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Multimodal Adapted Robot Behavior Synthesis within a Narrative
Human-Robot Interaction

Amir Aly1 and Adriana Tapus2

Abstract— In human-human interaction, three modalities of
communication (i.e., verbal, nonverbal, and paraverbal) are
naturally coordinated so as to enhance the meaning of the
conveyed message. In this paper, we try to create a similar
coordination between these modalities of communication in
order to make the robot behave as naturally as possible. The
proposed system uses a group of videos in order to elicit
specific target emotions in a human user, upon which interactive
narratives will start (i.e., interactive discussions between the
participant and the robot around each video’s content). During
each interaction experiment, the humanoid expressive ALICE
robot engages and generates an adapted multimodal behavior
to the emotional content of the projected video using speech,
head-arm metaphoric gestures, and/or facial expressions. The
interactive speech of the robot is synthesized using Mary-TTS
(text to speech toolkit), which is used - in parallel - to generate
adapted head-arm gestures [1]. This synthesized multimodal
robot behavior is evaluated by the interacting human at the
end of each emotion-eliciting experiment. The obtained results
validate the positive effect of the generated robot behavior
multimodality on interaction.

I. INTRODUCTION

The need for an intelligent robot that can customize the
emotional content of its synthesized multimodal behavior to
the context of interaction so as to increase the credibility
of its communicative intents, is increasing rapidly. Speech,
gestures, and facial expressions are used together to convey
coordinated and synchronized verbal, paraverbal, and nonver-
bal information that could enhance the content of interaction.
The importance of gestures and facial expressions lies in their
ability to clarify the meaning of speech when the signal is
deteriorated, in addition to the fact that they can replace or
accompany words in a synchronized manner [2].

The correlation between emotion and speech had been
intensively investigated in the literature. Speech prosody can
reflect human emotion through changes in basic cues, such
as: pitch, intensity, rate, and pauses [3]. The variation in the
characteristics of voice prosody for different emotions: anger,
disgust, fear, and sadness, was studied in [4]. The process of
emotion perception and decoding, in addition to the required
time to recognize different emotions based on their prosodic
cues, was studied in [5]. The evolutionary nature of emotion
was considered in [6] and [7], while studying the cognitive
perception of emotion through a fuzzy model.
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On the way towards synthesizing emotional speech that
can add more naturalness to human-robot interaction and
human-computer interaction, the first emotional speech syn-
thesis system was developed based on the rule-based formant
synthesis technique [8], but the quality was a bit poor.
Another interesting approach based on the diphone con-
catenation technique that achieved some limited success in
expressing specific emotions, was discussed in [9]. This last
technique was later developed to the unit selection technique
that tries to avoid interference with the recorded voice during
synthesis so as to obtain a better quality, and reported some
small success in expressing only three emotions: happiness,
anger, and sadness [10]. Generally, the previously discussed
techniques are missing some explicit control on the prosodic
parameters of speech so as to be able to express emotions
on a wider scope. This constraint and the quality of the
synthesized voice, constituted our inspiration for using a
more controllable and efficient text-to-speech engine, like
Mary-TTS [11], in our work.

On the other hand, the basic definition for gesture was
given by Kendon [12] and McNeill [13]. They defined a
gesture as a synchronized body movement with speech,
which is related parallely or complementarily to the meaning
of the utterance. The first step towards categorizing gestures,
was discussed in Ekman and Friesen [14]. They proposed
5 gesture categories: (1) emblems, (2) illustrators, (3) fa-
cial expressions, (4) regulators, and (5) adaptors. However,
Kendon [15] criticized the proposed gesture categories of
Ekman for ignoring the linguistic phenomena. Therefore, he
proposed a new classification for gestures of 4 categories:
(1) gesticulation, (2) pantomime, (3) emblem, and (4) signs.
McNeill [13] presented a more elaborate widely used ges-
ture classification of 4 categories: (1) iconics (i.e., gestures
representing images of concrete entities), (2) metaphorics
(i.e., gestures representing abstract ideas), (3) deictics (i.e.,
pointing), and (4) beats (i.e., rhythmic finger movements).

Several research studies in the fields of human-robot
interaction and human-computer interaction, have focused
on synthesizing iconic and metaphoric gestures, which form
together (according to McNeill) the major part of the gen-
erated nonverbal behavior during human-human interaction.
Pelachaud [16] developed the 3D agent GRETA, which can
synthesize a multimodal synchronized behavior to the human
users based on an input text. Generally, GRETA can synthe-
size gestures of all categories regardless of the domain of
interaction, to the contrary of other 3D conversational agents
(e.g., the conversational agent MAX) [17]. An interesting
framework was discussed in [18], which can synthesize a



multimodal synchronized behavior for both the 3D agent
GRETA and robots. Cassell et al., [19] presented BEAT
toolkit, which is a rule-based gesture generator. It applies the
natural language processing (NLP) algorithms on an input
text in order to produce an animation script that can animate
both of humanoid robots [20], [21], and virtual agents (e.g.,
REA agent) [22]. This toolkit can generate gestures of differ-
ent kinds (including iconic gestures) except for metaphoric
gestures. Generally, the majority of gesture generation ap-
proaches are not considering the effect of emotion (expressed
through prosody) on body language, which puts a difficulty
towards adapting the generated robot behavior to human
emotion [23]. In this paper, we present an extension of our
previous work [1], [24], which proposes a statistical model
for synthesizing adapted head-arm metaphoric gestures to the
prosodic cues of speech (for this reason, the experimental
design in this paper is based on a human-robot interaction
scenario in order to use the modeled synthesized speech on
the robot (whose content corresponds to the comment of the
interacting human on the video) as an input to the gesture
generator). This model has been integrated to the system of
this paper in order to generate an adapted multimodal robot
behavior to the emotional content of interaction.

On the other hand, the correlation between facial expres-
sions and speech had been long recognized in psychological
studies [25]. The movement of face muscles and the prosodic
cues of speech can change in a synchronized manner in order
to communicate different emotions. The single-modal based
perception of human emotion through audio or visual infor-
mation, was discussed in [26]. Chen et al., [27] discussed the
complementarity of both modalities, so that the perception
of human emotion will be ameliorated when both modalities
are considered in the same time. These last findings are
considered in the experimental design of our study.

The synthesis and modeling of facial expressions in
computer-based applications and 3D agents received more
attention than in human-robot interaction. Parke [28] devel-
oped the first 3D face model that can convey different ex-
pressions. Platt and Badler [29] presented the first model that
employs FACS (Facial Action Coding system) in controlling
the muscular actions corresponding to facial expressions.
Spencer-Smith et al., [30] developed a more 3D realistic
model that can create a stimuli with 16 different FACS action
units and determined intensities. Similarly, robots underwent
different studies aiming towards allowing them to generate
reasonable facial expressions. An early initiative to model
facial expressions on robots was taken by Breazeal [31], who
developed the robot head Kismet. It uses facial details, like:
eyes, mouth, and ears to model facial expressions, such as:
anger, happiness, surprise, sadness, and disgust. Breemen et
al., [32] developed the research platform iCat, which can
render different facial expressions, such as: sadness, anger,
happiness, and fear. Beira et al., [33] developed the complete
expressive humanoid robot iCub, which can synthesize a
variety of emotions using gestures and facial expressions,
including: anger, sadness, surprise, and happiness. In this
paper, we use the highly expressive ALICE robot (Section

Fig. 1: Overview of the emotionally-adapted narrative system
architecture

II-C) for the purpose of generating a complete multimodal
robot behavior, which was not sufficiently addressed before
in the literature. The rest of the paper is structured as
following: Section (II) presents a detailed illustration for
the system architecture, Section (III) illustrates the design,
the hypotheses, and the scenario of interaction, Section
(IV) provides a description for the experimental results, and
finally, Section (V) concludes the paper.

II. SYSTEM ARCHITECTURE
The proposed system is coordinated through different

subsystems: (1) Speech dictation system (HTML5 API mul-
tilingual dictation toolkit), (2) Emotion detection phase, in
which some defined keywords are parsed from the dictated
speech of the human user so as to precise an emotional
label for the video’s content, (3) Mary-TTS engine, which
converts the prepared texts (i.e., robot comments) and the
detected emotion in each interaction to a synthesized emo-
tional speech, (4) Metaphoric gestures generator, which maps
the synthesized speech to synchronized head-arm metaphoric
gestures [1], (5) Facial expressions modeling and animation
stretching phase, and finally (6) ALICE robot as the test-bed
platform in the experiments (Section III). An overview of
the system architecture is illustrated in Figure (1).

A. Metaphoric Gestures Generator

The generator uses the Coupled (i.e., 2 chains for speech
and gestures) Hidden Markov Models (CHMM) [34] in order
to synthesize head-arm metaphoric gestures, as illustrated
in details in [1] and [35]. The training of the CHMM
requires first segmenting the characteristic curves of speech
and gestures. The motion curves of gestures (i.e., the ve-
locity, acceleration, displacement, and position curves) are
segmented by calculating the force, momentum, and kinetic
energy of body segments (e.g., the up-arm, low-arm, and
hand segments), in addition to the total force of the body.
The intersection between these descriptors represents the
boundary points of gestures in each body segment. Mean-
while, the pitch-intensity curves of speech are segmented in
parallel with gestures in terms of the boundary points of
each gesture, the frame time, and the sampling frequency
[1]. These segmented patterns of speech and gestures are
used to train the CHMM, through which new adapted head-
arm metaphoric gestures will be synthesized based on the
prosodic cues of a speech-test signal.



Fig. 2: SSML specification of the “sadness" emotion

B. Affective Speech Synthesis

The text-to-speech engine (Mary-TTS) is used for the
purpose of adding relevant prosodic and accent cues to a
pre-prepared text that summarizes the content of the video
under discussion [11]. This allows the robot to engage in
the conversation using - to some extent - adapted emo-
tional speech to the emotional context of the video. The
designed vocal patterns are represented using a low-level
markup language called MaryXML (which is based on the
XML markup language) or using other relatively high-level
markup languages, like the SSML (Speech Synthesis Markup
Language) [36]. The SSML representation offers more vocal
design features, like imposing a silence period between
words, in addition to an easy control on the characteristics
of the pitch contour, baseline pitch, and speech rate (Figure
2), which makes it helpful for the emotional vocal patterns’
design described in this study. However, the fact that Mary-
TTS engine is not prepared yet for efficiently synthesizing
emotional speech of different classes in the English language
(to the best of our knowledge, no other vocal engine can),
makes our proposed vocal design as an approximate step
towards conveying - even to some extent - the true meaning
of the expressed emotion to a human user. Therefore, the
multimodality of the robot behavior is a good solution that
could emphasize the meaning of the expressed behavior, so
that each modality enhances the other one.

The designed vocal patterns of the target emotions are
summarized in Table (I), in which the pitch contours are
characterized by sets of parameters inside parentheses (where
the first parameter in each set followed by "%" represents a
percentage of the text duration, while the second parameter
represents the corresponding change in the baseline pitch in
semitone, which is half of a tone on the standard diatonic
scale). The speech rates of the target emotions vary between
the rates of the “sadness" emotion (lowest rate) and the
“anger" emotion (highest rate). The inter-sentence break
time of each target emotion represents the silence periods
between sentences (i.e., story texts), during which the robot’s
lips/jaw will make certain expressions that could enhance
the expressed emotion (Section II-C). Meanwhile, the intra-
sentence break time represents the short silence periods
within a sentence, which are necessary for increasing the
credibility of the “sadness" and “fear" emotions.

The indicated experimental parameters in Table (I) give
an example to the prosodic patterns of parts of the texts

that Mary-TTS engine should convert to speech in different
emotions. The other prosodic patterns of the remaining parts
of the texts could differ slightly from the contour parameters
of Table (I) in order to show some tonal variation through
the total of each text.

C. Face Expressivity

The designed facial expressions corresponding to the pre-
scribed target emotions in this study, are based on the Facial
Action Coding System (FACS) [37]. Table (II) illustrates the
FACS coding of each target emotion in this study, in addition
to the available equivalent joints in the face of the robot
that we used in order to model each expression in the most
persuasive manner.

The complexity behind modeling emotions on the face
of the robot lies in the absence of the equivalent joints
to some FACS descriptors (e.g., cheek raiser, nose wrin-
kler). Therefore, we imposed experimentally some additional
body gestures in order to reduce the negative effect of
the missing joints so as to enhance the expressed emotion.
These additional gestures do not include -normally- any head
gesture (i.e., neck rotation) nor arm-hand gestures, which
are being generated by the metaphoric gestures generator
explained earlier (Section II-A).1 However, the combination
of the neck rotation (i.e., turning the head aside) and the
raising front-bent arms has been helpful for better expressing
the “disgust" emotion (consequently, they got considered as
additional supportive gestures for this emotion). This will
help give the interacting human - even to some extent -
the impression that the robot did not like the context of
interaction and considered it disgusting. Similarly, the “fear"
emotion, the “anger" emotion, and the “sadness" emotion
have been attributed additional mouth-guard hand gesture,
down head-shaking, and bowing head and covering-eyes
hand gesture respectively, in order to help emphasize their
meanings, as indicated in Figure (3). On the other hand, the
main role of the additional supportive left smile and right
smile face joints of the “fear" emotion, is to depress a little
the corners of the open mouth to better reflect the emotion,
however they do not have any equivalent FACS descriptor
representing the “fear" emotion, as indicated in Table (II).

Generally, the modeling of facial expressions on a hu-
manoid robot (even with the expressive ALICE robot) is not
an easy task due to the mechanical limitations that the robot
has (unlike the 3D agents). Therefore, the multimodality of
the robot behavior is important for interaction, which makes
each modality of behavior expression enhances the other
modalities so as to emphasize the conveyed meaning of the
expressed emotion to a human user.

The temporal alignment between the synthesized emo-
tional speech and the designed facial expressions is con-
trolled by the duration of the generated speech. In case the

1The metaphoric gestures generator [1] has the liberty to synthesize the
most appropriate gestures based on its own learning algorithm. Therefore,
it is probable that the previously mentioned supportive head-arm gestures
will not be synthesized by the generator during interaction. Consequently,
we imposed them at specific moments during speech with a higher priority
than the generator’s synthesized gestures to make sure of their presence.



TABLE I: Approximate design of the vocal pattern and the corresponding contour behavior of each target emotion on the
standard diatonic scale. Some emotions have used interjections (with tonal stress) in order to emphasize the desired meaning,
like: ’Shit’ for the “anger" emotion, ’Ugh’ and ’Yuck’ for the “disgust" emotion, and ’Oh my God’ for the “fear" emotion.

Emotion Baseline Pitch Pitch Contour Speech Rate Contour Features Break Time
Start Behavior End

Sadness -4st (0%,+0st)(100%,-0st) -30% Negative Constant Negative Inter/Intra-Sentence
Disgust +4st (0%,-5st)(40%,-9st)(75%,-12st)(100%,-12st) +8% Negative Exponential Negative Inter-Sentence

Happiness +2st (0%,+8st)(30%,+16st)(50%,+14st)(100%,+11st) +7% Positive Parabola Positive Inter-Sentence
Anger +5st (0%,-18st)(50%,-14st)(75%,-10st)(100%,-14st) +12% Negative Parabola Negative Inter-Sentence
Fear +6st (0%,+2st)(50%,+5st)(75%,+8st)(100%,+5st) +7% Positive Parabola Positive Inter/Intra-Sentence

TABLE II: FACS coding of the target emotions and the corresponding joints in the robot’s face, in addition to the other
required gestures to emphasize the meaning of facial expression. The bold FACS action units in each emotion represent the
observed prototypical units between the subjects in [38], while the other less common non-bold units are observed with
different lower percentages between the subjects. The underlined action units represent the units that have approximate
corresponding joints in the robot’s face.

Emotion FACS Coding Robot’s Face Joint Additional Body Gestures

Sadness
Brow Lowerer + Lip Corner Depressor + Inner Brow
Raiser + Cheek Raiser + Nasolabial Deepener + Chin

Raiser

Left Smile + Right Smile +
Brows

Covering-Eyes Hand + Bowing Head
+ Narrowing Eyes + Eyes Blinking +

Closing Jaw

Disgust Lip Pressor + Brow Lowerer + Nose Wrinkler + Upper
Lip Raiser + Chin Raiser Jaw + Brows Neck Rotation + Raising Front-Bent

Arms + Narrowing Eyes

Happiness Lip Corner Puller + Lips Part + Cheek Raiser Left Smile + Right Smile +
Jaw Eyes Blinking

Anger
Brow Lowerer + Lid Tightener + Lip Pressor + Lip

Tightener + Upper Lip Raiser + Chin Raiser + Nasolabial
Deepener

Jaw + Brows + Eyelids Down Head-Shaking + Short
Mouth-Opening

Fear
Inner Brow Raiser + Brow Lowerer + Lip Stretcher +

Lips Part + Outer Brow Raiser + Upper Lid Raiser +
Jaw Drop

Left Smile + Right Smile +
Jaw + Brows + Eyelids

Mouth-Guard Hand

duration of the generated speech is longer or shorter than the
preliminary duration of the animation, the system calculates
easily the new time instant of each control point composing
the XML animation script (in which the control points are
characterized in terms of position and time) as a function of
the new duration of the generated speech, the preliminary
duration of the animation, and the last time instant value of
each control point. Meanwhile, the position of each control
point is kept unchanged during the animation.

The segmentation of human speech employs the voice
activity detection algorithm in order to label and separate
between the speech and silence segments. In case the silence
period is related to an inter-sentence break time (Section II-
B), the robot’s lips/jaw perform certain expressions (e.g., lip
corner pulling for the “happiness" emotion) to enhance the
conveyed meaning of the expressed emotion, as indicated
in Figure (3). This is due to the mechanical limitations of
the robot that do not allow for synchronizing the lips with
speech, while performing an expression with the lips/jaw in
the same time. However, in case the silence period is related
to an intra-sentence break time (Section II-B), the robot’s
jaw is kept opened in the “fear" emotion and closed in the
“sadness" emotion, during the duration of the silence period.

On the other hand, the animation of the robot’s lips
in a synchronized manner with the segmented speech has
encountered a big difficulty when using the 3 servo motors
controlling the lips motion (2 motors for the corners and 1

motor for the vertical motion), because they can not generate
a reasonable homogeneous motion when operating together
during continuous speech, in addition to the noise they
generate. Alternatively, we used only the motor that controls
the vertical motion of the lips. Afterwards, the remote
running server of the robot maps the calculated visemes
corresponding to the segmented speech to lips motion.

III. EXPERIMENTAL SETUP

In this section, we introduce the database used in inducing
emotions in each participant, the experimental hypotheses,
the design, and the scenario of interaction between the par-
ticipant and ALICE robot developed by Hanson Robotics.2

A. Database

The database used in this research contains 20 videos in-
ducing the following 6 emotions: sadness, disgust, happiness,
anger, fear, and neutral. The duration of the videos varies
from 29 to 236 seconds, and all of them have been extracted
from commercial films. The procedures of validating the
efficiency of the database in eliciting the target emotions in

2 The humanoid ALICE-R50 robot has a full-motion body and an
expressive face, with a total of 36 degrees of freedom. The robot is equipped
with two cameras and an array of sensors, including an accelerometer sensor,
a torque sensor, a series of touch sensors, in addition to many other different
sensors that allow it to precisely perceive its surroundings. The face of the
robot composed of synthetic skin, is its main specialty. It can create a full
range of credible facial expressions in different emotions (Section II-C).



(a) Sadness

(b) Disgust

(c) Happiness

(d) Anger

(e) Fear

Fig. 3: Synthesized facial expressions by ALICE robot

humans, were discussed in [39]. During the experiments, we
used 12 videos extracted from different films for eliciting the
target emotions (which constitute 6 main videos used during
the experiments, and 6 standby videos used automatically
when the main videos fail to elicit the corresponding target
emotions), as indicated in Table (III).

B. Hypotheses

This study aims to test and to validate the following
hypotheses:

• H1: The combination of facial expressions, head-arm
metaphoric gestures, and synthesized emotional speech

TABLE III: Target emotions and their corresponding feature
films. The main videos used during the experiments were
extracted from the bold feature films.

Target Emotion Feature Film
Sadness The Champ - An Officer and a Gentleman
Disgust Pink Flamingos - Maria’s Lovers

Happiness On Golden Pond - An Officer and a Gentleman
Anger My Bodyguard - Cry Freedom
Fear Halloween - Silence of the Lambs

Neutral Crimes and Misdemeanors - All the President’s Men

will make the emotional content of interaction more
clear to the participant than the interaction conditions
that employ less affective cues.

• H2: Facial expressions will enhance the expressiveness
of the robot emotion in contrast to the interaction
conditions that do not employ facial expressions.

• H3: The dynamic characteristics of the robot head-arm
metaphoric gestures will help the participant recognize
and distinguish between the target emotions.

C. Experimental Design
Our design contains three robot conditions:
• The robot generates a combined multimodal behavior

expressed through synchronized head-arm metaphoric
gestures, facial expressions, and speech (i.e., condition
C1-SFG).

• The robot generates a combined multimodal behavior
expressed through synchronized facial expressions and
speech (i.e., condition C2-SF).

• The robot generates a combined multimodal behavior
expressed through synchronized head-arm metaphoric
gestures and speech (i.e., condition C3-SG).

• The robot generates a single-modal behavior expressed
only through speech (i.e., condition C4-S).

In order to examine the first hypothesis, the first three con-
ditions were examined (in which the facial expressions are
accompanied by the additional supportive gestures illustrated
in Table II). In this hypothesis, we excluded the conditions
of the robot expressing a single-modal behavior only through
head-arm metaphoric gestures or facial expressions without
speech, in addition to the condition of the robot expressing
combined facial expressions and head-arm metaphoric ges-
tures without speech, because they do not match the context
of the non-mute human-human interaction. Consequently,
the importance of speech in recognizing emotions is mea-
sured directly through the questionnaire. On the other hand,
in order to validate the second hypothesis, two conditions
were investigated, which are the same as the conditions C2-
SF and C4-S. Similarly, in order to validate the third hypoth-
esis, two other conditions were tested, which are the same
as the conditions C3-SG and C4-S (the condition C2-SF was
excluded from validating the third hypothesis, because facial
expressions were accompanied by the additional supportive
gestures explained earlier).

Both of the robot and the interacting human follow a series
of short videos through 6 experiments that mean to elicit 6



Fig. 4: Two participants interacting with the robot during the
“happiness" and “sadness" emotion elicitation experiments

emotions (Section III-A) (Figure 4). The different method-
ologies of emotion induction and assessment were illustrated
in [40]. The idea behind using videos to successfully elicit
emotions in the human user, is that they are emotionally
convincing and their role is well indicated in the literature
[41]. An interesting study about eliciting emotions from films
was discussed in [39], in which the results proved that the
studied target emotions were reasonably recognized. In our
study, the scenario of interaction is described as following:

• The robot welcomes the participant and invites him/her
to watch some videos so as to have a discussion about.

• The robot asks the participant to express his/her opinion
about the content of the video. Afterwards, it parses
some expected emotional labels from the dictated com-
ment of the participant, such as: This is disgusting!.
This helps detect the video’s emotional content so as to
trigger an adapted robot behavior.

• After listening to the comment of the participant on the
video, the robot makes itself a comment accompanied
by adapted emotional speech, head-arm metaphoric ges-
tures, and/or facial expressions to the video’s content.

• In case the video rarely elicits a different emotion in the
participant from the target emotion, so that the system
parses some keywords that belong mainly to another
category of non-target-emotion-referring keywords, the
robot will comment through a neutral behavior in order
to avoid any emotion-biasing effect. Then, it will invite
the participant to watch another video, which means to
certainly elicit the same emotion that was not success-
fully induced in the participant with the first video.

• The interaction ends for the concerned emotion. Af-
terwards, the participant starts evaluating the modeled
behavior on the robot considering the relevance of its
emotional content to the context of interaction, through
a Likert questionnaire (in which all questions are pre-
sented on a 7-point scale). Whereupon, a new interaction
for a new randomly selected emotion starts.

• After the experiments end up, the robot and the exper-
imenter thank the participant for his/her cooperation.

IV. EXPERIMENTAL RESULTS

The experimental design was based on the between-
subjects design, and 60 participant were recruited in order
to validate our hypotheses. The participants were uniformly

distributed between the four experimental conditions (15 par-
ticipant (6 female and 9 male) /condition). The recruited par-
ticipants were ENSTA-ParisTech undergraduate and graduate
students and employees whose ages were varying between
20-57 years old (M = 29.64, SD = 9.4). The background
of the participants was non-technical with an average of
33.3%, and technical with an average of 66.7%. 40% of the
participants have interacted before with robots, while 60% of
the participants have never interacted with robots beforehand.

For the first hypothesis, a significant difference was
found by ANOVA analysis in the clearness of the adapted
robot emotional behavior expressed through a combination
of head-arm metaphoric gestures, facial expressions, and
speech with respect to the robot emotional behavior ex-
pressed through facial expressions and speech, and the robot
emotional behavior expressed through head-arm metaphoric
gestures and speech (F [2,267] = 9.69, p < 0.001). Tukey’s
HSD comparisons indicated a significant difference between
the robot embodied with combined head-arm metaphoric
gestures, facial expressions, and speech (i.e., condition C1-
SFG) from one side, and the robot embodied with facial
expressions and speech (i.e., condition C2-SF) (p < 0.001),
in addition to the robot embodied with head-arm metaphoric
gestures and speech (i.e., condition C3-SG) (p < 0.001)
from the other side. However, no significant difference was
observed between the experimental conditions C2-SF and
C3-SG. Moreover, the participants found that the robot
behavior was more expressive in the condition C1-SFG than
in the condition C3-SG (F [1,178] = 13.64, p < 0.001). No
significant differences were observed in the participants’
ratings regarding the naturalness of the robot behavior in
the conditions C1-SFG, C2-SF, and C3-SG.

For the second hypothesis, the participants found that
the robot behavior expressed though facial expressions and
speech, was showing more expressiveness and was more
adapted to the content of interaction than the robot be-
havior expressed only through speech (i.e., condition C4-
S) (F [1,178] = 16.27, p < 0.001). Moreover, the partici-
pants considered that facial expressions and speech were
synchronized with an average score of M = 5.9, SD = 0.9.
Furthermore, they did not find any significant contradiction
between the modalities of the robot behavior expressed
through facial expressions and speech with an average score
of M = 1.8, SD = 1.2. Over and above, they agreed that
facial expressions were more expressive than speech with an
average score of M = 4.4, SD = 1.5. Table (IV) shows that
the facial expressions of the robot have only ameliorated the
recognition score of the “anger" emotion in the condition
C2-SF with respect to the condition C4-S. This ameliora-
tion is related to the encountered difficulties to design a
highly persuasive vocal pattern for the “anger" emotion due
to the limitations of the Mary-TTS engine (Section II-B).
Therefore, the facial expressions of the robot have certainly
enhanced the affective meaning of speech so as to give the
participant a clear feeling that the robot was expressing the
“anger" emotion. To the contrary, the facial expressions of
the robot had a negative influence on the recognition score of



the “disgust" emotion in the condition C2-SF with respect to
the condition C4-S, which is due to the limited expressivity
of the robot’s face for this emotion (Section II-C).

TABLE IV: Recognition scores of the target emotions ex-
pressed by the robot in 3 different experimental conditions

Condition Emotion
Sadness Disgust Happiness Anger Fear Neutral

C2-SF 100% 80% 93.3% 92.9% 100% 100%
C3-SG 100% 93.3% 93.3% 92.3% 100% 100%
C4-S 100% 93.3% 93.3% 80% 100% 100%

For the third hypothesis, the participants considered that
the emotional content of the robot behavior expressed
through head-arm metaphoric gestures and speech was more
observable than the emotional content of the robot behav-
ior expressed only through speech (F [1,178] = 17.16, p =
0.0001). Furthermore, the participants found that gestures
and speech were synchronized with an average score of
M = 6.1, SD = 0.7. At the same time, they agreed that
the execution of gestures was fluid with an average score
of M = 5.3, SD = 1.01. Moreover, they considered that
gestures were slightly more expressive than speech with an
average score of M = 4.2, SD = 1.4. The emotional content
of the robot head-arm metaphoric gestures was generally
recognizable with reasonable scores, as indicated in Table
(IV). However, they have only ameliorated the recognition
score of the “anger" emotion in the condition C3-SG with
respect to the condition C4-S (similarly to the effect of facial
expressions), while the other recognition scores were equal
in both conditions. Consequently, the dynamic characteristics
of the generated gestures in case of the “anger" emotion, like
the high velocity and acceleration, have certainly enhanced
the expressive meaning of speech and gave the human the
feeling that the robot was angry in a more persuasive manner.

Fig. 5: Gender-based evaluation for the emotional expres-
siveness of the multimodal robot behavior expressed through
combined facial expressions and speech (condition C2-SF).
The error bars represent the calculated standard errors.

On the other hand, the emotional expressiveness of the
robot behavior was positively perceived in general by the
male and female participants in the conditions C2-SF and
C3-SG, as indicated in Figures (5) and (6), respectively.

Fig. 6: Gender-based evaluation for the emotional expres-
siveness of the multimodal robot behavior expressed through
combined head-arm gestures and speech (condition C3-SG).
The error bars represent the calculated standard errors.

However, the perception of the male participants for the
emotional expressiveness of the robot in both conditions,
was generally higher than the perception of the female
participants. The male participants in the condition C2-
SF gave higher ratings for the emotions: sadness, disgust,
happiness, and fear, meanwhile the female participants gave
higher ratings for the emotions: anger and neutral (Figure 5).
Similarly, the male participants in the condition C3-SG gave
higher ratings for the emotions: sadness, disgust, anger, and
fear, meanwhile the female participants gave higher ratings
for the emotions: happiness and neutral (Figure 6). These
findings reveal the relatively higher preference of the male
participants for the emotional expressiveness of the female
ALICE robot, than the female participants. This gender-
based evaluation matches the findings of [42], which proved
the tendency of the participants to consider the opposite-sex
robots as being more credible, engaging, and persuasive.

V. CONCLUSIONS

This paper discusses adapting the multimodal robot behav-
ior to the emotional content of a series of videos eliciting
specific emotions in the human user within a narrative
human-robot interaction. Each interacting human was ex-
posed to only one of 4 different experimental conditions
of multimodal/single-modal behaviors (i.e., conditions: C1-
SFG, C2-SF, C3-SG, or C4-S) during the whole 6 exper-
iments of eliciting the 6 target emotions. Our proposed
system uses Mary-TTS engine in order to generate emotional
speech. The metaphoric gestures generator synthesizes head-
arm gestures based on the prosodic cues of speech. On the
other hand, the designed facial expressions on the robot
required some additional supportive gestures to enhance the
conveyed meaning of the expressed emotion to the human.

This paper validates the role of the robot behavior multi-
modality in increasing the clearness of the emotional content
of interaction with respect to the interaction conditions
that use less affective cues. Besides, it proves the role of
facial expressions in enhancing the expressiveness of the
robot behavior, and the role of the generated gestures in



recognizing the target emotions. For the future work, we
are interested in increasing the gestural expressivity of the
system by integrating additional gesture generators, which
can synthesize gestures of other categories (e.g., iconic
gestures). Besides, we are interested in ameliorating the
emotional content of the synthesized speech so as to make
the generated speech more persuasive and more natural.
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