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The influence of surface/interface on the lattice dynamics of spin crossover nanoparticles has been investigated

by a spring-ball model solved by Monte Carlo methods. The bond cohesion energy of the model has been

extracted from Mössbauer spectroscopy measurements performed on the model compound Ni3[Fe(CN)6]. We

show that the coupling between bulk and surface vibrational properties, which drastically affects the mechanical

properties of the whole particle below a characteristic size, has a major impact on the phase stability of the

particles. In the case of free surfaces, the Debye temperature decreases with the size and the first-order nature of

the spin transition disappears. On the other hand, a hardening of the surface bonds leads to increasing particle

stiffness with the size reduction. In this case, a persistence of the hysteretic behavior in the spin transition curve

is also predicted in good agreement with previous theoretical and experimental results.

DOI: 10.1103/PhysRevB.90.075402 PACS number(s): 64.70.Nd, 64.60.De, 75.30.Wx

I. INTRODUCTION

In recent years, the synthesis, the design, and the character-
ization of spin crossover (SCO) nanoobjects have received a
growing interest [1–3], due to their potential application in the
elaboration of sensors, new generation of electronic/photonic
nanodevices, and micro- or nanoactuators [4]. Indeed, SCO
molecules are able to switch from a low-spin (LS) to a high-
spin (HS) state with the application of an external stimulus [5]
(temperature, pressure [6], magnetic field [7], light irradiation
[8], pulsed laser irradiation [9],. . . ). In the solid state, the
spin state change can be abrupt with a hysteresis phenomenon
(first-order transition) whose existence is highly dependent
on the nature of the elastic interactions (the electron-phonon
coupling) in the crystal packing [10,11].

At the nanometric scale, recent experimental observations
in SCO nanoparticles have shown discordant results and
have brought out new fundamental questions concerning
the existence of the bistability [12]. While the loss of the
hysteretic behavior has been observed in many cases with
the size reduction (below approximately 50–100 nm) [13–16],
an unexpected presence of the bistability phenomenon has
been detected in some SCO nanoparticles smaller than
10 nm [17–21]. Size effects are generally attributed to the
increase of surface-to-volume ratio implying a predominance
of the surface physical properties and a higher sensitivity of
nanoobjects to the surrounding external chemical environment
[20]. The mechanical properties of the matrix as well as the
physicochemical properties of the matrix-particle interface
may play an important role in the observed properties,
even for micrometric particles [22]. Most of the theoretical
investigations using Ising-like models [23–27], spin-phonon
Hamiltonians [28], or mechanoelastic models [29] predict an
ineluctable loss of the memory effects below a critical size for
free nanoparticles.

However, it is well known that various physico-chemical
properties of a nanoobject can be size dependent [30], in
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particular the elastic and vibrational properties. For exam-
ple, the measure of the Debye temperature of a series of
Prussian-blue complexes has highlighted a hardening of the
materials for very small nanoparticles [31]. In this work, a
core-shell thermodynamic approach has been employed to
show that this size dependence of the vibrational properties
can enhance the electron-phonon coupling and can lead to a
reopening of the hysteresis loop at very low sizes. Moreover,
a recent theoretical study combining statistical physics and
nonextensive thermodynamics has shown that the surface
energy of a free nanoparticle depends on the characteristics
of the intermolecular forces of the whole particle [32]. The
dependence of the surface energy with the stiffness of the
particle core supposes that the shell and the core vibrational
properties are strongly coupled. Reciprocally, surfaces can
influence the physical properties of the inner particle and are
able to play a key role in the modifications of elasticity with
the size reduction and therefore in the SCO properties at the
nanoscale.

In this paper, we propose to investigate the surface effects on
the vibrational properties of nanoparticles through the numeri-
cal simulation of the size dependence of the Debye temperature
using an original Monte Carlo method. In particular, the spatial
range of the surface properties within the nanocrystal as well as
the finite size effects on the SCO properties are discussed. The
manuscript is organized as follows. Section II is devoted to
the introduction of the model and the computational details
of the Monte Carlo methods. The numerical extraction of
cohesion energy from Mössbauer spectroscopy measurements
is described in Sec. III as well as the consequence of the size
dependence of vibrational properties on the SCO behavior. We
finally conclude in Sec. IV.

II. MODEL AND COMPUTATIONAL DETAILS

A. Spin-phonon Hamiltonian

In the following, we describe the spin-phonon model
introduced in a previous work, the so-called anharmonic Ising-
like model [33]. Let us consider a cubic lattice constituted of
N molecules (or sites) whose vibronic states are described by a
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degenerate two-level model [34]. Considering that this model
is completely equivalent to a nondegenerated Ising model
under a temperature dependent field, the on-site Hamiltonian
can be expressed as

Hsp =
1

2

(

� − kBT ln
gHS

gLS

) N
∑

i=1

σi, (1)

where kB and T stand for the Boltzmann constant and the
temperature, respectively. σi = ±1 are the eigenvalues of the
fictitious spin operator, which represents the spin state of
the i th molecule (+1 for the HS state and −1 for the LS state).
� represents the energy difference between the two molecular
states, which favors the LS state at low temperatures, whereas
the vibrational and electronic degeneracy ratio between the two
spin states gHS/gLS favors the HS state at high temperatures.
In order to simulate the elastic nature of the interaction and the
electron-phonon coupling, the lattice degrees of freedom are
taken into account and coupled with the fictitious spin through
a spin state dependent potential energy, corresponding to the
electron-phonon interaction [11,33]:

Hel =
∑

〈i,j〉

A(σi,σj )Vel(r〈ij〉,σi,σj ), (2)

where

Vel(r〈ij〉,σi,σj ) =

(

r0
〈ij〉(σi,σj )

r〈ij〉

)6

− 2

(

r0
〈ij〉(σi,σj )

r〈ij〉

)3

. (3)

The sum 〈i,j 〉 is restricted to the nearest neighbors (NN).
r〈ij〉 and r0

〈ij〉(σi,σj ) correspond to the instantaneous and
equilibrium distances between two NN sites, respectively. Vel

is the two-body interaction Lennard Jones potential simulating
the elastic stress exerted by neighboring molecules j on a
molecule i [33]. The properties of the interaction Hamiltonian
Hel [cohesion energy A(σi,σj ) and the equilibrium distances
r0
〈ij〉(σi,σj )] are dependent on the spin states of the molecules

forming the bonds (HS-HS, LS-LS, LS-HS) and traduces
the local elastic deformations generated by the switching of
molecules in the crystal packing [35,36]. The next nearest-
neighbor (NNN) interactions are added in the simulation to
the sole purpose of preserving the symmetry of the lattice
[37]. The total Hamiltonian can be written as

H(1) = Hsp + Hel. (4)

A first-order transition with a hysteresis cycle can be
obtained either by increasing (i) the difference in bond
strength ([A(1,1) − A(−1, − 1)], [A(1,1) − A(−1,1)] and
[A(−1, − 1) − A(−1,1)]) between the two spin states or
(ii) the stiffness of the lattice [38]. In this work, we limit
the study to the size effects on the stiffness of the lattice and
its consequences on the spin transition properties.

B. Monte Carlo simulation

In order to investigate the thermoelastic properties of the
Hamiltonian (4), the estimations of thermal quantities are
performed by Monte Carlo methods in the isothermal and
isobaric ensemble (T ,P = 0,N ). We define the mean number
of molecules in the HS state, the so-called HS fraction nHS,

which is directly related to the thermal average fictitious spin
〈σ 〉:

nHS =
1 + 〈σ 〉

2
. (5)

nHS is the usual order parameter to follow the spin transition.
The calculation of elastic/vibrational properties can be

achieved either by the numerical estimation of the bulk
modulus or by the simulation of the Debye temperature θD .
While the former corresponds to an overall response of the
system volume to the application of an isostatic pressure and
is also related to spatially averaged thermal quantities, the
latter can be deduced from the mean-square displacement of
molecules 〈u2〉 (vide infra):

〈u2〉 =
1

N

N
∑

1

〈u2
i 〉, (6)

where 〈u2
i 〉 = 〈(ri − 〈r0

i 〉)2〉 is the mean-square displacement
of the ith site. This local quantity allows to access to the spatial
distribution of bond vibrations and its knowledge can also
probe the impact of surface vibrations on the crystal stiffness.

The coordination defects at the surface (missing bonds
due to the creation of surface) can be simply taken into
account by applying free boundary conditions. Other boundary
conditions can also be used to simulate the difference between
the bulk and the surface in terms of chemical properties,
either with a local modification of the ligand field � at the
surface [32] or by fixing molecules at the surface in the HS
state (specific boundary conditions) [24,28], which forms a
core-shell system. These latter conditions explain in a simple
manner the down-shift of the transition temperature and the
existence of a residual HS fraction at low temperatures and
are interpreted as a “negative pressure,” which acts on the
nanoparticle core. A physical origin of the size evolution
of the transition temperature has been proposed through a
core-shell thermodynamic model, which introduces a spin
state dependent surface energy [31]. This interface energy can
be developed in chemical and mechanical (matrix and local
surface stresses...) terms, even if all these contributions are
correlated. The resulting difference between the HS and the
LS surface energies constitutes the driving force of the spin
transition at the nanoscale [31]. In this present work, we are
interested in the influence of a free interface on the lattice
dynamics of nanoparticles, i.e., without additional constraints.
The calculation of thermal quantities nHS and 〈ui〉 by Monte
Carlo simulation is based on a sampling method of accessible
microstates in the phase space using stochastic dynamics
governed by a master equation formalism [33]. Spin state
and position variables of each site are successively updated
according to the usual Metropolis criterion [39]. A particular
attention has been paid for the control and the update of
the system volume due the existence of large fluctuations,
especially for very small sizes. Indeed, the displacement of
one site can imply a significant variation of the volume and
large distortions of the cubic lattice. In addition, the numerical
estimation of the local mean-square displacements has to be
performed carefully for very small system sizes due to the open
boundary conditions. Indeed, translations or rotations of the
whole nanoparticle, which are usually neglected for massive
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systems due to their larger inertia, have to be considered
here. These additional degrees of freedom prevent to define
easily an equilibrium position for each site i. To solve this
problem, three spatial reference axis are used: the center of
mass of the lattice, corresponding to the averaged positions of
all sites and two vectors along the crystallographic directions
[100] and [010]. The center of mass defines the origin of the
Cartesian coordinate system and the two vectors allow the
control of the random rotations of the whole nanoparticle.
Positions and rotations of the particle have been checked
at every mean-square displacement measure and controlled
with these three spatial references. In the following and if not
mentioned otherwise in the text, thermal quantities have been
estimated as the average over 1000 configurations obtained
from independent MC simulations (ensemble averages).

III. RESULTS AND DISCUSSIONS

In a first step, we study the size evolution of elastic
properties of a 3D cubic crystal, which does not diplay a phase
transition in order to avoid the complications that may arise
due to the presence of multiple (HS and LS) phases in various
proportions. The Hamiltonian (4) is simplified as follows:

H
(2)
el =

∑

〈i,j〉

ǫVel

(

r〈ij〉,r
0
〈ij〉

)

, (7)

where ǫ is the cohesion energy of the crystal.

A. Extraction of bond cohesion energy from

Mössbauer spectroscopy

First, it is important to show that orders of magnitude
of the different structural and elastic quantities contained
in the Hamiltonian (7) can be extracted from experimental
data. Indeed, the equilibrium position r0

〈ij〉 can be obtained
from lattice parameters and atomic coordinates measured
by diffractions techniques and the cohesion energy ǫ or the
elastic constant can be estimated from 57-Fe Mössbauer
spectroscopy, which allows the determination of the Debye
temperature θD for iron-containing materials (which is the case
for many SCO materials) by probing the local environment (via
the mean-square displacement) of this atom.

The Debye temperature θD is extracted from the Mössbauer
spectroscopy measurement, by a linear fit of the temperature
dependence of the Mössbauer spectrum area A, using the well-
known high-temperature limit [40] :

ln (A) ∝ ln (f ) ≈ −
6ER

kBθ2
D

T , (8)

where f is the Lamb-Mössbauer factor, kB is the Boltzmann
constant, and ER is the recoil kinetic energy of iron.

On the other hand, the Lamb-Mössbauer factor f is directly
related to the mean-square displacement:

f = exp

(

−
k2〈u2〉

3

)

, (9)

where �k is the wave vector of the incident photon beam. By
injecting in Eq. (9) the MC calculation of the mean-square
displacement 〈u2〉 for a given cohesion energy ǫ, a numerical
Debye temperature θD(ǫ) is deduced from Eq. (8) and can be

compared with the experimental result θ
exp
D . Then, the cohesion

energy ǫ corresponding to θD(ǫ) = θ
exp
D is determined by re-

verse Monte Carlo simulation, which minimizes the difference
between the numerical and experimental data [41].

In the following, we choose to extract the order of
magnitude of the cohesion energy ǫ of Eq. (7) from the
elastic properties of Ni3[Fe(CN)6] studied by Mössbauer
spectroscopy in a previous work [31]. This compound does
not present a spin conversion, but its structure is very similar
to those of spin transition coordination networks. We perform
Monte Carlo simulation on a N = 303 cubic system with
an equilibrium position r0

〈ij〉 = 5.1 Å, corresponding to the
experimental Fe-Ni distance. In the simulation, nickel atoms
are assimilated to iron ones for convenience, keeping in mind
that the 57-Fe Mössbauer spectroscopy is only sensitive to
iron nuclei. Sites close to the surface have been disregarded
in the calculation of the mean-square displacement because
finite size effects are always present in simulating the system,
while they are negligible in bulk materials. The disregarded
surface sites are defined by a characteristic surface thickness
(cf. Sec. III B) such as the mean-square displacement of
core sites is close to the bulk material. Figure 1 depicts
the thermal evolution of the Mössbauer spectrum area A of
Ni3[Fe(CN)6] (red crosses) in a logarithmic representation.
The experimental data give θ

exp
D = 187(9) K [31]. The thermal

evolution of the mean-square displacement calculated from
MC simulation (Fig. 1, blue circles) shows the expected
linear thermal dependence in the high-temperature limit in
agreement with the classical treatment of phonons in the
harmonic approximation. Anharmonicity effects due to the
Lennard-Jones shape of the elastic potential, which arise close

ln
(f

)

Temperature (K)

300250200150100

-2.6

-2.8

-3

-3.2

-3.4

FIG. 1. (Color online) Experimental data (blue crosses) and nu-

merical simulation (purple circles) of the thermal evolution of the

Lamb-Mössbauer factor f in a logarithmic representation. The

straight green line corresponds to a linear fit of experimental data

obtained on the compound Ni3[Fe(CN)6] using the Debye model

in the high-temperature limit (from Ref. [31]). MC simulation has

been realized on a system with N = 303 sites and the temperature

sweep has been performed with a heating rate of 5 × 10−4 K MCS−1

(Monte Carlo step) in the warming and cooling modes, the initial

system configuration being the final configuration of the previous

temperature. The sizes of circles are directly related to the MC

numerical errors.
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(a) (b) (c)

FIG. 2. (Color online) (a)Spatial distribution of the local mean-square displacements 〈u2
i 〉 for a section of the cubic system of size N = 403

with free surfaces. (b) Corresponding averaged profile of 〈u2
i 〉 for different system sizes (N = 53, 103, 203, 303, and 403). The center of the

cube is taken as the reference to identify the layers between two opposite surfaces. For (a) and (b), MC simulations have been performed at

T = 200 K with a cohesion energy ǫ = 6000 K. (c) Schematic representation of the surface effects on the lattice dynamics at the nanometric

scale where λ is the characteristic surface thickness. When L ≈ Lc, the vibrational properties of the system are completely different from the

corresponding bulk material (L ≫ Lc). (Insert) Schematic representation of the path along which the profile of 〈u2
i 〉 has been determined.

to the melting process, lead to a deviation from this linear
dependence at higher temperatures (not shown here). After
convergence of the reverse Monte Carlo algorithm, a slope
of θD = 186.7 K is numerically obtained, corresponding to
a value of ǫ = 26 800(200) K ≈ 2.31(2) eV. This value is of
the same order of magnitude than covalent bond energies,
in good agreement with the coordination network structure
of this material. Similar extractions of cohesion energy can
be performed on molecular crystals, but it is important to
point out that the extraction of the Debye temperature has
to be carefully performed in this latter case, mainly due to
the fact that Mössbauer spectroscopy techniques only probe
the close environment of iron atoms. The estimation of the
Debye temperature would be only valid for the iron sublattice.
In molecular crystals, the weaker intermolecular interactions
would lead to lower cohesion energies than coordination
networks, typically around ǫ ≈ 5000–6000 K. This combined
numerical/experimental method can be systematically applied
to switchable SCO materials for which the cohesion energies
of the HS and LS phases could be extracted. The knowledge
of these two quantities as well as their size evolution is of
paramount importance since the cooperative spin transition
mechanisms are mainly governed by the difference of stiffness
between the HS and LS phases and the intermolecular
vibrational properties of the materials. This latter can be
strongly affected when the size is decreased due to the presence
of surfaces.

B. Surface effects

The physicochemical properties of a material are expected
to change when the system size decreases below a “critical
size” [16]. Generally, this “critical size” may be different
according to the physical phenomena and the size dependence
of physicochemical properties involved in, making it difficult
to give a clear definition. The surface/interface physical prop-
erties are different from the inner particle due to coordination

defects, surface reconstructions or/and external environments,
which hinder or enhance the observed physical phenomenon.
In SCO materials, a possible origin of the disappearance or
the survivance of the memory effect (first-order transition)
probably comes from a modification of the elastic behavior
induced by the growing influence of the surface vibrational
properties.

This change in the lattice dynamics with the size can be
numerically studied by inspecting the spatial distribution of
the local mean-square displacement 〈u2

i 〉. Figure 2(a) shows an
example of a mapping of 〈u2

i 〉 for a section of the cubic lattice.
The local mean-square displacement is inhomogeneously
distributed and is higher at the surfaces, especially at the
corner of the section where the coordination number is the
lowest. This can be understood by the fact that missing bonds
at the surfaces allow a higher freedom of movement than in the
core. It is important to note that the mean-square displacement
decreases continuously and progressively as one moves away
from the surfaces. Surface effects penetrate deep into the
material and impact the vibrational properties of the first layers
of molecules close to the side or the corner of the system.
Beyond a finite distance from surfaces, 〈u2

i 〉 reaches a threshold
value corresponding to the mean-square displacement of the
bulk.

The size evolution of the mean profile of the local
mean-square displacement 〈ui〉 calculated between two points
located at the center of two opposite faces of the cube is
represented in Fig. 2(b). A characteristic value of the surface
thickness, noted λ, can be estimated from an exponential
fit of the different profiles (see Appendix A). From this
characteristic value, a critical size Lc can be deduced. Lc/r0

〈ij〉

is not significantly dependent either on the cohesive energy
[A(σi,σj )] or on the lattice parameter but can be weakly
influenced by the temperature and the lattice structure. When
the size of the system L is much greater than Lc, surface
effects can be ignored and the thermodynamic limit can
be considered as valid. However, when L ∼ Lc = 7–8 nm,
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FIG. 3. (Color online) (a) Size dependence of the Debye temper-

ature θD for a cubic lattice (blue crosses) with ǫ = 6000 K. For each

size, θD has been determined from the MC estimation of 〈u2〉 at a

fixed temperature T = 200 K. These data have been fitted by equation

(10) linking θD and the melting temperature Tm(green straight

line). The dotted red line corresponds to the Debye temperature

in the thermodynamic limit (L ≫ Lc). (b) Application to the spin

transition: Monte Carlo simulation of the thermal evolution of the

high spin fraction for a N = 43 cubic system with free surfaces (blue

straight line). The SCO properties of the corresponding bulk material

(green dotted line) is also shown for comparison. The cohesion

energies A(σi,σj ) (lattice parameters r0
〈i,j 〉) are A(1,1) = 6100 K

(rHS = 5.15 Å), A(−1, −1) = 6200 K (rLS = 5.1 Å), and A(−1,1) =

A(1, − 1) = 6000 K (rHL = rLH = 5.125 Å) for the HS-HS, LS-LS,

and HS-LS/LS-HS bonds, respectively. The coding heating rate is

4 × 10−4 K MCS−1.

surface effects get more and more importance and modify
the vibrational properties of the whole system by changing
the value of 〈ui〉 initially present in the core. Therefore the
mean-square displacement of the nanoparticles can be rather
different from those of the corresponding bulk materials. This
size dependence of lattice dynamics has a direct impact on
the size evolution of the acoustic vibrational properties of
the crystal which can be quantified by the size dependence
of the Debye temperature as shown in Fig. 3(a). In the
case of free boundary conditions and in the absence of a
modification of the surface elastic properties, the nanoparticle
apparently becomes “softer” than the corresponding bulk
material and a decrease of the Debye temperature is observed.
It is important to note that the relation linking the Debye
temperature and the elastic properties of the materials is
different at the nanometer scale than in the thermodynamic
limit [32], so that the notion of “soft” and “hard” has to be
carefully used.

It is interesting to establish a relation between the Debye
θD and the melting Tm temperatures of materials. Size effects
in melting process have been studied for a long time and
many similarities have been observed between solid-liquid and
structural first-order transitions in nanocrystals [12], mainly
due to the fact that these two characteristic temperatures Tm

and θD are both dependent on the mean-square displacement
〈u2〉. An expression of the dependence with the size of the
Debye temperature can be derived using a simple definition
of the melting temperature and the Young-Laplace relation,

which introduces the energetic cost for the creation of free
surfaces [42] (see Appendix B):

θD =

√

T b
m − α

4γ

L
, (10)

where T b
m is the melting temperature for a bulk material.

α and γ correspond to a material dependent parameter and
the surface energy, respectively. The numerical simulation
in Fig. 3(a) has been fitted fairly well by Eq. (10) with a
slight discrepancy mainly due to the fact that the surface
energy γ becomes itself size dependent for very small system
sizes. Nevertheless, this simple analytical approach allows to
establish a link between size dependencies of melting process
and the lattice dynamics. Therefore a systematic study of
the size dependence of the melting temperature of a material
constitutes a new interesting way to predict the evolution of
the vibrational properties with the size diminution.

However, the increase with the system size of the melting
temperature [43] as well as of the Debye temperature [31,44]
can occur under certain conditions. These have been attributed
to (1) a higher sensibility to the environment (matrix effects) in
which the nanoparticles are embedded in Ref. [28], (2) a mod-
ification of the surface mechanical properties due to chemical
reactions or surface reconstruction, or (3) a hardening of the
whole nanoparticle. Mössbauer spectroscopy measurements
have recently highlighted a hardening of Prussian blue analog
nanoparticles by approaching the nanoscale, which results in
an increase of the Debye temperature [31]. This very important

FIG. 4. (Color online) (a) Simulation of the size evolution of the

Debye temperature θD for a core-shell nanoparticle where surface

bond energies ǫsurf = 18 000 K have been increased in comparison

with the cohesion energy of the core, which is the same as in Fig. 3.

(Insert) Schematic representation of the simulated core-shell system.

(b) Application to the spin transition: Monte Carlo simulation of

the thermal evolution of the high spin fraction for a core-shell

cubic system of size N = 43. The reopening of the hysteresis

loop induced by the modification of surfaces is compared with the

SC0 properties of the corresponding bulk material (green dotted

line). Model and simulation parameters are the same as in Fig. 3

except the cohesion energies of HS-HS, LS-LS, and HS-LS (LS-HS)

bonds at the surface, which have been increased [A(1,1) = 18 100

K, A(−1, −1) = 18 200 K, and A(−1,1)=A(1, −1) = 18 000 K],

keeping the difference in stiffness between the HS and LS phases

constant.
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n
H

S

Temperature (K)

270260250240230220210
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0.8
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0.2
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FIG. 5. (Color online) Monte Carlo simulation of the thermal

evolution of the high spin fraction for a core-shell cubic system of size

N = 43 (blue straight line). The large reopening of the hysteresis loop

is induced by an increase of the surface cohesion energy by making the

assumption that the cohesion energy changes in a different way for the

HS and LS states. The hysteresis loop of the nanoparticle is compared

with the hysteresis loop of the corresponding bulk material (green

dotted line). Model and simulation parameters are the same as in Fig. 4

except the cohesion energies of HS-HS, LS-LS, and HS-LS (LS-HS)

bonds at the surface [A (1,1) = 18 150 K, A (−1, − 1) = 18 300 K,

and A (−1,1)=A (1, − 1) = 18 000 K].

result demonstrates that the decrease of the coordination
number per site can be counterbalanced by an enhancement
of the elasticity. The size evolution of the Debye temperature
observed in Fig. 3(a) can be modified using specific boundary
conditions, as for example, by increasing (ad hoc) the stiffness
of the bonds at the surface, forming a core-shell structure
[see Fig. 4(a)]. It is important to note that the surface/bulk
vibrational coupling is dependent on the nature of the bonds
linking the core and the shell of the nanoparticle, which is
comparable with the role of coherent/semicoherent interfaces
in the transmission of matrix elastic stresses to embedded
nanoparticles [45].

The modulation of the elastic properties of nanoparticles
by surface/interface effects has an impact on the control of the
phase transition governed by electron-phonon couplings like
the spin transition. Indeed, the consequences of these results
on the SCO behavior at very small sizes can be simulated
using Eq. (4). Starting from a same cooperative material,
two extreme situations can be identified at the nanometric
scale, according to the surface vibrational properties. In the
case of free boundary conditions, the decrease of the Debye
temperature of the nanoparticle leads to the loss of the
bistability [Fig. 3(b)], whereas a small hysteresis loop occurs
when the stiffness of the surface bonds is increased [Fig. 4(b)].
Although the hysteresis loop can be induced by kinetic effects
in the case of small particle sizes, the transition curves of the
two compared nanoparticles have been performed in the same
numerical conditions (size, cooling/heating rates, etc.) and are
also submitted to same kinetic effects. Hence, in the present
work, the reopening of the hysteresis loop at small sizes has
been induced by a hardening of the surface, which has caused a
hardening of the whole nanoparticle due to the surface-volume
vibrational coupling. In this approach, the difference in terms

of stiffness [A(1,1), A(−1,−1) and A(1, − 1) = A(−1,1)],
known to play a major role in the existence of the bistability
phenomenon [38], has been supposed to remain constant when
the size is decreased. Size dependence of this difference would
lead to the existence of huge shifts of the transition temper-
ature, large hysteresis loop at the nanometer scale or change
in phase stability as shown in Fig. 5. Moreover, this would
strongly affect the nucleation energy barrier and cooperative
mechanisms. Despite some observations of SCO properties
at the nanoscale, experimental proofs for this behavior are
still lacking.

IV. CONCLUSIONS

In this paper, we show that the elastic constant of spin-
phonon models, in the SCO field, can be obtained from
experimental measurements, allowing a more quantitative
study and a more realistic simulation of the role of lattice
deformations during the spin transition.

Furthermore, we show that the interface vibrational prop-
erties are not limited to the surface of the nanoobjects, but
are strongly delocalized within the nanomaterials due to
the long-range character of elastic interactions. The spatial
distribution of the mean-square displacement allows for the
definition of a characteristic thickness in which the surface
vibrational properties cannot be neglected. When the particle
size has the same order of magnitude as this characteristic
thickness, the elastic properties of the whole nanoparticle are
completely modified.

In particular, the mechanism of phase transitions governed
by an electron-phonon phenomenon like the spin transition
can be controlled by the surface stiffness. In the case of
free surfaces, size reduction leads to a decrease of the Debye
temperature and a loss of hysteretic behavior is observed for
the nanoparticle. At the opposite side, when the surfaces are
hardened by local structural reconstruction or by the external
environment, the stiffness of the core-shell nanoparticle is
increased and the bistability phenomenon persists even at very
small sizes.

The origin of the surface hardening that modifies the elastic
surface energy has still to be established. Even more important
is to understand how the elastic interface energy can be affected
by the external environment and how the surface elastic waves
of the shell are coupled with the acoustic modes of the core.
This can be achieved by the study of the core-shell nanopar-
ticle vibrational spectra beyond the classical treatment of
phonons.

Interestingly, the size dependence of the Debye temperature
has been related to that of the melting temperature, which
constitutes a new experimental way of comparison to better
understand how the thermodynamic properties and kinetic
processes during the spin transition can be modified by
approaching the nanometer scale.
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APPENDIX A: EXTRACTION OF A CHARACTERISTIC

SURFACE THICKNESS λ

The strong variation of the local mean-square displacement
by approaching the surfaces of the nanoparticles can be
characterized by a distance λ defining a depth in which the
surface and the core are strongly coupled.

This distance λ can be deduced from an exponential fit
of the profile of 〈u2

i 〉 by analogy with finite size ferro-
magnetic systems whose energy is modeled by the Ising
Hamiltonian exhibiting surface effects. Indeed, it has been
analytically demonstrated that the spontaneous magnetization
density exhibits an exponential decay by approaching a free
surface [46]. We note that the profile of 〈u2

i 〉 cannot be
perfectly fitted by an exponential law mainly due to the
fact that the local mean-squared displacement is directly
related to the elastic properties of the crystal packing,
which corresponds to long-range interactions as opposed to
the short-range character of the exchange coupling in the
Ising model. Therefore the exponential fit systematically
underestimates λ.

From this value, we can deduce the surface “thickness”
as 5λ and the critical size of the nanoparticle Lc = 10λ ≈
7–8 nm below which surface properties are predominant.
The characteristic thickness λ is virtually independent on
the system size. Obviously, below Lc, the extracted value
of the distance λ becomes more and more meaningless since
the effects of the different surfaces of the cubic system
overlap, which drastically modifies the vibrational properties
of the nanoparticle. In other words, below Lc, the vibrational
properties of the nanoparticle are dominated by surface
effects.

APPENDIX B: SIMPLE ANALYTICAL APPROACH FOR

THE SIZE DEPENDENCE OF THE MELTING AND THE

DEBYE TEMPERATURES

In the harmonic limit and in the framework of the Debye
model, the melting temperature Tm can be expressed as [47,48]

Tm ∝
c2
L

(

r0
〈ij〉

)2
Mω2

D

kB

, (B1)

where M and ωD = kBθD/� are the mass and the Debye
angular momentum of the bonds 〈ij 〉. cL is the so-called
Lindmann criterion, which is a semiempirical estimation of
the melting temperature and can be related to the mean-square
displacement by

cL =

√

√

√

√

〈u2〉

3
(

r0
〈ij〉

)2
. (B2)

The solid is considered to melt for an arbitrary value of the
Lindmann criterion (cL ≈ 10%–14%). A dependence of the
melting temperature with the system size can be established
using thermodynamic considerations and the well-known
Young-Laplace relation:

Tm = T b
m − α

4γ

L
, (B3)

where α is a material dependent parameter and γ is the surface
energy. By injecting Eq. (B3) in Eq. (B1), an expression of the
dependence with the size of the Debye temperature can be
derived:

θD ∝

√

T b
m − α

4γ

L
. (B4)
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