
Relational and graph queries over a transition system

Siham Rim Boudaoud∗, Khaoula Es-Salhi∗, Vincent Ribaud† and Ciprian Teodorov∗
∗Lab-STICC CNRS UMR 3128, ENSTA-Bretagne

2 rue François Verny, 29200, Brest, France
Email: name.surname@ensta-bretagne.fr

†Lab-STICC CNRS UMR 3128, Université de Bretagne Occidentale
20, avenue Le Gorgeu, 29200, Brest, France

Email: ribaud@univ-brest.fr

Abstract—Explicit model-checking is a brute force traversal
of all possible model states that permits to assert if a property
is satisfied or not. If the property is violated, the model-checker
produces a counterexample trace. However, once the existence of
a problem is proved, the designer is left with a counterexample
trace that only exhibits the problem [1]. The designer needs to
interpret traces and this interpretation is challenging for several
reasons such as the trace size or the low-level of information.
We believe that querying traces will help the problem inter-
pretation because it supports visualization and diagnosis tools.
We designed KriQL, a query language working on traces and
the underlying labelled transition system. This paper evaluates
different KriQL implementations, mainly the use of relational and
graph databases for the management of the transition system. We
present results obtained through the analysis of a Cruise-Control
System, a realistic case study from the automotive industry.

I. INTRODUCTION

System verification aims to establish that the system under
study (SUS) satisfies properties, generally issued from the
system specification. A defect is found when the system
violates a property. Model-checking is a verification technique
based on two inputs: a design of the SUS and a specification of
properties to assert. The SUS design is a formal representation,
e.g. expressed with process algebra or concurrent automata.
Properties specification aims to formalize requirements, e.g.
with temporal logic. The model checker explores all possible
states. If a state is encountered that violates a property, the
model checker produces a counterexample - an exploration
path that leads to the undesired state - that is called a trace.
A typical diagnosis process is simple: a human or machine
troubleshooter provides a description of the problem that
occurred, a kind of analysis is performed and the root cause
identified in order to provide the user with a remedy to the
problem. When the problem is represented with a counterex-
ample trace, we need to interpret traces and this interpretation
is challenging for several reasons: the trace conforms to a
structure that might be or might not be available with the
trace, the interpretation has to deal with the different levels
of details from which the traces are built, the size of the
trace can be large. Because the states space explored by a
model-checker is a graph, graph visualization techniques are
useful to represent exploration and traces, but the size of the
graph to view is a key issue in graph visualization [2]. Hence,
graph querying that yields restricted sub-graphs or aggregated
results is an helpful companion to graph visualization. The
work presented here addresses performances aspects and relies

on the research hypothesis that efficient traces query will
support better visualization and ease problem interpretation.
We designed KriQL, a query language working on traces and
the underlying labelled transition system. This paper presents
a realistic case study called the Cruise-Control System (sec-
tion II), different candidate architectures (section III), queries
implementations and performances (section IV). We conclude
with the requirements for a blended database management
system hosting the exploration graph and related traces.

There are a lot of work about data clustering (see a review
in [3]), data mining tools such as the WEKA software [4],
graph visualisation systems [5]. Neo4J has gained a rising
attention from the scientific community. In [6], performances
of different Neo4j languages and JPA-mySQL are analysed and
the Cipher language stated as a promising candidate. In [7],
authors evaluated the performance of several scalable native
graph database projects and showed that DEX and Neo4j are
the most efficient graph databases. We are not aware neither
of research work about graph database for model-checking
visualization nor work related to the necessity of a blended
implementation (relational and graph-based) for certain cases.

II. VERIFICATION OF A CRUISE-CONTROL SYSTEM

A. A typical model-checking approach

The first step in verification is to have a formal specification
of the SUS properties. Temporal logic is widely used. When
specification is given in terms of properties expressed with
temporal logic formulas, the temporal logic is interpreted over
computations, which can be viewed as infinite sequences of
truth assignments to the atomic propositions of formulas [8].
The second step is to produce a design of the SUS using an
appropriate formalism. With a finite-state design, the design
can be abstractly viewed as a Labelled Transition System or
LTS. A LTS is a set of states and a set of transitions between
states, which may be labelled with labels chosen from a set.
A path in a LTS that starts at state u0 is a possible infinite
sequence u0, u1, ... of states where (ui, ui+1) is a transition.
A computation is a sequence of truth assignments visited by
the path. Hence there is a language associated with the LTS,
consisting of all computations that start from the initial states
of the system. This language can be viewed as an abstract
description of the LTS, describing all possible traces [8].
The LTS satisfies a formula if all computations satisfy the
formula. Properties implementation might use predicates or
observers. A predicate is a Boolean-valued function that can
be asserted in each state of the LTS. Thus the exploration978-1-4799-8569-2/15/$31.00 c©2015 IEEE

notifies states where asserts are violated. An observer is
an automata that monitors the model behaviour to observe
whether a formula is violated. An observer is composed with
the model through a synchronisation product, i.e. the observer
automaton is added to other automata and all possibles states
explored. The observer state is changing during the exploration
and can reach special states, called reject states that denotes a
violation of the property implemented with the observer.

B. Context-aware verification

Our team develops and maintains a model-checking tool
kit. The SUS is described using the Fiacre language [9], which
enables the specification of interacting behaviours and timing
constraints through timed-automata. Our approach, that we
called Context-aware Verification, focuses on the explicit mod-
elling of the environment as one or more contexts. Interaction
contexts are described with the Context Description Language
(CDL). CDL enables also the specification of requirements
through predicates and properties. The requirements are veri-
fied within the contexts that correspond to the environmental
conditions in which they should be satisfied. All these devel-
opments are implemented in the OBP tool kit [10] and are
freely available1. Fig. 1 shows an overview of our approach.

CDL

OBP
explorer

System
model

Properties:
invariants,
observers

Labeled
transition
system

Fiacre

CDL

Context Results

Fig. 1. OBP Observation Engine overview

C. The Cruise-Control System

We will use the description and some of the requirements
of an automotive Cruise-Control System (CCS) as a case study
for this paper. Details can be found in [11].

1) SUS Model:

a) Functional Overview: The CCS main function is to
adjust the speed of a vehicle. After powering the system on,
the driver first has to capture a target speed, then it is possible
to engage the system. This target speed can be increased or
decreased by 5km/h with the tap of a button.
There are several important safety features. The system shall
disengage as soon as the driver hits the brake/clutch pedal
or if the current vehicle speed (s) is off bounds (40 < s <
180km/h). In such case, it shall not engage again until the
driver hits a resume button. If the driver presses the accelerator,
the system shall pause itself until the pedal gets released.

1OBP Languages and Tool kit website: http://www.obpcdl.org

b) Physical architecture: The CCS is composed of four
parts. A control panel component yields the controls needed to
operate the system. An actuation component is able to capture
the current speed and, once enabled, to adjust the vehicle speed
towards the defined target. A health monitoring component
detects critical events and relays them to the other components.
A system center component acts as a controller. The car as a
whole is a fifth component.

The control panel provides the driver with buttons needed
to operate the system: PowerOn, PowerOff, SetSpeed, Resume,
Disengage, IncrementSpeed, DecrementSpeed. The control
panel should relay those operations to the system center.
The actuation provides the tools for the system to interact with
the vehicle. It can capture the current speed of the vehicle and
set it as a target speed. One the CCS enabled, the actuation is
responsible for controlling the vehicle speed accordingly.
The health monitoring is responsible for monitoring the system
and vehicle events that could impact the CCS behaviour: brake,
clutch or accelerator pedals pressed or released, speed out of
bounds. This component should relay such events to the system
center which shall handle them.
The system center is the core of the CCS. It is responsible
for handling events detected by both the control panel and the
health monitoring components. To do so, it shall be able to
impact the behaviours of all other components.

2) Requirements: Let us present two requirements of the
CCS and their implementation using CDL: an observer au-
tomaton for REQ1 (Fig. 2) and predicates for REQ2 (List. 1).

REQ1: When an event inducing a disengagement is de-
tected, the actuation component should not be allowed to
control the vehicle speed until the system is explicitly resumed.

Fig. 2. Observer automaton for Req1.

REQ2: The target speed should never be lower than
40km/h nor higher than 180km/h.

Listing 1. Specifying predicates for Req2.
1

2 p r e d i c a t e t a r g e t S p e e d I s U n S e t i s {
3 Actuat ion@UnSet or A c t u a t i o n @ U n s e t S e t t i n g }
4 p r e d i c a t e speedBetween40And180 i s {
5 (A c t u a t i o n : s e t P o i n t S p e e d >= 40
6 and A c t u a t i o n : s e t P o i n t S p e e d <= 180)
7 or t a r g e t S p e e d I s U n S e t }

III. QUERIES OVER A LABELLED TRANSITION SYSTEM

A. Queries by example

1) A counterexample: Recall that an exploration explores
the LTS in a brute-force manner in order to detect execution
paths that violate specification properties. In a model-checking
verification, the environment modelling should balance be-
tween two important constraints: (i) the context has to cover

enough behaviours to be considered valid for a given property;
(ii) it has to be small enough to allow an exhaustive exploration
of the SUS composed with its environment. Hence we model
an environment that combines a basic scenario and a pertur-
bation scenario. The basic scenario is the main use case of the
CCS that covers the functionalities needed to verify properties.
The perturbation scenario is an alternative including changes
of the vehicle speed within the allowed range or not, pressures
on the pedals and the panel buttons. The perturbation scenario
stresses the SUS with unexpected environment behaviours.
Increasing and decreasing the vehicle speed is a continuous
function that is typically provoking a state space explosion due
to the infinity of possible values. Hence we have to transform
the continuous variable in a discrete variable, for instance
increasing or decreasing the speed by step of 5. Obviously,
reducing or increasing this discretisation step will yield smaller
or bigger LTS and we use this discretisation parameter as a
way to make the exploration bigger to stress our tools.

A LTS is a set of nodes and edges. An edge is a transition
between nodes. A node gathers information about a system
state such as the variables values, the processes states, the
messages in the queues. We call a configuration the data
structure that holds this information. When the speed incre-
ment or decrement is set to 5 km/h, the verification of the
SUS design according to the two requirements presented in
section II-C2 leads OBP to explore a LTS composed of 445
232 states and 672 247 transitions. Obviously, requirement
REQ1 is violated in a bunch of configurations and OBP
yields any path that starts from the initial state and ends in
a faulty configuration. Let us select the first faulty path, it
ends at configuration 3128 and is composed of 211 transitions.
There is no interest to see all the configurations details and
because we are focussing on requirement REQ1, we might
want to see the path configurations where the observer state is
changing. Only three configurations are involved and we have
two successive paths: a path from configuration 0 to 2300 and
a single-transition path from configuration 2300 to 3128 . We
call a trail a succession of paths (2 in this case) between two
configurations. Because the intermediate paths do not need to
be expanded, all we need is a measurement of their size. The
trail example is represented in Fig. 3.

Fig. 3. Visualization of a counterexample trail for requirement 1

2) Counterexample visualization: In a previous work [12],
we wrote a specification of a visualization tool for traces.
A prototype implementation has been made by a start-up
company (OpenFlexo), that yields an open-source tool for
models handling and information sources federation (see

http://www.openflexo.org). A central feature of trace visual-
ization is the ability to represent traces according to different
facets. A facet is an element, either belonging to the SUS
design or a property or a predicate or an interprocess commu-
nication (such as queue or an event). Facets can be queried and
facet queries combined with logical operators. A facet query is
usually a predicate related to the element type: variable values
can be arithmetically checked, achieving a process state or an
automaton state can be tested, event can be detected and so on.
Very often, elements of interest are related to the fact that an
element has its value changed and a special predicate changed
highlights configurations where the element value has changed.

Fig. 4. Visualization of a counterexample for requirement 1

Fig. 4 shows a visualization of the counterexample trace
presented in the previous subsection using two facets: an
observer automaton and a process state. Because we want to
understand the counterexample related to REQ1, we monitor
the HealthMonitoring process state (that induces a disen-
gagement). We are also interested by the car speed and we
display the current value of the variable currentSpeed for each
configuration of the trail. Because it is often interesting to
see what happened before a change, the user has explicitly
unfolded the configuration 2026 that is a predecessor of the
configuration 2300 (one of those where the HealthMonitoring
process state has changed).

B. KriQL meta-model

1) Introduction: Our language is intended to ease traces
understanding. A trace is a path in a LTS and because a LTS is
essentially a Kripke structure [8], we call the language KriQL
(Kripke Query Language). The design of KriQL was inspired
from several sources. When we look at the LTS as a set of
states, each state being represented by a configuration, we need
a set-oriented language and SQL was a source of inspiration.
A configuration or a configuration set can be projected along
one or several configuration elements; a set can be restricted
according to one or several predicates; union, intersection and
difference of sets are required. When we look at the LTS as
set of transitions, i.e. a graph, operations related to graphs are
useful. Path existence, shortest or longest path between two
nodes, path size are required. Because KriQL is intended to
ease diagnosis, some operations stem from visualization needs.
Paths can be folded and unfolded, step by step or entirely.
Different visualizations issued from different facets have to be
merged. Diagnosis practices such as looking at changing value
or calculating the range of a variable yield also operations.

2) Operands and operators: We gathered these different
sources in the KriQL core and its meta model is presented
in Fig. 5. The meta-model corresponds to the design of an
Application Programming Interface intended to provide the
programmer with the minimal kit for implementing queries.
Sets such as TransitionSet or ConfigurationSet are
issued from the domain but some sets such as ProcessSet
or VariableSet stem from technical requirements, essen-
tially for handling query results.

Fig. 5. KriQL meta-model

C. Implementing the CCS

Each SUS is represented by a design that is refined
iteratively. Thanks to the feedback of the model-checker and
through the observation of traces, the designer is updating her
design as a programmer tunes her program. The LTS structure
is related with the design structure and the design structure
allows the user to understand traces because it provides the
user with structural information about the design: process
names, variables names, constants and so on. Moreover traces

will be stored in a kind of database and the design structure
yields the database structure. We discuss in this subsection the
possible implementations of the design structure.

1) Relational DBMS: A relational DBMS stores data as
table rows conforming to an application schema. Binding the
design structure to an application schema can be accomplished
in a generic or a specialized way.
A generic binding is applied to any design structure in the
same manner; one set of tables is suitable for hosting data
independently of the design structure. Reference to any par-
ticular design construct such a process or a variable name, are
provided via parameters as input of any operation. A generic
binding specifies the set of operations to be made available to
an application programmer explicitly.
A specialized binding produces a different set of tables upon
a specific design structure. Hence the set of operations is
dedicated to the design structure instead of being passed via
parameters. A specialized binding does not specify the set of
operations to be made available to an application programmer
as this is dependent upon the design structure.

a) Generic binding: The database schema is not re-
lated to a particular design structure but stems from the
Fiacre language structure. A Configuration is made of
several ProcessDataContainer, each of them related to
a Process. A ProcessDataContainer holds one or
several VariableValue either a scalar type (Boolean,
Integer, . . .) or an Array of VariableValue. Fig. 6
presents the class diagram of the generic binding that applies
whatever the design structure is.

Fig. 6. Generic binding class diagram

Fig. 7. Excerpt of a specialized binding class diagram issued from the CCS

b) Specialized binding: The database schema stems
directly from the design structure. A Configuration is
made of several XXX_Process, each of them related to
a Fiacre process. A XXX_Process holds one or several
attributes in a traditional way. Fig. 7 presents three processes
of the specialized binding issued from the CCS structure.

2) Graph-based database: A graph database stores data
as vertices and edges. Because we used the Neo4j system
(http://Neo4j.com), we will use the Neo4j vocabulary, nodes
for vertices and relationships for edges. A graph database does
not have a schema as a relational database has. Neo4j language
for querying graph database is called Cypher. Cypher queries
find data that matches a specific pattern. A Cypher query
anchors one or more parts of a pattern to specific locations
in a graph using predicates and then flexes the unanchored
parts around to find local matches [13]. Cypher queries are
small graphs made from real nodes and relationships. Hence
domain modelling in a graph database is isomorphic to graph
modelling. According to [13], ”in a graph database what you
sketch on the whiteboard is typically what you store in the
database.”

Fig. 8. A graph of three configurations

Because there is no schema, we have a kind of generic
graph, but also specialized to each design structure be-
cause a process node is labelled with the process name.
A Configuration is made of a Component, each of
them related to several XXX_Process. Fig. 8 presents
the counterexample trail from Fig. 3. Three configurations
are depicted; each is a small sub-graph: its root is a
(blue) node labelled Configuration, the node has a re-
lationship Has_component with a (rose) node labelled
Component that holds relationships Has_processes with
different XXX_Process nodes. As mentioned above, the
graph sketched in the Fig. 8 is exactly the database structure.
The configuration sub-graphs have the same structure and it
might induce the reader to think that they share a common
structure. It is true because the underlying LTS has the same
structure for each node and each configuration sub-graph was
created using the same pattern. However in another graph
database application, it could have no common pattern and
each sub-graph different from the others.

IV. IMPLEMENTATION ISSUES

In this section, we discuss about possible KriQL imple-
mentations and we present related benchmarks.

A. Benchmark cases

We are using a discretisation parameter - the speed incre-
ment - to produce LTS with different sizes: Small - 130,330
nodes and 197,045 transitions; Medium - 445,232 nodes and
672,247 transitions; Large - 1,103,952 nodes and 1,666,391
transitions. We made measurements on a PC running Ubuntu.

B. Loading Data

OBP stores the raw data issued from the model-checking
exploration in two files (configurations and transitions) that
need to be loaded in the database system before querying the
LTS. Although storing the LTS in a database can be performed
on-the-fly during the exploration, it is interesting to be aware
of the overhead time required for the database store.

Configurations (nodes) can be stored with 3 architectures:
generic relational, specific relational and graph; results are
presented in Table I. In a relational model, storing transitions
uses essentially a table with two columns, the configuration
source and the configuration destination, hence it does not dif-
fer between generic and specific bindings. Thus configurations
can be stored with 2 architectures: relational or graph; results
are presented in Table II. We can see that a graph loading is
much faster than the loading of both relational bindings.

TABLE I. LOADING CONFIGURATIONS PERFORMANCES (seconds)

Generic Specific Graph
Sma Mid Lar Sma Mid Lar Sma Mid Lar

326 1201 3373 152 655 1484 14 36 98

TABLE II. LOADING TRANSITIONS PERFORMANCES (seconds)

Relational Graph
Small Mid Large Small Mid Large

17 56 141 1.38 2.38 3.94

C. Node queries

We selected 3 representative queries of nodes operations:

• configurationByPredicate - a restriction opera-
tion that applies a predicate to a ConfigurationSet
source and returns nodes where the predicate is true.

• changingValue - a side-effect restriction opera-
tion that monitors a configuration element over a
ConfigurationSet source and returns nodes where
the monitored element (such as a variable or a process
state) has its value changed regarding its predecessor.

• variableValueDomain - a set construction operation
that gathers all values reached by a variable or a list of
variables; it returns the set of values.

Relational queries use joins to combine data and dedicated
structures such as indexes to improve join performances. With
the generic binding, all data related to processes are hold in
a single table, whether in a specific binding, each process
has its own table that holds its data. Hence, we can expect
that restriction queries over process elements will be faster
with a specific binding because the tables size is reduced. Set
construction operations such as variableValueDomain

require auto-join or recursive queries over the same table and
will suffer of a same bias related to the tables size.

The concept of query in a graph database is a graph
traversal. A traversal is the operation of visiting a set of
nodes by moving between nodes connected with relation-
ships. The traversal starts from selected nodes and col-
lect the visited nodes along the relationship as results. The
traversal continues its journey from one node to another
via the relationships that connect them. The traversal stops
when rules stop apply such as a depth size. Traversals
are well-adapted for navigation along a path. When the
whole graph needs to be traversed because the operator
needs to process all nodes from a certain type (a restric-
tion operator such as configurationByPredicate or
variableValueDomain), we can expect poorer perfor-
mances of a graph database versus a relational one.

Node queries can be implemented with 3 architectures:
generic relational, specific relational and graph; results are
presented in Table III. Specific relational binding achieves very
good performances; the changing operation time explodes
for graph database implementation.

TABLE III. NODE QUERIES PERFORMANCE (seconds)

Gene. Spec. Graph
Sma Mid Lar Sma Mid Lar Sma Mid Lar

pred. 0.33 0.49 2.59 0.07 0.37 0.73 0.36 1.06 3.06

chng. 0.26 0.88 3.11 0.02 0.08 0.15 ˜7 exp. exp.

dom. 0.91 1.26 ˜16 0.05 0.14 0.40 0.55 2 5.16

D. Edge queries

We selected 3 representative queries of edges operations:

• newTrail - a partitioning operation that splits a Path
in a Trail (a sequence of Paths) according to a
ConfigurationSet being the Trail milestones.

• anyPath - a graph traversal operation that search a path
between two nodes over a TransitionSet; it returns
the first Path that reaches the destination node.

• allPaths - an exhaustive graph traversal opera-
tion that search all paths between two nodes over a
TransitionSet; it returns a PathSet.

Edge queries are path walks and will require a massive
use of joins in a relational implementation because edges
are essentially couple of node identifiers (the source and the
destination of the edge) stored in a single Transition table.
There are no difference between a generic or a specific binding
because the implementation is the same, but we can expect that
the longer the path walk is, the poorer the performance will be
because each step along the walk requires a join. The strength
of a graph database is its ability to move between nodes con-
nected with relationships without performance loss whatever
the graph size. Thus we can expect excellent performances of
a graph database versus a relational one.

Transitions can be stored with 2 architectures: relational
or graph; results are presented in Table IV. Graph database
implementation achieves very good performances, independent
of the graph size; the allPaths operation time explodes for
the relational implementation.

TABLE IV. EDGE QUERIES PERFORMANCE (milliseconds)

Relational Graph
Small Mid Large Small Mid Large

newTrail 278 299 ˜2700 82 82 82

anyPath 396 834 ˜4000 80 80 80

allPaths exp. exp. exp. 31 32 32

V. CONCLUSION

We performed benchmark measurements about node and
edge queries with 3 typical queries in each case. We tested
3 different implementations, a generic binding and a specific
binding to relational database (Postgres) and a graph database
(Neo4j). Unfortunately, no implementations was successful for
all test cases and we conclude for the necessity of a blended
implementation: a relational specific implementation for node
queries and a graph-based implementation for edge queries.
Obviously, the main drawback of a redundant and blended
implementation is the lack of synchronisation between both
implementations. Because our goal is to query LTS in a front-
end tool after the model-checker has provided its exploration
results to the diagnostician, we do not need synchronisation
and do not suffer of this drawback. Our current work aims to
define the denotational semantics of KriQL.

REFERENCES

[1] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-
Y. Ma, “Automated known problem diagnosis with event traces,” in
Proceedings of the 1st ACM SIGOPS/EuroSys European Conf. on
Computer Systems. NY, USA: ACM, 2006, pp. 375–388.

[2] I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Trans. on
Visualization and Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[5] F. Gilbert and D. Auber, “From databases to graph visualization,” in
Information Visualisation (IV), 2010 14th International Conference,
2010, pp. 128–133.

[6] F. Holzschuher and R. Peinl, “Performance of graph query lan-
guages: Comparison of cypher, gremlin and native access in neo4j,” in
EDBT/ICDT 2013 Workshops. NY, USA: ACM, 2013, pp. 195–204.

[7] D. Dominguez-Sal, P. Urbon-Bayes, A. Gimenez-Vano, S. Gomez-
Villamor, N. Martinez-Bazan, and J. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,”
in Web-Age Information Management. Springer, 2010, pp. 37–48.

[8] M. Y. Vardi, “Automata-theoretic model checking revisited,” in Pro-
ceedings of the 8th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation. Springer-Verlag, 2007, pp. 137–150.

[9] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-
fillet, F. Lang, and F. Vernadat, “Fiacre: an intermediate language for
model verification in the topcased environment,” in ERTS 2008, 2008.

[10] P. Dhaussy, F. Boniol, J.-C. Roger, and L. Leroux, “Improving model
checking with context modelling,” Adv. in Software Engineering, 2012.

[11] C. Teodorov, L. Leroux, and P. Dhaussy, “Context-aware verification of
a cruise-control system,” in Model and Data Engineering. Springer
International Publishing, 2014, pp. 53–64.

[12] V. Ribaud, “Specifications for trace visualization,” OpenFlexo, Tech.
Rep., 2014.

[13] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly
Media, Inc., 2013.

[14] K. Es-Salhi, R. Boudaoud, C. Teodorov, and V. Ribaud, “KriQL a query
language for labelled transition systems,” in submitted to AVOCS, 2015.

