (22).
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Fig. 1: Mesh families for the numerical tests

1 .
Multiplying (68) by h?, squaring, summing over F' € FrnJF}, then over T € Tj,, using
mesh regularity to infer that card(Fr) is bounded uniformly in h, and noticing (69)
yields

TS [VaQ + I — 3 + 6 — i 1en R o [ e — e
<|

IVRQ™? + ey hite

Al l’ﬁc"\li,h + [ "3
< IVaQ™ % + e

(71) —c

2
ot (B e e)

where we have used (70) to pass to the second line and the approximation proper-
ties (48) of ¢y and (8) of ¥ to conclude. Proceeding as in point (i) to bound the
first term in the right-hand side of (71), and recalling the regularity assumptions (51)
on ¢, we conclude

(72) o] < et pllan + A

(iii) Conclusion. Using (67) and (72) in (65), the estimate (61) follows. 0

REMARK 6 (Polynomial degree for element DOFs). The use of polynomials of degree
(k+1) (instead of k) as elements DOFs in the discrete space (13) is required to infer
an estimate of order h**1 in (66) and for the last term in (71).

6. Numerical results. In this section we provide numerical evidence to confirm
the theoretical results.

6.1. Convergence. We start by a non-physical numerical test that demon-
strates the orders of convergence achieved by our method. We solve the Cahn-Hilliard
problem (49) on the unit square Q = (0,1)? with ¢z = 1, order-parameter

(73) c(x,t) = tcos(mxy) cos(mas),

and chemical potential w inferred from ¢ according to (1b). The right-hand side of (1a)
is also modified by introducing a nonzero source in accordance with the expression of
c. The interface parameter v is taken equal to 1.

We consider the triangular, Cartesian, and (predominantly) hexagonal mesh families
of Figure 1. The two former mesh families were introduced in the FVCA5 bench-
mark [27], whereas the latter was introduced in [20]. To march in time, we use the
implicit Euler scheme. Since the order-parameter is linear in time, only the spatial
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(b) HQhN fffLwNHayh vs. h

Fig. 2: Energy-errors at final time vs. h. From left to right: triangular, Cartesian
and (predominantly) hexagonal mesh families; cf. Figure 1.

component of the discretization error is nonzero and the choice of the time step is
irrelevant. The energy errors ¢ — I¥cN |, and |wl — IF¥wN |, at final time are
depicted in Figure 2. For all mesh families, the convergence rate is (k + 1), in accor-
dance with Theorem 7. For the sake of completeness, we also display in Figure 3 the
L2-errors |cf —my e and |wj — 7 w™|, for which an optimal convergence rate

of (k + 2) is observed.

6.2. Evolution of an elliptic and a cross-shaped interfaces. The numerical
examples of this section consist in tracking the evolution of initial data corresponding,
respectively, to an elliptic and a cross-shaped interface between phases. For the elliptic
interface test case of Figure 4, the initial datum is

() = 0.95 if 81 (21 —0.5)* +9(z0 —0.5) < 1,
0 —0.95 otherwhise.

For the cross-shaped interface test case of Figure 5, we take

|+
co(x) = 0.95 or 5 (|(z1—0.5) — 2(z2—0.5)| + |

—0.95 otherwhise.

In both cases, the space domain is the unit square Q = (0,1)2, and the interface
parameter + is taken to be 1-1072. We use a 64 x 64 uniform Cartesian mesh and
k = 1 with time step 7 = 72/10.
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Fig. 3: L%-errors at final time vs. h. From left to right: triangular, Cartesian and
(predominantly) hexagonal mesh families; cf. Figure 1.

In the test case of Figure 4, we observe evolution of the elliptic interface towards a
circular interface and, as expected, mass is well preserved (+0.5% with respect to the
initial ellipse). Similar considerations hold for the cross-shaped test case of Figure 5,
which has the additional difficulty of presenting sharp corners.

6.3. Spinodal decomposition. Spinodal decomposition can be observed when
a binary alloy is heated to a high temperature for a certain time and then abruptly
cooled. As a result, phases are separated in well-defined high concentration areas. In
Figure 6, we display the numerical solutions obtained on a 128 x 128 uniform Cartesian
mesh for £k = 0 and on a uniform 64 x 64 Cartesian mesh for £ = 1. In both cases, we
use the same initial conditions taking random values between -1 and 1 on a 32 x 32
uniform Cartesian partition of the domain. The interface parameter is v = 1/100,
and we take 7 = v2/10. For k = 0, the time discretisation is based on the Backward
Euler scheme while, for k = 1, we use the BDF2 formula to make sure that the spatial
and temporal error contributions are equilibrated; cf. Remark 5.

The separation of the two components into two distinct phases happens over a very
small time; see two leftmost panels of Figure 6 corresponding to times 0 and 5-107°,
respectively. Later, the phases gather increasingly slowly until the interfaces develop
a constant curvature; see the two rightmost panels of Figure 6, corresponding to times
1.25-1072 and 3.6 - 102, respectively. At the latest stages, we can observe that the
solution exhibits a (small) dependence on the mesh and/or the polynomial degree,
and the high-concentration regions in Figures 6a and 6b are highly superposable but
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Fig. 4: Evolution of an elliptic interface (left to right, top to bottom). Displayed
times are 0, 3-1072 , 0.3, 1.

Fig. 5: Evolution of a cross-shaped interface (left to right, top to bottom). Displayed
times are 0, 5-107°, 1-1072, 8.17-1072.

not identical.

Appendix A. Proofs of discrete functional analysis results.

This section contains the proofs of Lemmas 3 and 8 preceeded by the required pre-
liminary technical results.
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PROPOSITION 10 (Estimates for L¥). Assuming mesh quasi-uniformity (10), it holds

(74) Yy, € U}, ILyvnllon < B g1,

(75) Vo, € QZ,O? HLZQ}LHH—l(Q) S |lup

[1,h-

Proof. (i) Proof of (74). Let v, € UY. Making 2z, = —LFv, in the definition (27) of
L;, we have

k k k 1k
Lk 3. = —an(vy, Livy) < lvplunlLivs s < lvplonh ™ Lo os,

where we have used the continuity of a;, expressed by the second inequality in (22)
followed by the fact that, for all z, € UY, ||lz,|in S B Yzplon. This inequality
follows from the definition (15) of the |-|1,,-norm using the inverse inequality (5) to
bound the first term and recalling mesh quasi-uniformity (10).

(ii) Proof of (75). Let v, € Qﬁyo. Observing that L¥v, has zero-average on  (cf.
Remark 3), we have

(76) HLlﬁﬂh”Hﬂ(Q) = sup (LZQ}“ ©).
peH?! (Q)ng(Q)>H§0”H1(Q):1

Let now ¢, := IFp. Using the fact that Lfv, € P*+1(7y,) followed by the defini-
tions (27) of L} and (26) of (-,-)o.n, one has

(Lkn, ) = (Livg, mi ' 0) = —son(Lyvy, ¢,) — an(vy, ¢,)-

Hence, using the Cauchy—-Schwarz inequality we get

[(Lhvps ) S 1 Livglonle, lon + lnlinle, l1m
< h7Huwlluble, lin + loslsle,
< lunlinle, lin < lunlinlelm @)

where we have used the second inequality in (22) in the first line, (74) together with
the fact that |z,]on < hlzp|1n for all z, € UF to pass to the second line, and the
H'-stability (17) of I} to conclude. To obtain (75), plug the above estimate into the
right-hand side of (76). O

We introduce the continuous Green’s function G : L3(2) — H*(Q) n L3(£) such that,
for all ¢ € L3(9),
(VGp, V) = (p,v) Vv e HY(Q).

Owing to elliptic regularity (which holds since € is convex), we have Gy € H?(f2). Its
discrete counterpart QZ : QZ’O — Qﬁ,o is defined such that, for all , € Qi,m

(77) an(Gye,,21) = (9,210 Vzu €Uk,

with inner product (,-)o, defined by (26). We will denote by GFv, (no underline)
the broken polynomial function in P**1(7},) obtained from element DOFs in Qigh.
We next show that —Qﬁ is the inverse of L¥ restricted to on — Qf%o. Let vy, € Qﬁjo.
Using (77) with P, = LZQh followed by (27), it is inferred, for all z;, € Qﬁ,m

ah(QZLﬁﬂhaéh) = (L]ﬁﬂméh)uh = —an(vp,2,) = an(v, +QZLZQ}”§}L) =0.
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Therefore, since (v, +Q2Lﬁyh) € Qlfho and ay, is coercive in Qﬁ,o (cf. (22) and Propo-
sition 2), we conclude

(78) vp, + QZLZ% =0 Vo, € Qz,o-
ProposiTION 11 (Estimates for QZ) It holds, for all v, € Q’fw,

(79) IGhen — LnGonlin < (Julon + 1Gvalaz0)) < Ploglon-
Moreover, using elliptic reqularity, we have

(80) 1Ghv, — mp Gun| < B2 (Ju,

o + [|Gonlm2(e) < P unlon.

Proof. Let v, € QZ,O'

i) Proof of (79). For all z, € UF , we have, using the definition (77) of GFv, and
h h,0 Ypln
subtracting the quantity (v, + AGvp, z5) = 0,

(81)  an(Grun — LiGun, z1,) = (vns 2)on = (vh, 2n) =an(L,Gvn, 21,) = (DG, 2)

~~

Tl IZ

Recalling the definition (26) of the inner product (-,+)o r, one has
(82) %1l = Iso.n(wn, 2p)l < [uplonlzulon < hluplonlzylin-
On the other hand, the consistency property (23) of the bilinear form ay, readily yields

(83) |Ta| < h|Gon20)lzml

1,h-

Making z,, = Qﬁy n—1 ﬁgvh in (81), and using the coercivity of aj, expressed by the first
inequality in (22) followed by the bounds (82)—(83), the first bound in (79) follows. To
prove the second bound in (79), use elliptic regularity to estimate |Gy | g2y < [vn|
and recall the definition of the |-|o,,-norm.

(ii) Proof of (80). We follow the ideas of [19, Theorem 10] and [18, Theorem 11], to
which we refer for further details. Set, for the sake of brevity, P, = szh -1 ﬁgvh,

and let z := Gyy. By elliptic regularity, z € H?(Q) and | z| g2y < [¢nll. Observing
that —Az = ¢y, letting 2, := I72, and using the definition (77) of QZ, we have

(84)  llonl® = ~(Az.on) — anle,.20) + (on 2) — an(ZhGun. 24) + 0. (04, 2,)

“

T T2 T3
Using the consistency (23) of ap, it is readily inferred for the first term
(85) 1%l S hlzlmz@)le,

where we have used elliptic regularity to infer |z|g2(q) < |¢n| and (79) to bound

Lr SR ([uplon + 1Gon] 2 0)) lenl,

thHl’h. For the second term, upon observing that (vp, 2n) = —(AGuy, 2) = (VGup, Vz)l

since, by definition of, —AGuv;, = v, € PETY(T;,) and 2, = w,’i“z, recalling the def-
inition (21) of the bilinear form ap and using the orthogonality property (20) of

(phtt o IX), we have

Ty = >, (V5 IiGon — Gun), V52, — 2)1 + s1n(IEGuR, 2,)-
TeTh
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By the approximation properties of (p’%+1 o f%) and of ﬂ'Z-H, and bounding |z g2(q)

and |, [l1,n as before, we have

(86) 1T2| < 2 (lunlon + 1Gvalm2(0)) llenll-

Finally, for the last term, we write

(87) T3] < |uplonlZnlon < [wnlonh®llz]r2@) < B |uylonllenl,

where we have used the Cauchy—Schwarz inequality in the first bound, the approxima-

tion properties (8) of TI'Z+1 in the second bound, and elliptic regularity to conclude.

Using (85)—(87) to estimate the right-hand side of (84) the first inequality in (80)
follows. Using elliptic regularity to further bound ||Gvn||g2(q) < ||van/| and recalling
the definition of the |[-|o r-norm yields the second inequality in (80). 0

REMARK 7 (Choice of sg.,). The choice (26) for the stabilisation bilinear form sqp, is
crucial to have the right-hand side of (87) scaling as h®. Penalizing the full difference
(vF —v7) instead of the lowest-order part wk.(ve —vr) would have lead to a right-hand
side only scaling as h.

We are now ready to prove Lemma 3.
Proof of Lemma 3. Let v, € Qﬁ,o and set ¢, = Liv,. Recalling that, owing to (78),
vp = fg,’fgh, it is inferred using the triangle inequality,

(88) lonll=) < Impt GonllLe @) + |G, — 0t GonllLe (@) == T1 + Ta.

The L%-stability of i (cf. (7)) followed by the continuous Agmon’s inequality
readily yields for the first term

1 1
(89) BRI Hg‘PhHLOO(Q) < Hg@h”?{l(g)Hg<PhH12{2(Q)~

Using a standard regularity shift (cf., e.g., [25]), recalling that o), = L¥v,, and using
the H~'-bound (75) for L¥v,, we have

(90)  IGenlmie) < lenla-1@) < lunlin,  1Genlnz) < lenl = L5l

which plugged into (89) yields

1
‘Lligzgh I=.

1
(91) %1 % lunlin

For the second term we have, on the other hand,

_d
Ty s h™2|Ghe, — 7' Genl

3-d 1
(92) < BT (hLEuyllon)? [ LEva 2,

3-d 5 ork, |3 5 ork, |3
Sh2 Hﬂh“Lh |LhEhH0,h < v 1,hHLthH0,h7
where we have used the global inverse inequality (12) with p = 2 to obtain the first
bound, the estimate (80) to obtain the second, (74) to obtain the third, and the fact
that d < 3 together with h < hqg < 1 (with hg diameter of ) to conclude. The

conclusion follows plugging (91) and (92) into (88). d
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REMARK 8 (Discrete Agmon’s inequality in dimension d = 2). When d = 2, we have
the following sharper form for the discrete Agmon’s inequality:

k 1
(93) Vv, € Qh,Oa ||UhHL°0(Q) < ||UhH0 hHthhHS

To obtain (93), the following modiﬁcations are required in the above proof: (i) The
term Ty is bounded as T, < || Gon|? 1Gonl a2y < |vnl? > | Lk v,,|| 2, where we have used
v = =Gy (cf. (78)) for the first factor and (90) for the second; (ii) The third line

of (92) becomes Ty < ( n)2||LE Uh”O n < ||vh\|0 hHLivhHO h» where we have used
the inverse inequality (5) and mesh quasi- umformzty to bound the first factor.

We next prove the discrete Gagliardo—Nirenberg—Poincaré’s inequality of Lemma 8.
Proof of Lemma 8. Using the same notation as in the proof of Lemma 3, we have
HVhUhHLv(Q)d < ||Vh7fl;f+1g¢h||m(9)d + th(g}]f%L - 7Th+ g@h)HLp(Q)d =% + .

For the first term, we use the W'-stability of 7} ** (cf. (7)) followed by the continuous
Gagliardo—Nirenberg-Poincaré’s inequality (63) and (90) to infer

T1 S Genlwin) 190l Genlfe@) S lunlin I Livnl
For the second term, on the other hand, we have
1_1
T < hGD| Vi (Ghe, — T Gen)]
1_1 o
< hiG 2>\|ghwh—fkgsohu1h th@h I
< bG8 (| LEwy o, h> -

< h‘”d(%—%)\

”L Uh”&m

|Uh”1 h

where we have used the global reverse Lebesgue inequality (11) in the first line, the
definition (15) of the |-|1,,-norm to pass to the second line, the estimate (79) to pass
to the third line, and (74) to pass to the fourth line. To obtain the second inequality in
the fourth line, we observe that, recalling the definition (63) of a and the assumptions
on p, it holds for the exponent of h,

11 1 d/1 1
dl===)==-=(z2=2)=>0,
o (p 2) 2 2(2 p)

and, since h < ho < 1, the conclusion follows. 0

REMARK 9 (Validity of the discrete Agmon’s and Gagliardo—Niremberg—Poincaré’s
inequalities). At the discrete level, the fact that the discrete Agmon’s inequality (28)
is valid only up to d = 3 and that the Gagliardo—Nirenberg—Poincaré’s inequalities (64)
are valid only for p € [2,+) if d = 2, p € [2,6] if d = 3 is reflected by the need to
have nonnegative powers of h in the estimates of the terms Ty to conclude in the
corresponding proofs.
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(a) 128 x 128 uniform Cartesian mesh, k = 0, BE

(b) 64 x 64 uniform Cartesian mesh, k = 1, BDF2

Fig. 6: Spinoidal decomposition (left to right, top to bottom). In both cases, the
same random initial condition is used. Displayed times are 0, 5-107°, 1.25 - 1073,
3.6-1072.
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